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Abstract

A lot of real-world data is spread across multiple do-
mains. Handling such data has been a challenging task.
Heterogeneous face biometrics has begun to receive atten-
tion in recent years. In real-world scenarios, many surveil-
lance cameras capture data in the NIR (near infrared) spec-
trum. However, most datasets accessible to law enforce-
ment have been collected in the VIS (visible light) domain.
Thus, there exists a need to match NIR to VIS face images.
In this paper, we approach the problem by developing a
method to reconstruct VIS images in the NIR domain and
vice-versa. This approach is more applicable to real-world
scenarios since it does not involve having to project millions
of VIS database images into learned common subspace for
subsequent matching. We present a cross-spectral joint `0
minimization based dictionary learning approach to learn a
mapping function between the two domains. One can then
use the function to reconstruct facial images between the
domains. Our method is open set and can reconstruct any
face not present in the training data. We present results on
the CASIA NIR-VIS v2.0 database and report state-of-the-
art results.

1. Introduction

Multi-modal biometric recognition has been a difficult
problem to deal with. Vision based biometrics in partic-
ular faces this challenge, and has not received much at-
tention from the main-stream computer vision community
yet. Nonetheless, many large-scale real-world applications,
such as surveillance, actually have to deal with multi-modal
data. These applications have to deal with handling images
in near infrared (NIR). However, most datasets accessible to
law enforcement contain visible light (VIS) images. Cross-
spectral heterogeneous face recognition aims at matching
face images taken by sensors operating at different wave-
lengths. Visible light has wavelength 0.38 − 0.7 µm, near
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Figure 1. Outline of our reconstruction approach to NIR-VIS
matching capability. Once learned, the mapping F can be used
to convert a NIR probe image into a VIS image and be matched
against a pre-existing VIS gallery. The complimentary process is
also possible where one would go from VIS to NIR using F−1.
Note that F and F−1 are not the actual inverse of each other.

infrared 0.75− 1.4 µm, short-wavelength infrared (SWIR)
1.4 − 3 µm, mid-wavelength infrared (MWIR) 3 − 8 µm,
long-wavelength infrared (LWIR) 8 − 15 µm, and far in-
frared (FIR) 15− 1000 µm. In this paper, we focus on NIR
to VIS matching.

In fact, most studies in the vision community have fo-
cused on VIS images. These include the development of
face recognition systems (FRS). This fact motivates our ap-
proach, which is to provide a way for reconstructing a VIS
image in the NIR domain and vice-versa. This allows agen-
cies which have already deployed large-scale face match-
ing systems to add NIR-VIS inter-conversion capability as
a tool to their arsenal.

In contrast, many studies on handling matching NIR to
VIS images either try and build a FRS capable of handling
images in both spectra simultaneously, or project the im-
ages from both domains onto a common subspace [6]. It,
thus, requires a completely separate FRS from the primary
FRS that is used by an agency, raising questions on the com-
parative performance of each system and requiring mainte-
nance of both systems in parallel. Another approach is to
project the images onto a common learned subspace. This
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suffers from being practically expensive to implement. Cur-
rent agencies have extensive and large databases of VIS im-
ages. Mapping all NIR and VIS images onto that subspace
is computationally expensive and requires a large amount
of pre-processing. Further, both these approaches would
not gain from the rapid advancement in exclusively VIS do-
main matching capabilities. Our approach of reconstructing
all NIR to VIS (or the other way if necessary) allows one
to use any VIS FRS available since a single image recon-
struction is a quick pre-processing step. The outline of our
approach is highlighted in Figure 1.

Our algorithm requires NIR and VIS images of the same
subject, from which it jointly learns a NIR and a VIS dic-
tionary while constraining the sparse representation of the
NIR and VIS images in each dictionary to be the same. This
results in two mappings which are optimized to be near (but
practically approximate) inverses of one another.

2. Related Work
Unlike traditional single-spectrum face analysis and

recognition [19, 18, 28, 12, 13], cross-spectral face recog-
nition requires some additional efforts to bring the two do-
mains to the same platform such that some types of evalua-
tion can make sense. We review some previous work related
to our central problem. Zhu et al. [31] try to compliment the
infeasibility of some classifier learning methods that rely on
the corresponding NIR-VIS image pairs of the same target
subject. In order to reduce the heterogeneities between VIS
and NIR images, the authors propose a transductive sub-
space model called transductive heterogeneous face match-
ing (THFM) for extracting invariant features for VIS-NIR
matching. There are four steps in THFM: (1) domain invari-
ant feature extraction step creates a intra-class scatter-like
matrix, (2) target related discriminant model learning step
finds a inter-class scatter-like matrix that captures between-
class variation in gallery set, (3) cross domain penalization,
and (4) locality preserving. The final subspace is obtained
by solving a generalized Rayleigh quotient that involves
both intra-class and inter-class scatter matrices and their
corresponding penalization and locality matrices. An ear-
lier work of theirs can be traced back to [30].

Dhamecha et al. [4] study how the histogram of oriented
gradients (HOG) feature and its variants can help cross-
spectral face recognition tasks. In their experiments, three
HOG variants, namely, dense scale invariant feature trans-
form (DSIFT), Dalal-Triggs HOG (HOG-DT), and HOG-
UoCTTI are compared with the traditional HOG. They have
shown that DSIFT feature together with LDA subspace can
outperform a commercial matcher as well as other HOG
variants by a large margin.

Hou et al. [6] capitalize on external face images collected
from both the source and target domains for deriving a com-
mon subspace for relating and representing cross-domain

image data through a novel domain-independent component
analysis (DiCA). It is worth mentioning that during the sub-
space modeling stage, no label information is need for as-
sociating different domains which demonstrates practicality
for real-world cross-domain classification problems.

Through periocular information, Jillela and Ross [7]
has managed to match face images against iris images.
This is not only a cross-spectral matching problem since
iris images are taken in NIR and face images are taken
in VIS, but also a cross-modality matching problem. In
their approach, iris images are matched using a commercial
matcher, and face images are matched using local binary
patterns (LBP), normalized gradient correlation (NGC) and
a sparse representation-based matching scheme where they
learn a joint dictionary for both iris images and face im-
ages by enforcing the same subjects sharing the same sparse
coefficients during training, thus, making cross-modality
matching possible.

Li et al. [23] incorporate various features and a multi-
view smooth discriminant analysis to learn a common dis-
criminative feature space for matching NIR-VIS face im-
ages. Similarly, Lei and Li [22] model the properties of
different types of data separately and then learn two asso-
ciated projections to project NIR and VIS data respectively
into a discriminative common subspace through a learning
framework named coupled spectral regression (CBR). Klair
and Jain [21] use random subspace projections as well as
sparse representation classification for matching NIR-VIS
face images. Goswami et al. [5] utilize local binary pattern
histogram representation in tandem with LDA for cross-
spectral matching. Liu et al. [25] focus on finding light
source invariant features (LSIFs) in order to extract invari-
ant parts between NIR and VIS images. The method is
based on a group of differential-based band-pass filters.

More work on matching VIS face images to SWIR [26,
32, 20] and even to MWIR [2, 3] face images can be found
accordingly. Our approach is based on dictionary learning
which we present in more detail next.

3. Algorithmic Approach
When handling cross-spectral or even cross-modal data,

one critical assumption that can be used is the fact that there
is some concept common between the sample points. Let
yV be the VIS image of the subject and yN be the cor-
responding NIR image. Here the “identity” of the sample
points is the same. Hence, one overall approach would be to
find a space where both points yV and yN would map very
close by. Once an invertible (approximate) map from both
domains of images has been found to a point in the common
representation space, one can then use the map to recon-
struct any NIR image in the VIS domain and vice versa. As
mentioned earlier, our overall approach is to reconstruct an
image in the given domain/spectrum to a domain/spectrum



which a standard FRS can handle. We now present a dictio-
nary learning based method for cross-spectral reconstruc-
tion.

3.1. `0-Dictionary Based Approach for Cross-
Spectral Reconstruction

Linear dictionary learning methods have proved them-
selves to be an useful approach in modeling problems such
as patch-based reconstructions. K-SVD is a recent `0 dic-
tionary learning algorithm that is a natural extension of
K-means [1]. The cluster centers are the elements of the
learned dictionary and the memberships are defined by the
sparse approximations of the signals in that dictionary. For-
mally, it provides a solution to the problem

minimize
D,X

‖Y −DX‖2F subject to ∀i, ‖xi‖0 < K

where Y, D and X are the data, the learned dictionary and
the sparse approximation matrix respectively. Here ‖ · ‖0
is the pseudo-norm measuring sparsity. The sparse approxi-
mations of the data elements are allowed to have some max-
imum sparsity ‖xi‖0 ≤ K. In this paper, we explore the `0
method since the explicit control over sparsity allows for
better model selection.

Let yj
V i be the jth image in the VIS domain of the ith

subject with i ∈ {1, . . . , N} and j ∈ {1, . . . , n}. Let
yj
Ni be the corresponding image in the NIR domain. We

also have matrices YV and YN consisting of the concate-
nated images in the VIS and NIR spectra respectively. One
approach to the problem of cross-spectral reconstruction
would be to learn two separate dictionaries DV and DN

in the VIS and NIR domains independently using a dictio-
nary learning algorithm such as K-SVD. We could obtain
DV and DN by solving:

DV = argmin
D,X

‖YV −DX‖2F subject to ∀i, ‖xi‖0 < K

DN = argmin
D,X

‖YN −DX‖2F subject to ∀i, ‖xi‖0 < K

Then, given a NIR image yN , in order to reconstruct
it in the VIS domain, we would then obtain the sparse
approximation in DN , i.e. xN = argminx ‖yN −
DNx‖2F subject to ∀i, ‖xi‖0 < K and then obtain the VIS
reconstruction as yV = DV xN . To obtain a NIR recon-
struction of a VIS image, one would apply a similar ap-
proach starting from the VIS dictionary DV .

3.2. Cross-Spectral Joint Dictionary Learning

In the previous subsection, we presented a method to per-
form cross-spectral reconstruction. However, the method
suffers from a fundamental oversight. The reconstruction
step, yV = DV xN , assumes that the images yV and yN

have the same sparse representation in the dictionaries DV

Figure 2. Jointly learned dictionaries from NIR (left) and VIS
(right) training samples in fold 1 of the View 2 partition of [24].

and DN respectively. There is no reason that the sparse
representation of the two images (in the different domains)
is shared between the two separate dictionaries, since they
were trained independent of each other. This problem can
be handled by implementing a joint framework for learning
the dictionaries. During training, we would like to constrain
the sparse representation for each pair of NIR and VIS im-
ages to be the same. Thus, the joint optimization problem
becomes

minimize
D,X

‖YV −DV X‖2F + ‖YN −DNX‖2F (1)

subject to ∀i, ‖xi‖0 < K

Notice that the sparse representation matrix X is shared
between the two terms. Upon some rearrangement we arrive
at the cross-spectral joint dictionary learning method.

argmin
DN ,DV ,X

∥∥∥∥( YV

YN

)
−

(
DV

DN

)
X

∥∥∥∥2
F

(2)

subject to ∀i, ‖xi‖0 ≤ K

This translates to the standard K-SVD problem where
we minimizeD′,X′ ‖Y′ −D′X‖2 under ‖xi‖0 ≤ K. with
Y′ = (YT

V ,Y
T
N )T and D′ = (DT

V ,D
T
N )T . During re-

construction, for instance from NIR to VIS, we obtain the
sparse approximation in DN , i.e. x = argminx ‖yN −
DNx‖2F such that ∀i, ‖xi‖0 < K and then obtain the VIS
reconstruction as yV = DV x. Recall that due to the joint
constrained learning of the dictionaries, the sparse repre-
sentation x is shared between the two domains. For recon-
struction from VIS to NIR, one would follow the opposite
procedure of representing the image in DV first before re-
constructing it in DN . This method is open set thereby al-
lowing the reconstruction of any face that is not present in
the training set.

As a final detail, we define K1 to be the sparsity con-
straint going from NIR to VIS, i.e. x = argminx ‖yN −
DNx‖2F such that ∀i, ‖xi‖0 < K1. Analogously, we de-
fine K2 to be the sparsity constraint in reconstructing from
NIR to VIS.



3.3. Choice of Sparsity

Once we have learned the joint dictionary, we can split
it into two parts, one corresponds to NIR face images DN ,
and the other for VIS face images DV as shown in Fig-
ure 2. As previously discussed, we can therefore recon-
struct face cross spectrum using the coupled dictionary. It
is worth noticing that the choice of sparsity level is crucial
in sparse coding during the reconstruction. Here we follow
a simple greedy search approach to determine the best spar-
sity level. The fidelity of reconstruction is measured by the
peak signal-to-noise ratio (PSNR).

Due to the fact that NIR and VIS images in the CASIA
NIR-VIS 2.0 database [24] were captured at different ses-
sions (see section 4), with a lot of other variations such
as slight pose, expression etc., there is not a single pair of
NIR-VIS image that is perfectly aligned, with only spectral
variations. However, what we care about is identity preser-
vation after the NIR-VIS reconstruction. We can therefore,
as a very rough estimate, determine the sparsity level by
cross-validating the PSNR between the original NIR image
yN and the reconstructed VIS image F(yN ) since PSNR is
based off the Euclidean distance between the two images.
PSNR is used as a rough similarity measure. Here, F is the
NIR-VIS mapping. We repeat this process for all the NIR
images in the development set and compute average PSNR
accordingly. Similarly, we can also evaluate VIS-NIR re-
construction using the same approach.

The cross-domain mapping F is non-linear. It is worth
noted that the dictionary learning process itself is non-
linear due to the OMP step in the sparse coding stage, even
though the image can be linearly represented by the dictio-
nary atoms. After dictionaries for both domains are jointly
learned, mapping from one domain to the other is done
through sparse coding which is again non-linear. A dis-
tinction should be made between the linearity in the repre-
sentation of a dictionary, and the non-linearity in dictionary
learning process and the cross-domain mapping in this case.

There are over 40, 000 NIR-VIS image pairs available
in the development training set, where each pair is identity
consistent1. The optimal sparsity levels are determined by
using the trained dictionary from the development training
set to reconstruct the development testing set (probe set vs.
gallery set).

The reconstructed NIR image of the original VIS image
yV can be represented byF−1(yV ), whereF−1 is the VIS-
NIR mapping. Also, the following relationship should ide-
ally hold: ‖yN − F−1 ◦ F(yN )‖2F ≤ ε, ∀yN ,∃ε, as well
as ‖yV −F ◦ F−1(yV )‖2F ≤ ε, ∀yV ,∃ε.

The red plot in Figure 3 shows the average PSNR as
a function of sparsity level K for NIR-VIS reconstruction

1Namely, if a subject has n1 VIS images and n2 NIR images available,
we obtain a total of n1 × n2 VIS-NIR pairs.
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Figure 3. Average PSNR as a function of K for NIR-VIS and VIS-
NIR reconstruction evaluations on the development set. Optimal
choices of sparsity for NIR-VIS reconstruction is K1 = 53, and
for VIS-NIR reconstruction is K2 = 73.

Figure 4. Within-subject variations in the same session for NIR
image (left) and VIS image (right) captures.

evaluation, and the blue plot shows the same for VIS-NIR
reconstruction evaluation. Note that we do not expect PSNR
to be high, since that could also mean that the reconstruc-
tion is very similar to the original domain image. All we
need, is to make sure that the PSNR is not too high and to
pick the sparsity corresponding to the highest PSNR. Fig-
ure 3 shows that indeed the PSNR for all sparsities peak at
a reasonable PSNR. In our experiments, the optimal sparsity
level for NIR-VIS reconstruction is K1 = 53, and for VIS-
NIR reconstruction, the optimal sparsity level is K2 = 73.

4. Database and Protocol
The database used in this paper is the CASIA NIR-VIS

2.0 Face Database [24]. This is so far the largest face
database across NIR and VIS spectrum, in terms of the
number of subjects (725), and the number of face images
(17,580). This database also exhibits within-class variations
such as pose, expression, eyeglasses, and capture distance.

Figure 4 shows some sample images from this database,
which illustrates within-subject variations in the same ses-
sion. Variations across all four sessions is expected to be
more. The database also provides cropped images of reso-
lution 128×128. In our experiments, we down-sample them
to 32× 32. By doing so, we don’t lose performance in face
verification, while making overcomplete dictionary training
more feasible. The protocol defines two views or subsets of
the database. View 1 is meant for algorithm development,
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Figure 5. ROC curves for the face verification experiments. (Top)
Experiments that convert all the NIR images into VIS ones for
both training and testing. (Bottom) Experiments that convert all
the VIS images into NIR ones for both training and testing.

using which parameters are to be tuned. View 2 is to be used
for performance evaluation which is further divided into 10
folds. For both views, the number of subjects in training
and testing are the same. Further, the subjects in the train-
ing and the corresponding testing set are non-overlapping.
The receiver operating characteristic (ROC) curves, which
are generated using all similarity scores across all ten folds,
as well as the Rank-1 identification rates are used to evalu-
ate the performance. For the Rank-1 identification rate, the
mean accuracy and standard deviation of ten folds should
be reported.

5. Experiments and Results

In this section, we first demonstrate the cross-spectral
face reconstruction fidelity results using the proposed joint
dictionary learning approach. Then we conduct face ver-
ification experiments to evaluate whether the proposed
method can help improve the face recognition performance.
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Figure 6. ROC curves for the face verification experiments. (Top)
Experiments that convert all the NIR images into VIS ones for
both training and testing. (Bottom) Experiments that convert all
the VIS images into NIR ones for both training and testing. These
two ROC plots are the same as Figure 5, but shown in semi-log
scale to emphasize the performance difference at very low FAR.

One implementation detail worth mentioning is that due
to the fact that there is no exact cross-spectral mapping for
every image in the database, i.e. NIR and VIS images for
the same subject are not taken at the same time, we need
to manually specify all the pairings between NIR and VIS
images. For example, subject i has p images in the NIR set,
and q images in the VIS set, the way we create the pairing
set is to pair each of the NIR image to each of the VIS im-
age of the same subject, resulting in p × q pairs. Then, we
do this for all the subjects on all the images available to us.
By doing this, we have significantly augmented the number
of training pairs for learning the joint dictionary while mak-
ing sure that each pair is of the same subject. Therefore the
dictionary learns the NIR-VIS mapping F and the VIS-NIR
inverse mapping F−1 while being agnostic about the sub-
jects’ identities which is essential for generalizing to unseen
subjects.



5.1. Cross-Spectral Face Reconstruction Fidelity

After obtaining the joint cross-spectral dictionary, we
split it into the NIR (DN ) and the VIS (DV ) part. For
any input NIR images, we can first apply sparse coding on
the NIR dictionary to obtain the sparse coefficient vector,
which will be used to pick out atoms from the VIS dictio-
nary for NIR-VIS reconstruction. Similarly, for VIS-NIR
reconstruction.

Quantitative results for face reconstruction fidelity is re-
ported in Table 1 showing mean PSNR across all ten folds
for both NIR-VIS and VIS-NIR reconstructions. The mean
PSNR for NIR-VIS reconstruction is 12.723 dB and the
mean PSNR for VIS-NIR reconstruction is 12.586 dB. Both
PSNR readings are considered high because we are compar-
ing original images to its reconstruction into the counterpart
domain. Here, PSNR is served as a soft clue for preserving
identity.

Figure 8 and Figure 9 show the ten best and worst NIR-
VIS reconstruction results from the first NIR probe set. The
ranking is according to the PSNR between the reconstructed
image and the original image. Similarly, Figure 10 and Fig-
ure 11 show the ten best and worst VIS-NIR reconstruc-
tion results from the first VIS gallery set. It can be ob-
served that for good reconstruction results, corresponding
spectrum feature are clearly reconstructed and the subject
identity is well preserved.

By taking a closer look at the worse reconstruction re-
sults for both cases as shown in Figure 9 and Figure 11,
we come to understand more about the challenges posed by
this database. This database is fairly unconstrained in the
sense that subjects exhibit facial expression, and pose vari-
ations. Also, because the database is a collection of multi-
ple capture sessions, the images within the same subject can
be quite different across different sessions. There are also
camera-related factors such as blurred images, glare on eye-
glasses, and different zooming factors. If an input image
exhibits quite unique artificial facial features (for example,
one female subject may has her hair blocking the left eye re-
gion, or a male subject may wear IR-reflective eye-glasses
during the acquisition of NIR images where severe glare is
shown on the eye-glasses), or quite extreme facial expres-
sion and pose, such unique information will either spike on
one or just a few dictionary atoms, or it can not be well rep-
resented by atoms at all. Either way, this would lead to poor
reconstruction.

5.2. Face Verification Experiments

According to the face verification protocol set forth by
[24], there are 10-fold experiments. For the testing part in
each fold, the gallery set is always of size 358, which con-
tains one VIS image per subject, a total of 358 subjects.
The probe set has over 6,000 NIR images from the same
358 subjects. All the probe NIR images are to be matched
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Figure 7. CMC curves for the face verification experiments show-
ing Rank-1 through Rank-10 identification rates. (Top) Experi-
ments that convert all the NIR images into VIS ones for both train-
ing and testing. (Bottom) Experiments that convert all the VIS
images into NIR ones for both training and testing.

against all the VIS gallery images, resulting a similarity ma-
trix of size 358 by around 6,000. The ground truth mask is
provided. So the ideal algorithm would result in a block-
diagonal structure in the similarity matrix.

For the training in each fold, there are around 2,500 VIS
images and around 6,100 NIR images from around 360 sub-
jects, which are mutually exclusive from the 358 subjects in
testing. The training set in each fold is used for learning the
joint dictionary as well as for modeling the linear subspace
to be discussed. Note that the parameters K1 and K2 were
optimized using View 1, and were set to the same values in
this experiment.

With our proposed cross-spectral reconstruction capabil-
ity, we can essentially reconstruct the VIS counterparts for
all the NIR images in both training and testing set for each
fold. By doing this, the classifier learning and face match-
ing will be done entirely in the VIS domain. Similarly, if
we reconstruct the NIR counterparts for all the VIS images,
we end up training and matching entirely in the NIR do-
main. The cross-spectral reconstruction can dramatically
eliminate the cross-spectral variations, making face match-
ing a more feasible task.

The baseline algorithm is shown in [24], where they have



Table 1. Mean PSNR for both NIR-VIS and VIS-NIR face reconstruction across all ten folds.
Mean PSNR (dB) Standard Deviation

NIR-VIS reconstruction across 10 NIR probe sets 12.723 2.26 %
VIS-NIR reconstruction across 10 VIS gallery sets 12.586 2.18 %

Table 2. Experimental results for the 10-fold face verification tasks including mean accuracy (rank-1 identification rate), with its standard
deviation, verification rates (VR) at 0.1% false accept rate (FAR), equal error rates (EER), and the area under the ROC curve (AUC).

Mean Accuracy Std. Dev. VR at 0.1% FAR EER AUC
Baseline [24] (our own implementation) 0.2358 1.91 % 0.202 0.278 0.799
NIR-VIS Reconstruction + PCA 0.4296 2.25 % 0.415 0.254 0.836
NIR-VIS Reconstruction + PCA (LBP) 0.5259 2.17 % 0.504 0.086 0.973
NIR-VIS Reconstruction + PCA (DLBP) 0.5754 2.24 % 0.548 0.061 0.985
NIR-VIS Reconstruction + UDP 0.6906 1.89 % 0.691 0.028 0.996
NIR-VIS Reconstruction + UDP (LBP) 0.7428 2.15 % 0.778 0.018 0.998
NIR-VIS Reconstruction + UDP (DLBP) 0.7846 1.67 % 0.858 0.011 0.999
VIS-NIR Reconstruction + PCA 0.4201 2.20 % 0.403 0.306 0.779
VIS-NIR Reconstruction + PCA (LBP) 0.5043 1.53 % 0.487 0.102 0.965
VIS-NIR Reconstruction + PCA (DLBP) 0.5488 1.77 % 0.523 0.074 0.980
VIS-NIR Reconstruction + UDP 0.6645 1.54 % 0.646 0.035 0.995
VIS-NIR Reconstruction + UDP (LBP) 0.7179 1.59 % 0.734 0.023 0.997
VIS-NIR Reconstruction + UDP (DLBP) 0.7637 2.32 % 0.816 0.014 0.999

achieved 23.70% mean accuracy by using a variant of PCA
called Hetero-Component Analysis (HCA) together with
augmented samples by face symmetry. We have attempted
to re-implement their method and have been able to achieve
a mean accuracy of 23.58%, fairly comparable to what is
reported in [24].

We divide our experiments into two major parts. The
first part is to carry out NIR-VIS reconstruction using pro-
posed method to convert all the images into the VIS do-
main, both in training and testing stages. The second part
is to carry out VIS-NIR reconstruction to convert all the
images into the NIR domain, both in training and testing
stages. Three features are explored namely raw pixel, lo-
cal binary patterns (LBP), and DCT encoded local binary
patterns (DLBP) [17, 10, 11, 8, 16, 15, 14, 27, 9]. Two lin-
ear subspace methods are adopted, namely principal com-
ponent analysis (PCA) and unsupervised discriminant pro-
jections (UDP) [29]. It is worth noticing that both methods
are unsupervised and no label information is ever capital-
ized. Normalized cosine distance (NCD) is used for mea-
suring the similarities between data/feature samples.

The experimental results are consolidated in Table 2
where the mean accuracy (rank-1 identification rate) with its
standard deviation cross all ten folds, verification rates (VR)
at 0.1% false accept rate (FAR), equal error rates (EER), and
the area under the ROC curve (AUC) are shown for each
algorithm. Figure 5 shows the ROC curves for both NIR-
VIS and VIS-NIR experiments. Figure 6 shows the same
ROC curves as Figure 5 but in semi-log scale to empha-
size the performance at very low FAR. Figure 7 shows the
cumulative match characteristic (CMC) curves with rank-
1 through rank-10 identification rates for both parts of the

experiments.

5.3. Discussions

From the results of the face verification experiments, we
find that the proposed cross-spectral joint dictionary recon-
struction can significantly improve the face recognition ac-
curacy by reconstructing the probe and gallery images into
the same spectrum domain. Once reconstructed in a com-
mon spectrum, face recognition tasks are therefore made
easier and less sophisticated classifiers can perform well.

We are able to significantly outperform the baseline [24]
as well as some good results reported in [4] (73.28%) by
obtaining a high 78.46% mean accuracy which to the best
of our knowledge is currently state-of-the-art. The best per-
forming algorithm is to reconstruct all the NIR probe im-
ages into VIS ones and then apply the DLBP feature, fol-
lowed by the UDP subspace method. We also show that
competitive results are achieved by NIR-VIS reconstruc-
tion, when compared to that of VIS-NIR reconstruction,
which showcases the mutuality of the proposed method, re-
constructing from one domain to the other.

6. Conclusion and Future Work
In this paper, we present a cross-spectral joint dictionary

learning technique to reconstruct images between the NIR
and VIS domain. Our method is open set and can recon-
struct faces not present in the training set. Further, once an
image is reconstructed in either domain, any FRS can be
used to match. We experiment with a few feature-classifier
pairings and find that they perform very well after all im-
ages were reconstructed in either domain.



20.6636 20.5628 20.2114 20.096 20.0527 19.8851 19.8328 19.737 19.7255 19.6459

Figure 8. Ten best NIR-VIS reconstruction results in terms of the PSNR from the first NIR probe set. The first row shows original NIR
images, the second row shows NIR-VIS reconstructions along with the PSNR.

6.67553 6.61983 6.53781 6.53227 6.4602 6.4571 6.34354 6.29828 6.15643 5.92479

Figure 9. Ten worst NIR-VIS reconstruction results in terms of the PSNR from the first NIR probe set. The first row shows original NIR
images, the second row shows NIR-VIS reconstructions along with the PSNR.

19.2126 19.043 18.0802 18.0007 18.0005 17.6901 17.6677 17.3692 17.137 17.1071

Figure 10. Ten best VIS-NIR reconstruction results in terms of the PSNR from the first VIS gallery set. The first row shows original VIS
images, the second row shows VIS-NIR reconstructions along with the PSNR.

7.9484 7.65569 7.50821 7.41163 7.36784 7.10588 7.05425 6.74306 6.66289 6.63165

Figure 11. Ten worst VIS-NIR reconstruction results in terms of the PSNR from the first VIS gallety set. The first row shows original VIS
images, the second row shows VIS-NIR reconstructions along with the PSNR.
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