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Abstract

Part-based models with restrictive tree-structured in-
teractions for the Human Pose Estimation problem, leave
many part interactions unhandled. Two of the most common
and strong manifestations of such unhandled interactions
are self-occlusion among the parts and the confusion in the
localization of the non-adjacent symmetric parts. By han-
dling the self-occlusion in a data efficient manner, we im-
prove the performance of the basic Mixture of Parts model
by a large margin, especially on difficult poses. We address
the confusion in the symmetric limb localization using a
combination of two complementing trees, showing an im-
provement in the performance on all the parts with a very
small trade-off in the running time. Finally, we show that
the combination of the two solutions improves the results.
We compare our HOG-based method with other methods
using similar features and report results equivalent to the
best method on two standard datasets with a large reduc-
tion in the running time.

1. Introduction

Human Pose Estimation in a 2D image is the task of de-
tecting the presence of humans in the image and localizing
their body parts. This problem is motivated by its poten-
tially enormous applicability in high-level vision tasks such
as Action Detection, Human Computer Interaction, Gesture
Recognition, automatic analysis of videos of people etc.

A challenge unique to the human pose estimation prob-
lem is the large articulation that characterizes the human
body. The most successful approaches are based on part-
based models [5, 4, 3]. Here, the human body is modeled as
an articulation of deformable body parts, flexibly connected
to each other via spring-like connections. The appearance
of each part is modeled independently. Due to dividing the
entire body as an articulation of smaller parts, part-based
model can handle a combinatorially large number of articu-
lations.

Estimating pose while modeling all the interactions
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Figure 1. Example pose estimation by Yang et al. [27](a, c) and
our model (b, d). Erroneous pose estimation in (a) is due to the
unhandled self-occlusion (here, of the upper-arm by the torso) and
in (c) is due to the absence of a kinematic constraint between the
left and the right lower limbs.

among the parts amounts to inferencing on a loopy-graph,
which is intractable [12]. Yet, algorithms performing ap-
proximate inference have been proposed [8, 17, 18, 23], but
at the cost of a high running time. Therefore, in order to
perform efficient pose estimation using Dynamic Program-
ming, the interactions between the parts are typically re-
stricted to a tree structure [4, 5, 27] (Fig 4(a)). However,
the downside of such a restriction is that it fails to capture
the interactions between the non-adjacent parts. Two strong
and frequently occurring manifestations of such unhandled
interactions are (i) self-occlusion among the body parts pro-
ducing large variations in part appearances (e.g. a fully vis-
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ible upper arm vs an upper arm occluded by the torso in the
side-view, Fig 1(a)) and (ii) a confusion in the localization
of the non-adjacent symmetric limbs due to the absence of
a kinematic constraint between them (e.g. in the tree shown
in Fig 4(a), the left and the right legs are not kinematically
constrained. Therefore, predictions of both the legs may
localize on one of the legs as shown in Fig 1(c)).

In order to perform inference tractably while still cap-
turing higher order interactions among parts, more recent
works model combinations of physically close body parts,
instead of a single part. For example, [19, 24] use latent
nodes for the combined parts to capture the higher order
spatial relations. Each type of any latent node prefers cer-
tain locations and types of its smaller constituent observed
nodes. [7, 13, 14, 26] use many larger rigid templates span-
ning multiple parts called Poselets. Poselets handle part
interactions by capturing the variations in the appearance
caused by them. Depending on which of the poselets are
activated, images are further processed to localize the parts.
Other methods to handle the higher order interactions per-
form clustering in the pose space at semi-global [16] or
global [10, 11] level and learn cluster-specific deformable
models.

The problem with the above methods is that the vari-
ations in such “superparts” increase combinatorially as a
function of the number of constituent parts. Therefore,
when compared to part-level modeling, many more latent-
node-types/templates/clusters are required to handle such
large variations, consequently demanding a larger training
data and a higher test time.

Different from the above methods, some of the latest
works [9, 21, 20] improve the underlying features and the
learning algorithm using the deep networks obtaining ex-
cellent part detectors followed by imposing cursory spatial
constraints to eliminate the false detections.

Mixture of Parts (MoP) model, proposed by Yang and
Ramanan [27], has been shown to be versatile through its
successful application in various problems of computer vi-
sion [2, 6, 27, 28]. This is mainly due to the flexibility of
modeling the multi-modal appearances of parts by learning
a mixture of templates per part, instead of a single template.
Particularly, Desai and Ramanan’s [2] method of handling
the self-occlusion within the MoP framework, while main-
taining the tree structured interactions with part-level mod-
eling, is promising.

In our paper, we focus on furthering the theory of Hu-
man Pose Estimation by proposing two modular and effi-
cient improvements over Desai and Ramanan [2] to handle
(i) the self-occlusion in a more data efficient manner and (ii)
the confusion in localization of the non-adjacent symmetric
parts. The improvements are modular because each solution
can be applied independently, giving different strengths to
the base MoP model or in combination, giving the best per-

formance; they are efficient because they maintain the tree
structured interactions and part-level modeling.

We demonstrate our ideas using the traditional HOG fea-
tures and hence compare against the most recent methods
using similar features. On two standard datasets, namely
the LSP [10] and the IP [15], we report results that are on
par with the best HOG-based method [14] with a large re-
duction in the running time.

2. Part-Based Model

The part-based model has been shown to be very power-
ful since it can handle large arbitrary articulations compared
to a full-object model [3, 4] . One popular implementation
of the part-based model is the Mixture of Parts model [27].
In this model, the appearance of every part is modeled using
a mixture of templates, rather than a single template. This
makes the method more robust to variations in the appear-
ance of the parts. In this paper, we use the Mixture of Parts
model as our baseline upon which we build our ideas.

In this section, we first review the Mixture of Parts
model. This is followed by a review of the approxima-
tions made by the part-based model for efficient estimation
of the pose and two issues arising from it, namely the self-
occlusions and the confusion in the localization of the sym-
metric parts due to insufficient constraints. We also review
Desai and Ramanan’s Phraselets [2] approach for deriving
the part mixtures to address the issue of self-occlusion.

2.1. Mixture of Parts (MoP) Model

Let I be the given image and let G = (V, E) be the MoP
model, where V is the set of parts and E is the set of pair-
wise constraints between the connected parts. Each part ¢
is parameterized by (p;, t;), where p; = (x;,y;) is the pixel
location and ¢; is the mixture type in the mixture of tem-
plates for part 7. Let (p, t) represent a pose configuration,
where p = [p; .. .pM]T andt = [ty .. .tM]T. Then the
MoP model, parameterized by (w, b), scores a pose config-
uration (p, t) on an image I as:

S(I,p t;w,b) = > [w) - o(I,pi)] +
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The first term in (1) scores the matching of part-type spe-
cific template wfl to the HOG [ 1] features ¢(I, p;) extracted
from the image I at p;.

The second term in (1) enforces (a) part-type
specific kinematic constraints: v — pj) =
[—dz, —da?, —dy, —dy?], where dx = (z; — z; — ;')
;mf’] is the average difference in the x—values between
part ¢ and its parent j in the training images with type t;
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for part ¢ and dy is similarly defined; (b) type compatibility
constraints between a part and its parent: b:;tj scores the
compatibility of type ¢; of part 7 and type ¢; of its parent j.

Given a test image I, the objective is to infer the
max-scoring pose configuration, i.e. (p*,t*) =
argmax S(I,p,t;w,b) or the set of pose configura-
tions above some threshold in the case of multiple persons
in an image.

Learning: The model parameters, (w, b), are learned us-
ing structured SVM. Let (p”, t™) be the ground-truth pose
configuration of the n'" positive training image I™. Then,
B = (w,b) is obtained by solving:

L
arg min 5 |4] +Can£n @

s.t. Vn € pos S(I",p",t";8) >1-¢&,
Vn € neg, Vp,t S(I",p,t;8) < -1+,

The above quadratic program solves for the lowest norm
[ that scores the ground-truth pose configurations in posi-
tive images above 1 and negative images below -1. This is
solved using the dual coordinate descent solver of [27].

2.2. Part Interactions

The space of all possible poses, (p, t), is combinatorially
large. Therefore, to search for a pose that maximizes the
score, S(I,p,t;w,b), is very hard. However, if the con-
nections between the parts are restricted to a tree-structure,
the maximization of S(I, p, t; w, b) over this space can be
performed efficiently using Dynamic Programming [4, 27].
The structure of the tree that is generally used is as shown in
the Fig 4(a) where strongest interactions are taken to be the
kinematic constraints between the adjacent parts in the hu-
man body. The downside of such a restriction is that many
other interactions among the parts remain unhandled, lim-
iting the expressive power of the model. Two commonly
occurring, yet significant manifestations of such unhandled
part interactions are (a) self-occlusion and (b) a confusion
in the localization of unconnected symmetric parts.

Self-occlusion occurs when one part of the body partially
or fully occludes another part. Due to heavy articulations in
the human body, almost any part can potentially occlude
any other part. This leads to a large variation in the appear-
ance of a part caused by other parts that may not be directly
connected to it in the tree. For example, a fully visible up-
per arm appears very different than an upper arm partially
occluded by the torso 1(a). Similarly, a fully visible head
appears very different than a head occluded by a lifted arm.

Another important consequence of limiting the part-
interactions to a tree structure is the confusion in the local-
ization of the unconnected symmetric limbs. For example,
in the tree shown in Fig 4(a), no kinematic constraint exists

between the left and the right legs. This often leads to an
overlap of their predictions with one of the legs (Fig 1(c)).
On the other hand, since the left and the right arms are con-
strained through the shoulder connections, their locations
are much more accurately predicted in this tree structure.

2.3. Phraselet Clustering

Self-occlusion leads to an overlap of the parts in an im-
age, thus creating a change in the observed appearance of
the parts. Desai and Ramanan [2] handle these variations by
learning a mixture of templates for every part. These tem-
plates capture the appearances of different clusters of over-
lap patterns, called Phraselets. An overlap pattern for part ¢
is represented by the relative placements of parts that are in
close vicinity of 7. For example, Fig 2 shows three overlap
patterns around the upper-arm. Fig 2(a) and Fig 2(b) are
differentiated since the parts close to the upper-arm are dif-
ferent, while Fig 2(a) and Fig 2(c) are differentiated since
the the same parts that are close to the upper-arm are differ-
ently placed around it.

head head

wWr

(a) (b) (©

Figure 2. Overlap patterns for the upper-arm. sh: shoulder, el:
elbow, wr: wrist.

Formally, an overlap pattern for a part i is expressed
as a vector of weighted relative placements of the other
parts, where the weighting is based on the distance of
the parts from the part ¢; smaller the distance, larger the
weight and vice versa. Mathematically, it can be written
as, A = [AT ... A‘TV‘]T, where A; = exp(—||d;]) - (4,),
§; = [vj—;, yj—v:)T and |V| is the number of parts. For
all the training images, A’s are formed and similar over-
lap patterns are clustered together using k-means clustering.
These clusters are the Phraselets for the part ¢. A mixture
of k templates are learned for the k Phraselets of the part i.
Phraselets for the right elbow are shown in Fig 3(a).

In the following sections, we present our improvements
on Desai and Ramanan’s Phraselets [2] in handling self-
occlusion, followed by our proposed solution for the con-
fusion in the localization of non-adjacent symmetric part.

3. Improvements in Handling Self-Occlusion

Consider the overlap patterns around the upper-arm in
Fig 5(a) and Fig 5(b). It can be seen that the patterns are
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(a) Phraselets for the right elbow

(b) Rotation Normalized Phraselets for the right elbow

Figure 3. Clusters of overlap patterns around the right elbow by Phraselets and Rotation Normalized Phraselets.
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Figure 4. (a) Tree used by [4, 27], the Upper-Constrained Tree.
(b) the Lower-Constrained Tree.
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Figure 5. Similar overlap patterns at different orientations for the
upper-arm. sh: shoulder, el: elbow, wr: wrist.

very similar, except that they are differently oriented. How-
ever, due to the rotation, the relative placements of the parts
are different. Therefore, these patterns are placed in dif-
ferent clusters and different templates are learned for them.
This method works well if the patterns repeat enough num-
ber of times at many different orientations in the training
set such that templates can be learned for each orientation.
However, this would require very large training sets which
may not always be available.

We note that the data efficiency of Phraselets can be sig-
nificantly improved by representing the overlap patterns in

an orientation agnostic manner. Towards this, we specify an
overlap pattern for part ¢ by the relative placements of parts
that are in close vicinity, normalized according to the ori-
entation of ¢. More precisely, we modify the weighted rel-
ative placement, A;, to weighted rotation-normalized rel-
ative placement, A; = exp(—||d,||) - (R—¢,0;), where 6;
is the orientation of part ¢ and Ry is the rotation matrix for
angle 6.

Further, we note that appearance variation of a part is
generally caused by only a few other parts that often hap-
pen to come physically close to it. These are determined
by defining a set of occluding parts, O;, as the set of parts
that overlap with ¢ in at least m (=100) training images.
For every positive training image, A = [AT ... Afggi‘]T
is formed, where |O;| is the number of occluding parts of
part i. As before, the set of A’s obtained from the training
images is clustered using k-means and a template is trained
per cluster. Now, each cluster represents a Rotation Nor-
malized Phraselet. Occluding parts facilitate formation of
cleaner clusters. Fig 6 schematically shows the difference
in clustering for the upper-arm between Phraselets [2] and
the Rotation Normalized Phraselets. Fig 3(b) shows our Ro-
tation Normalized Phraselets of the right elbow compared
with the Phraselets in Fig 3(a). It can be observed that, due
to rotation normalization, a wider variety of overlap patterns
are captured with much less repetition of patterns across the
clusters.

Since the templates are now rotation normalized, they
are matched at all orientations. Therefore, p; is updated
to: p; = (x4,¥:,0;), where 0; is the orientation of part 4.
Also, ¥(p; — p;) = [—dz —dz* —dy — dy? cos(df)],
with do = (2; — z; — ,uxfje) umijo
uxﬁfj’-g" = ,urffjcos(ﬁi), where urfjj is the average dis-
tance between the part ¢ and its parent j in the training im-
ages with type ¢; for part . During inference, (p*,t*) =
argmazx S(I,p,t;w,b) is calculated. Learning is per-
formed using (2).

is calculated as
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Figure 6. The red dashed lines depict the Phraselet clustering [2]
for the upper-arm, while the blue solid lines depict the Rotation
Normalized Phraselet clustering.

4. Localization of Non-adjacent Symmetric
Parts

Often, predicted locations of the symmetric parts over-
lap with one of the parts if they are not kinematically con-
strained in the part-based model. For example, in Fig 1(c),
the leg predictions from the tree of Fig 4(a) overlap with the
same leg due to the absence of a constraint between them.
However, enforcing the constraints between both the shoul-
ders as well as the hips would introduce a cycle in the tree,
inhibiting efficient maximization using Dynamic Program-
ming [4].

Towards unambiguous localization of the symmetric
lower limbs while still exploiting the advantage of tree
structured interactions, we define a new tree as shown in
Fig 4(b). In this tree, the connection between the left and
right side happens in the lower body and not in the upper
body. Specifically, two nodes are added around the pelvis
region. This connection constrains the left and the right
lower limbs kinematically and avoids the overlap of leg pre-
dictions. Furthermore, it strengthens the localization of the
lower body parts by collecting additional image evidence
around the pelvis region. We refer to this tree as the Lower-
constrained Tree and the traditionally used tree (shown in
Fig 4(a)) as the Upper-constrained Tree.

A missing constraint in the upper part of the Lower-
constrained Tree may produce erroneous upper body pose
estimates, consequently affecting the lower body pose esti-
mation as well. We observe that the head has a distinctive
appearance and is localized reliably. Therefore, in order
to mimic the constraints in the upper body, we introduce
two head nodes in the Lower-constrained Tree as shown
in Fig 4(b). This is especially effective when there is less
ambiguity in the head location. In such cases, the Lower-
constrained Tree outperforms the Upper-constrained Tree,
even for the upper parts; the correct localization of the lower

Figure 7. Two Trees pose estimation.

parts along with unambiguous head location helps in the lo-
calization of the upper parts as well. However, in general,
the Lower-constrained Tree still underperforms on the up-
per parts. Due to this, we combine the two complementing
trees in order to obtain superior pose estimates for both the
upper and the lower parts.

Our method of combining the two trees is based on the
following idea: suppose we know the true locations of the
lower body parts in an image. Now, if we infer the upper
body pose using the Upper-constrained Tree with the lower
parts fixed to their true locations, the estimates of the upper
body parts would improve. However, in practice, we do not
know the true locations. Instead, if we use a different model
that performs better lower body pose estimation, the overall
accuracy increases.

Two Trees Pose Estimation (Fig 7): First, the pose is
estimated using the Lower-constrained Tree. Treating the
predicted pose of just the lower-body parts as the input ev-
idence, the upper body pose is again estimated using the
Upper-constrained Tree.

Similar combination can be performed by embedding
the upper body pose predicted using the Upper-constrained
Tree into the Lower-constrained Tree. However, due to
the constraint in the lower part and the two heads nodes
mimicking the constrains in the upper part, the Lower-
constrained Tree generally localizes the parts more accu-
rately. Therefore, starting with the Upper-constrained Tree
and re-estimating with the Lower-constrained Tree does
not generally perform better than the opposite way. The
Upper-constrained Tree and the Lower-constrained Tree are
trained independently using (2).

Note that Wang and Mori [25] also use multiple comple-
menting trees to handle the non-adjacent part interactions.
However, the difference is mainly in combining the trees.
While they combine the distribution over poses returned by
the trees using boosting, we combine the max-scoring poses
returned by the trees using our Two Trees Pose Estimation.

63



5. Experimental Evaluation
5.1. Setup
5.1.1 Datasets

We use three datasets, namely the Leeds Sports (LSP)
dataset [10], the Image Parse (IP) dataset [|5] and a Dance
dataset created by us. All these datasets have challenging
poses with complex part interactions. Hence they are suit-
able to evaluate our ideas.

The LSP has 1000 images for training and 1000 images
for testing. It contains images of people involved in sports
like football, gymnastics, tennis etc and is particularly chal-
lenging in terms of pose variations. The annotations con-
tain pixel locations of 14 keypoints (head, neck, shoulders,
elbows, wrists, hips, ankles and knees). The IP has 100 im-
ages for training and 205 images for testing. The nature of
images and the annotated keypoints are similar to that of
LSP.

The Dance dataset has 150 images for training and 72
images for testing. The images are selected from the
top searches returned by Google for the keywords “Dance
Solo*, ”Hip hop poses* and "Modern dance poses®. Similar
to LSP, 14 keypoints are annotated for each image.

5.1.2 Evaluation Measure

We use the standard Percentage of Detected Joints
(PDJ) [16, 22] as our evaluation measure. According to
PDJ, a joint is correctly detected if the distance between
the predicted joint location and the groundtruth location
is within some fraction of the torso diameter (distance be-
tween the left shoulder and the right hip). In a PDJ curve,
this fraction is varied between 0 and 0.5 and the percent-
age of detected joints are plotted for each value of this frac-
tion [22]. PDJ,,4 is used to represent the average percent-
age of detected joints over the whole curve.

5.1.3 Implementation Details

For all our experiments, we use 7 part-types and 36 orienta-
tions. For fairness in comparison, we retrain the MoP [27]
and the Phraselets [2] with 7 part-types as well. With most
part of the code in matlab, our full model (Rotation Normal-
ized Phraselets + Two Trees Pose Estimation) takes about
15 seconds using 8 parallel threads and about 60 seconds
using a single thread on a typical image in the LSP dataset.

5.2. Results and Discussion

In this section, we first analyze the two orthogonal solu-
tions that we propose. Then, we combine both the orthog-
onal solutions and compare our results with the state-of-the
art.

(b) Pose estimates of Rotation Normalized Phraselet

Figure 8. Qualitative analysis of Rotation Normalized Phraselet.

Category Elb | Wri | Kne | Ank
Sports MoP [27] 384 | 30.8 | 46.2 | 43.2
Phraselets [2] | 40.2 | 30.6 | 47.8 | 45.2

RotNorm
Phr (Ours) 48.3 | 37.5 | 51.8 47
Gym MoP [27] 152 | 12.1 | 146 | 15.8
Phraselets [2] 16 | 10.2 | 149 | 164

RotNorm
Phr (Ours) 22.3 | 184 | 21.6 | 184
Dance MoP [27] 529 | 439 | 48.3 | 39.7
Phraselets [2] | 52.4 | 44.8 | 45.6 | 39.1

RotNorm
Phr (Ours) 67.4 | 61.8 | 57.8 | 49.6

Table 1. PDJ,.4 values for various categories of images.

5.2.1 Rotation Normalized Phraselets

Recall that Rotation Normalized Phraselets capture the ap-
pearances of overlap patterns around a part normalized ac-
cording to the part’s orientation while Phraselets [2] capture
the appearances of the unnormalized overlap patterns. Due
to limited training data, the overlap patterns generally do
not repeat enough number of times at multiple orientations
such that a template can be learned for each orientation.
Fig 8 shows some cases where Phraselets fail to handle the
non-upright self-occlusion patterns while the Rotation Nor-
malized Phraselets are able to estimate the pose correctly.
For quantitative evaluation of Rotation Normalized
Phraselets, we form three categories of images, namely
Sports, Gym and Dance. The Sports category contains all
the images from the LSP test set. The Gym category is
formed by manually selecting the images from the LSP test
set if the activity in the image is gymnastics or aerobics.
There are 129 images in the Gym category. All the images
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in the Dance test set are placed in the Dance category.

We evaluate three algorithms, namely the basic Mixture
of Parts [27] (MoP) model, Phraselets [2] and our Rotation
Normalized Phraselets on all the image categories. For eval-
uation on Sports and Gym categories, models are trained on
the LSP training set, while for evaluation on Dance cate-
gory, models are trained on the Dance training set. The
PDJ,yg values of elbow, wrist, knee and ankle are re-
ported in Table 1. It can be seen that Phraselets modestly
improves over MoP while Rotation Normalized Phraselets
obtain large improvement on all the parts. The gain in per-
formance is especially significant on more challenging cat-
egories such as Gym and Dance.

(c) Two Trees Pose Estimation

Figure 9. Qualitative analysis of Rotation Normalized Phraselet.

5.2.2 Two trees Pose Estimation

Fig 9 shows some pose estimates from the Upper-
constrained Tree, the Lower-constrained Tree and the com-
bination of the two trees. In the first and the second im-
ages, head appearance is distinctive. Therefore, the two
head nodes in the Lower-constrained Tree (Fig 4(b)) local-
ize accurately, effectively mimicking the constrains in the

Meth. Sho | EIb | Wri | Kne | Ank
MoP [27] | UpT | 51.8 | 38.4 | 30.7 | 46.2 | 43.1
LoT 54 | 40.3 32| 49.7 | 46.5

2T | 53.3 | 39.3 | 31.5 | 49.7 | 46.5

Phr [2] UpT | 562 | 40.2 | 30.6 | 47.8 | 45.2
LoT 58 | 42.2 | 33.5 | 52.1 | 48.7

2T | 583 | 41.7 | 31.7 | 52.1 | 48.7

RotNorm | UpT | 60.3 | 48.3 | 37.5 | 51.8 47
Phr (Ours) | Lo T 55 | 449 36 | 554 50
2T | 60.1 | 48.1 | 37.9 | 554 50

Table 2. Two Trees Pose Estimation Analysis on the LSP
dataset [10]. Up T: Upper-constrained Tree, Lo T: Lower-
constrained Tree, 2T: Two Trees Pose Estimation.

upper body. This, in addition to the constraints in the lower
body causes the Lower-constrained Tree to localize both the
upper and lower parts correctly by itself. The second image
also shows how an erroneous lower body pose estimation
in the Upper-constrained Tree (Fig 4(a)) can cause an error
in the upper body pose estimation as well. The third image
shows an example where the Upper-constrained Tree pre-
dicts an inaccurate pose, the Lower-constrained Tree pre-
dicts a partially accurate pose but the combination predicts
a fully accurate pose.

Table 2 reports the PD.J,,4 values of various joints for
the Upper-constrained Tree, the Lower-constrained Tree
and the two trees for the three algorithms on the LSP
dataset. First, we point out that the Lower-Constrained Tree
consistently improves the localization accuracy of the lower
parts. Further, the Two Trees Pose Estimation shows supe-
rior localization accuracies for both the upper and the lower
body parts. Note that this is achieved by only doubling the
running time.

An interesting observation is that in algorithms where
there is no rotation normalization, such as MoP [27] and
Phraselets [2], the Lower-Constrained Tree performs better
on all the parts in comparison with the Upper-Constrained
Tree. This is because, when there is no rotation normaliza-
tion, the templates are searched only over translations and
scales. Due to the reduced search space, the ambiguity in
head location reduces. Therefore, both the head nodes in
the Lower-constrained Tree localize accurately just based
on the appearance, leading to a better localization of the up-
per body parts as well. This observation is very useful for
the algorithms without rotation normalization, since pose
estimation on the Lower-constrained Tree takes the same
time as the traditionally used tree (the Upper-Constrained
Tree), yet being more accurate.
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Figure 10. PDJ curves on the LSP dataset [10] (best viewed in
color).
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Figure 11. PDJ curves on the Image Parse dataset [ 15] (best viewed
in color).

5.2.3 Comparisons with the Other Methods

We note that our best performing model is a combination
of the Rotation Normalized Phraselets and the Two Trees
Pose Estimation reported in the last row of Table 2. We
compare this model on two datasets, namely the LSP [10]
and the IP [15], with the most recent methods that use HOG
features. Comparative PDJ curves on the LSP dataset are
shown in Fig 10. It can be seen that we beat the base-
line (Desai and Ramanan [2]) by a large margin. Also, no
method out-performs all the methods and we perform equiv-
alently to the best performing methods.

Our performance is very similar to that of the model of
Pishchulin et al. [14]. They combine the best practices in

the Human Pose Estimation problem and show that such a
combination can produce very good results. However, their
method uses many complex DPM templates at various gran-
ularities to perform accurate localization. Due to this, the
running time of their released code on a typical image in
the LSP test set increases to about 7 minutes. On the other
hand, we use simple part-level HOG templates and achieve
a similar performance with a running time of about 15 sec-
onds on the same images. Moreover, the specialized detec-
tors of Pishchulin et al. [14] can be used with our model as
well to boost our performance, albeit at the cost of increased
running time.

We also compare our method on the IP dataset. The PDJ
curves are shown in Fig 11. It can be seen that our perfor-
mance is similar to that of Pishchulin ez al. [ 14], albeit again
at a much lower computational cost.

6. Conclusion

Tree structured pair-wise constraints are restrictive in
terms of encoding all the possible part interactions. Two
strong manifestations of such unhandled part interactions
are self-occlusion among the parts and a confusion in the
localization of the non-adjacent symmetric limbs. We pro-
pose two modular and efficient improvements to Desai and
Ramanan’s [2] method to address the above problems. First,
we propose Rotation Normalized Phraselets for handling
self-occlusion in a more data efficient manner. We show
especially large improvements on uncommon poses such
as sports, gymnastics and dance. Secondly, we propose a
solution for handling the confusion in the localization of
non-adjacent symmetric limbs using a combination of two
complementing trees and report a boost in performance tak-
ing only twice the time. We also show that a combination
of the above two solutions improves the results compared
to either used alone. We evaluate our method on two stan-
dard datasets and achieve equivalent results to the best per-
forming methods in much less time when compared to the
state-of-the-art part based model.
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