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3Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL)
firstname.lastname@iosb.fraunhofer.de firstname.lastname@epfl.ch

Abstract

Most state-of-the-art solutions for localizing facial fea-
ture landmarks build on the recent success of the cascaded
regression framework [7, 15, 34], which progressively pre-
dicts the shape update based on the previous shape estimate
and its feature calculation.

We revisit several core aspects of this framework and
show that proper selection of regression method, local
image feature and fine-tuning of further fitting strategies
can achieve top performance for face alignment using
the generic cascaded regression algorithm. In particular,
our strongest model features Iteratively Reweighted Least
Squares (IRLS) [18] for training robust regressors in the
presence of outliers in the training data, RootSIFT [2] as
the image patch descriptor that replaces the original Eu-
clidean distance in SIFT [24] with the Hellinger distance,
as well as coarse-to-fine fitting and in-plane pose normal-
ization during shape update.

We show the benefit of each proposed improvement by
extensive individual experiments compared to the baseline
approach [34] on the LFPW dataset [4]. On the currently
most challenging 300-W dataset [28] and COFW dataset
[4], we report state-of-the-art results that are superior to or
on par with recently published algorithms.

1. Introduction

Facial image analysis is an important research topic in
the computer vision community. Localization of facial fea-
ture landmarks, a.k.a. face alignment, is an early but crucial
step in this context for the latter processing stages, e.g., face
recognition [16], pose estimation [25], facial expression
classification [8] and face hallucination [32]. In the wake
of the explosive growth of Internet image and video data
from social media, despite the broad interest and research
effort since the seminal work Active Shape Model (ASM)
[11] and Active Appearance Model (AAM) [9], there still
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Figure 1: Overview of the performance gain with mean er-
ror through each proposed improvement on top of the base-
line evaluated on the LFPW dataset [4]

remain challenges under uncontrolled conditions, e.g., oc-
clusion, extreme pose and shape variations.

Classic ASM and AAM approaches jointly optimize the
shape parameters with local or global texture. In the last few
years, a new family of face alignment algorithm emerges,
which directly learns regressors from image feature descrip-
tors to the target shape update. These regression-based
methods are gaining increasing popularity due to their lead-
ing performance and high efficiency in the face alignment
task. Although recent studies [7, 27] suggest that perfor-
mance may have saturated on simple uncontrolled indoor
(e.g., BioID [20]) or outdoor (e.g., LFPW [4]) datasets,
reliable detection of facial feature points is still a distant
promise on new challenging in-the-wild datasets (e.g., 300-
W [28] and COFW [6]). Unlike previous approaches that
try to mitigate the impact of occlusion [6], feature selec-
tion [27] and initialization [35] with specific solutions, we
instead revisit some of the low-level aspects of cascaded re-



gression. By reconsidering the essential assumptions and
design choices, we argue that it is possible to achieve sig-
nificant improvements and state-of-the-art performance on
those datasets without bells and whistles.

In the spirit of the baseline cascaded regression-based
approach [34], we further investigate the fundamentals and
seek for enhancement in quest of successful in-the-wild
landmark localization based on a series of experiments.
Highlights of our approach include:

• Robust regression As a core component of the under-
lying framework, the quality of regression has a huge
influence on the trained model. Iteratively Reweighted
Least Squares (IRLS) alleviates the impact of outliers
and noises which are inevitable in real-world data, es-
pecially in the presence of extreme pose, occlusion and
illumination condition in unconstrained face datasets.

• RootSIFT The Hellinger distance proves to be prefer-
able in histogram-based matching problems [2]. By
applying square root during the feature map space con-
version, small histogram bin values get more empha-
sized. In this way, face alignment accuracy is boosted
dramatically.

• Fitting strategies Pose, novel expression and occlu-
sion can all cause the initialized landmarks to drift far
away from the true location. Thus, a larger local image
patch size and compensation for in-plane face rotation
account for fast convergence in early cascade stages,
whereas a smaller patch size ensures high precision in
the final stages.

The remainder of this paper is organized as follows. A
brief introduction to the previous work in face alignment is
given in §2. §3 recalls the baseline framework. The indi-
vidual proposed improvements are discussed and analyzed
in detail in §4, §5 and §6 respectively. Quantitative results
of our final strong landmark detector are demonstrated in
comparison with state-of-the-art methods in §7. Finally, we
conclude our work in §8.

2. Related work
The fiducial facial landmarks, which face alignment al-

gorithms aim to detect, are usually located at facial features
that have semantic meaning, such as eyes, nose, mouth and
chin. The sharp edges and corners in the facial texture near
the feature points are exploited to approach the true land-
mark locations.

Following the pioneering work of ASM [11] and AAM
[9], explicitly constraining shape variations by a linear
shape subspace spanned by Principal Component Analy-
sis (PCA) has become a standard methodology, jointly op-
timized with holistic appearance in a generative [1, 9] or

discriminative [17, 23] fashion, as well as with part-based
local classifiers [3, 12] or regressors [10, 14] using the Con-
strained Local Model (CLM) framework.

The latest trend in cascaded regression-based approaches
[6, 7, 21, 27, 34, 35] has seen a great success. Inspired
by the novel cascaded pose regression by Dollár et al. [15]
that avails of cascaded simple regressors to approximate the
mapping of rigid pose estimation, a progressive fitting al-
gorithm with two-layered boosted ferns is introduced by
Cao et al. [7] to regress the shape increment. Local shape-
indexed feature instead of global ones [15] are adopted
for the complex geometry of human faces. Together with
correlation-based feature selection and random projection,
state-of-the-art performance in both fitting accuracy and ef-
ficiency is reached. Later, Xiong and De la Torre [34] for-
mulate the problem as a sequence of supervised gradient de-
scent steps. The handcrafted SIFT feature extracted around
the facial landmarks are fed to the linear least squares prob-
lem and the descent direction is learned to guide the current
shape estimate towards the desired location. Though with-
out explicitly modeling the shape mode, the implicit shape
constraint still holds since each shape increment lies on the
manifold of the training data, providing better generaliza-
tion to novel shapes.

By virtue of the aforementioned advances, some stan-
dard indoor and outdoor benchmark datasets, e.g., BioID
[20] and LFPW [4], can be safely regarded as resolved
[7, 27]. However, with the introduction of newly pub-
lished challenging datasets, e.g., 300-W [28] and COFW
[6], which go one step further towards in-the-wild settings,
face alignment performance is still far from satisfactory.
Burgos-Artizzu et al. [6] extend [7] with occlusion handling
by incorporating the occlusion information into regression
and determine the location of the shape-indexed features
based on two landmarks instead of one. Regarding adap-
tive feature selection, the greedy global scheme in [7] is
redesigned by Ren et al. [27] to enable learning of represen-
tative local features by random forests [5]. Yan et al. [35]
observe unstable shape initializations caused by challenges
in unconstrained face detection. Multiple initial shape hy-
potheses of different facial parts are combined according
to the structural SVM [29] outputs. Nevertheless, we ap-
proach the in-the-wild issue from an internal perspective of
the cascaded regression framework. The reader is referred
to [31] for a comprehensive review of up-to-date face align-
ment techniques.

3. Cascade of linear regressors
Within the framework introduced in [7, 15, 34], face

alignment is naturally interpreted as a regression problem
for the target output shape x given an input image I and an
initial shape x(0), which is commonly chosen as the mean
shape of the training data scaled and translated with regard



to the bounding box of a face detector [30]. Here the vec-
torized shape x = [x1, . . . , xP , y1, . . . , yP ] ∈ R1×2P is
parametrized by the image coordinates of the P facial land-
marks. The core idea is then to learn a regression function
r(·, ·) that returns an updated shape by minimizing

N∑
i=1

∥∥∥r(Ii,x
(0)
i )− x?

i

∥∥∥2
2
, (1)

where i denotes the index of the totally N training samples
and x? is the ground truth shape. While a one-pass regres-
sion is incapable of understanding the high complexity of
the problem [34], composition of multiple regressors

r = r(T ) ◦ r(T−1) ◦ · · · ◦ r(1), (2)

a.k.a. a cascade of regression, proves to be effective [7, 15,
34], where the output shape of the previous regressor r(t−1)

is fed to the following one r(t) as the input shape and T
denotes the total number of stages.

As long as the initial shape x(0) is valid, the subsequent
shapes {x(t)} are guaranteed to lie in the linear subspace
of the training shapes by regression. This implicit shape
constraint not only makes the algorithm exempt from an ex-
plicit shape model as in CLM, but also encourages to fit to
novel shapes that share little similarity with the mean shape,
which is favorable towards in-the-wild settings.

Next, the regression function r(t) is specified as

r(t)(Ii,x
(t)
i ) = x

(t+1)
i = x

(t)
i + Φ(Ii,x

(t)
i )R(t) + b(t),

(3)

where Φ(I,x) ∈ R1×PD extracts the appearance fea-
ture mapping, such as raw intensity, shape-indexed features
[6, 7, 27] or SIFT [34], in the proximity of x on the image I,
where D is the dimensionality of the feature. The descent
direction R(t) ∈ RPD×2P and bias term b(t) ∈ R1×2P

characterize the stage regressor r(t) and are learned by in-
corporating Eq. (3) into Eq. (1)

arg min
R(t),b(t)

N∑
i=1

∥∥∥∆x
(t)
i −Φ(Ii,x

(t)
i )R(t) − b(t)

∥∥∥2
2
, (4)

where ∆x
(t)
i = x?

i − x
(t)
i is the desired optimal increment

with reference to the current shape x
(t)
i .

During the training phase, starting from the (perturbed)
initial landmark locations {x(0)

i }, after R(0) and b(0) are
learned by minimizing Eq. (4) using least squares fitting, a
new set of training shapes {x(1)

i } is generated by applying
Eq. (3) to the regression output. A small number of itera-
tions then suffice to successively converge {x(t)

i } to {x?
i }.

4. Which regression method?
Minimizing Eq. (4) is widely known as the linear

least squares problem. Stacking all N training samples

yields ∆X(t) =
[
∆x

(t)>
i , . . . ,∆x

(t)>
N

]>
∈ RN×2P ,

Φ̃
(t)

=

[[
Φ(I1,x

(t)
i ), 1

]>
, . . . ,

[
Φ(IN ,x

(t)
N ), 1

]>]>
∈

RN×(PD+1) and R̃(t) =
[
R(t)>,b(t)>]> ∈ R(PD+1)×2P .

To avoid the singular problem, a common practice is to ap-
pend a regularization term to Eq. (4) as ridge regression [19]

arg min
R̃(t)

∥∥∥∥∆X(t) − Φ̃
(t)

R̃(t)

∥∥∥∥2
F

+ γ
∥∥∥R̃(t)

∥∥∥2
F
, (5)

which can be solved in closed form

R̃(t) =

(
Φ̃

(t)>
Φ̃

(t)
+ γIid

)−1
Φ̃

(t)>
∆X(t), (6)

where Iid stands for the identity matrix.
Due to the inevitable existence of noise in the training

data, including annotation error, extremely difficult samples
and local minima, ordinary linear regression is suboptimal,
which assumes that the error is normally distributed. How-
ever, it is well known that even a small number of gross
outliers can hugely bias the regressed model1.

Iteratively Reweighted Least Squares (IRLS) IRLS of-
fers an iterative solution to diminish the negative influence
of noisy data samples [18]. Each iteration at stage s solves
the weighted least squares problem

arg min
R(s),b(s)

N∑
i=1

w
(s)
i

∥∥∥∆xi −Φ(Ii,xi)R
(s) − b(s)

∥∥∥2
2
, (7)

where w(s)
i are the entries of the diagonal weighting matrix

W(s) with initial values set to w(0)
i = 1 and for the purpose

of clarity, the superscript (t) denoting regression stage is
omitted. Similar to Eq. (6),

R̃(s+1) =
(
Φ̃
>

W(s)Φ̃
)−1

Φ̃
>

W(s)∆X. (8)

The weighting matrix W(s) is updated in contrast to the
regression residuals. Specifically, in case of `1-norm,

w
(s)
i =

K∥∥∆xi −Φ(Ii,xi)R(s) − b(s)
∥∥
1

, (9)

where K as well as the regularization parameter γ are ex-
perimentally determined in §7.

1http://www.mathworks.com/help/stats/robustdemo.html

http://www.mathworks.com/help/stats/robustdemo.html
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Figure 2: Performance on LFPW [4] by combining better
regression methods

The algorithm stops when W(s) converges, which usu-
ally needs only a few iterations in our experiments. The
mathematical formulation of IRLS reduces the contribution
of outliers to a small extent, which keeps our regression
model as little affected as possible and robust against un-
constrained conditions in the training data.

Experiments and discussion We conduct intermediate
experiments to validate the necessity of each proposed im-
provements for building our final landmark detector and the
progress incrementally. To keep the compactness of the
experiments here, more details are discussed in §7. The
widely used Labeled Face Parts in the Wild (LFPW) dataset
[4] is chosen as the benchmark. As some volatile URLs in
LFPW are no longer valid, we only collect 810 and 220 im-
ages for training and testing respectively. Our baseline cas-
caded regression implementation resembles [34] with ordi-
nary least squares and SIFT feature. It’s worth a mention
that due to different size of data (c.f . [4]), multiple initial-
izations (c.f . [7]) or manual correction of erroneous land-
marks in [34]2, we are unable to reproduce the same results
as reported in respective papers on LFPW.

As illustrated in Fig. 2, simple ridge regression performs
surprisingly well with considerable improvement in both
precision and convergence of the curve approaching 100%
in y-axis. With the adoption of IRLS, localization accuracy
further increases by a small amount, indicating a more ro-
bust model against outliers during the learning. However,
convergence remains almost unchanged, possibly because
nearly all of the images already have a mean normalized er-
ror less than 10% of the interocular distance (IOD). In §7,

2By direct correspondence with the author
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Figure 3: Performance on LFPW [4] by comparing various
feature descriptors and the Hellinger feature map

the benefit is more evident as expected.

5. Which feature descriptor?
Since the choice of features is a key design factor, it

is reasonable to experiment with other feature descriptors
and mappings other than SIFT in the baseline method [34].
Given the fact that the popular descriptors like SIFT [24],
HOG [13] and LBP [26] are all histogram-based ones, ques-
tion naturally arises if the Euclidean distance employed
in regression also yields inferior results compared to the
Hellinger distance, observed in many other computer vision
tasks like image retrieval [2] and face recognition [33].

The Hellinger kernel maps the original histogram to the
element-wise square root of the `1-normalized

H(x,y) =
∑
i

√
xiyi, (10)

such that comparing transformed histograms in Euclidean
space is equivalent to comparing the original descriptors
in Hellinger space. It is obvious that the Hellinger dis-
tance augments small histogram bin counts, which are over-
whelmingly suppressed by large bin values in Euclidean
space. Therefore, to obtain higher localization precision,
we apply square root to the `1-norm prior to the distance
calculations to all evaluated feature descriptors.

Experiments and discussion With the IRLS algorithm
fixed as our regression method according to the outcome
of the previous section, we evaluate SIFT, HOG and LBP
as feature descriptor with optional Hellinger distance map-
ping. Standard settings of HOG and LBP, namely 8×8 cell
size, 2-by-2 blocks and 50% overlapping for HOG [13], as



(a) (b) (c)

Figure 4: Local image feature descriptor extracted from (a)
the original image, pose-normalized image in (b) initial and
(c) final cascade stages

well as LBPu2
8,2 [26] are deployed. The Hellinger mapping

is computed on the fly.
Fig. 3 presents the contribution of the respective feature

descriptors. At first sight, only HOG and SIFT+Hellinger
(RootSIFT) successfully bring smaller mean normalized er-
ror than the baseline SIFT after all. Both LBP variants in
Euclidean and Hellinger space cannot compete with the rest.
Interestingly, HOG+Hellinger performs a bit worse than the
original HOG, which is the only one of the three histogram-
based features that fails to improve under Hellinger feature
map. SIFT+Hellinger (RootSIFT) reveals the best result in
spite of the degradation in convergence. This trend is visi-
ble in HOG and LBP as well, though less obvious. The rea-
son might be self-explanatory and referred to the definition.
Whilst emphasis on small bin values improves fine fitting
precision, suppression of larger bins leads to less sensibility
to large shape variations. In the next section, we address
this problem by looking for better fitting strategies to boost
the convergence property on LFPW.

6. Which fitting strategies?

In face alignment, the initial shapes are usually deter-
mined as the mean shape of the training data scaled and
translated with regard to the bounding box of a face detec-
tor [30]. In addition, random perturbation is imposed to
the initial shapes in the training stage to take into account
more harsh conditions and rough initializations in the test-
ing phase. In the course of training the cascaded regressors,
the variance of the face shapes reduces gradually, approach-
ing the ground truth in the final stages. Hence, a rational
strategy is to use large local patches for feature extraction at
early stages to allow for large uncertainty, whereas at later
stages, fine-scale local patches facilitate accurate landmark
localization. A similar approach also appears in [35, 36].

Last but not least, modern face detectors, even trained for
frontal upright face detection, can tolerate a certain degree
of in-plane rotation. On the other hand, most widely used
feature descriptors for face alignment, e.g., standard SIFT,
HOG and LBP, are not rotational invariant. The regressor
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Figure 5: Performance on LFPW [4] by combining better
fitting strategies

must then extra model the angle between the upright fea-
ture descriptors and the rotated face shape. We propose a
2-pass strategy in testing to mitigate the issue. In the first
pass, we make use of the trained regressor to compute an ap-
proximate shape. Afterwards, the similarity transform to the
upright mean shape is calculated and this temporary shape
is discarded. Finally, the regressor is applied in the second
pass to the features extracted from the pose-normalized im-
age rotated and scaled subject to the similarity transform.
Apparently, training regressors should also conform to the
same procedure.

Fig. 4 reveals an example comparison of the baseline
with the proposed fitting method.

Experiments and discussion In the last section, the
RootSIFT feature loses a few percent in convergence of the
cumulative error curve in y-axis. Fig. 5 demonstrates the
loss is immediately reclaimed and improved when adapting
the local patch size to different stages. The mean normal-
ized error further decreases to the state-of-the-art level with
compensation of in-plane rotation in both learning and fit-
ting. In the next section, this fine-tuned landmark detector
will be benchmarked on more challenging datasets.

7. Experiments
Datasets Apart from LFPW [4], two more recent and
challenging datasets are employed.

300-W is created for the 300 Faces in-the-Wild Chal-
lenge [28], which combines several existing indoor and out-
door datasets and a new dataset (IBUG), with a unified 68-
point markup. Since the original testing dataset is held for
future challenges, we split the whole data into a training



Table 1: Mean normalized errors tested with different IRLS
parameters γ and K on LFPW [4]

γ
K

1 3 5 7 Mean Std

20 3.74 3.87 3.90 3.94 3.86 0.07
50 3.60 3.72 3.75 3.77 3.71 0.06

100 3.60 3.63 3.65 3.67 3.64 0.03
200 3.68 3.60 3.61 3.62 3.63 0.03

20∼80 3.65 3.73 3.75 3.76 3.72 0.04
50∼200 3.65 3.64 3.66 3.68 3.66 0.02
100∼400 3.76 3.64 3.66 3.66 3.68 0.05
200∼800 4.01 3.70 3.69 3.70 3.77 0.13

80∼20 3.62 3.77 3.80 3.83 3.76 0.08
200∼50 3.57 3.63 3.66 3.68 3.63 0.04
400∼100 3.65 3.58 3.61 3.62 3.61 0.02
800∼200 3.90 3.61 3.61 3.62 3.68 0.12

Mean 3.70 3.68 3.69 3.71
Std 0.13 0.08 0.09 0.10

set of totally 3148 images, consisting of AFW [37] and the
training sets of LFPW [4] and Helen [22], and a testing set
of 689 images in total, composed of IBUG and the testing
sets of LFPW and Helen. Following [27], we also divide the
300-W testing set into a common subset of LFPW and He-
len, and a challenging subset of IBUG, which contains ex-
tremely large variations in pose, expression, occlusion and
illumination (shortened to “Comm.” and “Chlg.” respec-
tively in Tab. 2).

COFW is short for Caltech Occluded Faces in the Wild
[6], which complements LFPW [4] with more occluded
faces and occlusion annotation for landmarks. All 1345
training and 507 testing images have the same 29-point
scheme as LFPW. Note that we do not use the occlusion
mask to train an occlusion-aware model as in [6]. Instead,
standard cascaded regression with exclusively the proposed
improvements is exploited.

Evaluation criteria Standard average error normalized
by interocular distance (IOD) and the corresponding cumu-
lative error curves are reported on all datasets. On COFW,
percentage of failure cases, meaning images with a larger
error than 10%, is also provided as in [6]. The percentage
sign for the error is dropped for the sake of clarity.

Implementation details The initial shape for the first cas-
cade stage is initialized by the bounding box either detected
by the standard Viola–Jones algorithm [30] for LFPW or in-
cluded in 300-W and COFW. After squaring the bounding
box at the same position, the face is cropped to 200×200
pixels and the mean shape is scaled and centered with ref-
erence to the normalized square. All feature descriptors are

Table 2: Mean normalized errors and failures on 300-W
[28] and COFW [6]

Methode 300-W COFW
All Comm. Chlg. Error Failure

ESR [7] 7.58 5.28 17.00 11.2 36%
SDM [34] 7.52 5.60 15.40 — —
LBF [27] 6.32 4.95 11.98 — —
RCPR [6] — — — 8.5 20%
Baseline3 7.40 5.90 13.57 9.9 37%
Proposed 6.24 4.83 12.02 6.7 10%
Human — — — 5.6 0%

computed on 32×32 local patches and then projected to the
PCA subspace with 98% variance to reduce dimensionality.
To augment the training data [34], 10 perturbed samples per
training image, with a standard deviation of 10 pixels for
translation, 0.05 for scaling and 5° for rotation, are gener-
ated. Merely 4 cascade stages suffice to obtain satisfactory
results on most images.

Comparison We first tune the IRLS parameters γ and K
in Eqs. (5) and (9). γ for different cascade stages is specified
by a sequence of choices, i.e., same values, monotonically
decreasing and increasing values. K controls the weighting
matrix W(s) in Eq. (9) as well as the convergence speed.
Tab. 1 clearly reveals outstanding performance of 3.58 mean
error on LFPW with parameters γ = [400, 300, 200, 100]
and K = 3, each having the least average error and high-
est stability through all test cases. We thus fix the values
for 300-W and COFW in favor of those yielding the abso-
lute best result of 3.57, which might be overfitted because
K = 1 generally gives the worst performance. Overall, the
proposed work (3.58) is on par with the best available meth-
ods reported on LFPW, i.e., CE [4] (3.99), ESR [7] (3.43),
SDM [34] (3.47), RCPR [6] (3.5), ERT [21] (3.8) and LBF
[27] (3.35).

Note that because of the different size of retrieved data,
face detection rate, and initialization strategies, etc., the re-
sults on LFPW are not quite conclusive and comparable.
Particularly, as pointed out in [31], some deployed face de-
tectors struggle with difficult face images and they are re-
moved from the evaluation, which questionably elevates the
average score. On the contrary, 300-W and COFW both
provide a fixed number of images and bounding boxes for
initializing shapes. Tab. 2 lists the average errors and fail-
ure rates, if applicable, on these datasets. Results of the
competing methods are reported in [27] and [6] for 300-W
and COFW respectively. The similar results of our baseline
SDM [34] on 300-W confirms the correctness of our imple-
mentation. On the full set and the common subset, we suc-

3Our implementation of [34]
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Figure 6: Cumulative error curves on 300-W [28]

cessfully improve over the state-of-the-art LBF [27]. On the
challenging IBUG dataset, only negligible deficit (12.02 vs.
11.98) is reported. On COFW, even without involving the
occlusion annotation in training, our method outperforms
RCPR [6] by significant error and failure reduction of 20%
and 50% respectively. Larger contribution from IRLS is ob-
served on COFW than on LFPW in Fig. 7. The overall per-
formance falls to 7.8 mean error (6.45 on 300-W) and 17%
failure when only ridge regression is applied alongside other
proposed improvements, justifying the robustness against
outliers. Example results from the challenging IBUG subset
and COFW are presented in Figs. 8 and 9 respectively, in-
dicating that despite recent advances in face alignment that
nearly catch up with human precision, occlusion and large
shape variations still remain a huge challenge for reliable
and accurate landmark detection in the wild.

8. Conclusions

Following the design flow of the cascaded regression
framework, we revisit the essential components and propose
a proper regression method, feature descriptor and fitting
strategies pursuing robust in-the-wild facial landmark local-
ization. Extensive experiments help us identify the positive
factors that most benefit the fitting performance over the
baseline. On the challenging 300-W and COFW datasets,
state-of-the-art results are achieved in spite of the straight-
forward approach, improving over more sophisticated algo-
rithms with adaptive feature selection and occlusion han-
dling. Nevertheless, our approach is non-excludable and
we believe that combining those ideas may provide further
boost in face alignment performance.
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