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Abstract

This paper explores the enhancement by locality con-
straint to both learning and coding schemes, more specif-
ically, discriminative low-rank dictionary learning and
auto-encoder. Previous Fisher discriminative based dic-
tionary learning has led to interesting results by learning
more discerning sub-dictionaries. Also, the low-rank reg-
ularization term has been introduced to take advantage of
the global structure of the data. However, such methods
fail to consider data’s intrinsic manifold structure. To this
end, first, we apply locality constraint on dictionary learn-
ing to explore whether the identification capability will be
enhanced or not by using the geometric structure informa-
tion. Moreover, inspired by the recent advances from auto-
encoders for learning compact feature spaces, we propose
a locality-constrained collaborative auto-encoder (LCAE)
for feature extraction. The improvement from applying lo-
cality to dictionary learning and auto-encoder is evaluated
on several datasets. Experimental results have demonstrat-
ed the effectiveness of locality information compared with
state-of-the-art methods.

1. Introduction
Recent researches have led to the rapid growth in the

theory and application of sparse representation and demon-

strated its promising results in face recognition and image

classification etc. The key idea is to find a representation

for each input signal using atoms from a given dictionary D
as a linear combination. Thus, the quality of dictionary is a

critical factor for sparse representation.

A problem arising with directly using the original train-

ing samples as the dictionary [26] is that, the test samples

could not be faithfully represented owing to the noise and

ambiguity in the dictionary. In addition, this strategy will

ignore the discerning information hidden behind the train-

ing samples. Actually, the mentioned problems above can

be solved by learning a proper dictionary from the origi-

Figure 1. Illustration of our methods. The locality constrain-

t is adopted in both dictionary learning (DL) and auto-encoder

(AE) schemes. For DL, the negative effect of noise contained in

training samples is narrowed by learning low-rank sub-dictionary.

For AE, the target is reconstructed to be consistent with locality-

constrained criterion.

nal training samples. The intention of dictionary learning

is to learn a set of basis from the training data where we

could well represent the given signal. The recognition rate

of image classification has been improved significantly with

a well-adapted dictionary. A lot of research efforts have

been made in order to seek a well-learned dictionary for

distinctive representing the test samples. Recently, based

on K-SVD [1], a discriminative constraint was added to the

dictionary learning model that considers classification er-

ror in order to gain discriminability [31]. Jiang et al. en-

forced discerning ability by associating label information

with each dictionary atom [8]. For learning a structured

dictionary, the Fisher criterion was introduced to make sub-

dictionaries according to different class labels [27].

The algorithms above, however, only work well for the



situation that the signals are clear or corrupted by smal-

l noise. If the training samples are corrupted with large

noise, the dictionary atoms will be introduced corruptions

resulting in representing the training samples.

Recently, low-rank representation [15] has been success-

fully applied to unsupervised subspace segmentation [14],

object detection [23], and 3D visual recovery [29]. From

corrupted input data, it determines a low-rank matrix. If a

given matrix Y in which each atom shares the same pattern

and corrupted by a sparse noisy matrix E, via rank min-

imization, Y could be practically recovered while sparse

noisy E is removed. As for the case that using dictionary

learning to deal with face recognition, the within-class sam-

ples are drawn from a low-dimensional subspace and linear-

ly correlated. Therefore, each sub-dictionary for represent-

ing with-in class samples should reasonably be low-rank.

Inspired by the previous work, low-rank regularization was

integrated into sparse representation so that the sparse nois-

es were separated from inputs while the dictionary atoms

were simultaneously optimized to reconstruct the de-noised

signals. The DLRD [16] algorithm achieves impressive re-

sults especially when corruption existed.

Previous sparse representation based approaches assume

that each sample has independent sparse linear combina-

tion, which ignores the spatial consistency of neighbor

points and fails to utilize the relationship between similar

samples. Recent studies have witnessed more promising

results using the idea of locality on the task of classifica-

tion [25]. They presented method names Local Coordinate

Coding (LCC), a modification to sparse coding, which the-

oretically proved that locality is more essential than sparsi-

ty under certain assumptions, and the coding is encouraged

specifically to rely on local structure. Since then, sever-

al locality-constrained coding method has been proposed

to replace sparse constraint on scene categorization [21],

human action recognition [6] and image colorization [13]

problems.

Motivated by above techniques, this paper explores the

enhancement of classification by adding locality constraint

on both learning and coding schemes, especially for dis-

criminative low-rank dictionary learning and auto-encoder.

First, an algorithm with low-rank regularization on discrim-

inative sub-dictionary, and locality-constrained on coeffi-

cients is introduced. Second, different from previous lo-

cality linear coding works [22, 21], we study the locality

on more complicated auto-encoder method to further study

the performance of locality. A locality-constrained collab-

orative auto-encoder (LCAE) is proposed to extract feature

with local information for enhancing the classification a-

bility. our paper’s main contributions are: 1) we investi-

gate the impact of locality constraint on dictionary learning

and improve the results on several benchmark datasets, 2) a

locality-constrained collaborative auto-encoder (LCAE) is

proposed to provide features with intrinsic local informa-

tion.

The rest of this paper is structured as follows. Our

proposed locality-constrained dictionary learning method

and its optimization solution are presented in Section 2.

Section 3 introduces the locality-constrained collaborative

auto-encoder (LCAE) model. Section 4 shows the exper-

iments and analysis along with the drawn conclusions in

Section 5.

2. Locality-constrained Discriminative Low-
Rank DL (LC-LRD)

We first briefly review a discriminative dictionary learn-

ing algorithm with low-rank regularization [16], in order to

improve the performance even when large noise exists in the

training samples. Moreover, locality constraint is added to

take place of sparse coding to exploit the manifold structure

of local features in a more thorough manner.

2.1. Discriminative Low-Rank DL

Given a training dataset Y = [Y1, Y2, . . . , Yc], Y ∈
R

d×N , where c is the number of classes, d denotes the fea-

ture dimension, N is the total training samples’ number, and

Yi ∈ R
d×ni is the samples from class i which has ni sam-

ples. From Y , we want to learn a discriminative dictionary

D and the coding coefficient X , which is utilized to future

classification task. Then Y is equal to DX + E, with E
as the noises. Different from using all the training samples

to learn a whole dictionary, each sub-dictionary Di for the

i-th class is learned separately. Then X and D could be rep-

resented as [X1, X2, . . . , Xc] and [D1, D2, . . . , Dc], where

Di denotes the sub-dictionary for corresponding class, and

Xi is the partial coefficients over D to represent Yi.

Sub-dictionary Di should be endowed with the discrim-

inability of well represent samples from i-th class. Using

mathematical formula, Yi’s coding coefficients Xi on D can

be written as [X1
i ;X

2
i ; . . . ;X

c
i ], in which Xj

i is Yi’s coef-

ficient matrix on Dj . The discerning power of Di comes

from following two aspects: first, Yi is expected to be well

represented by Di rather than by Dj , j �= i. Therefore,

it is reasonable to minimize ‖Yi − DiX
i
i − Ei‖2F . At the

meanwhile, Di is not suppose to be good at representing

other classes’ samples, that is each Xi
j , where j �= i should

have nearly zero value so that ‖DiX
i
j‖2F is as small as pos-

sible. Thus we denote the discriminative fidelity term for

sub-dictionary Di as follows:

R(Di, Xi) = ‖Yi −DiX
i
i − Ei‖2F +

c∑

j=1,j �=i

‖DiX
i
j‖2F . (1)

In the task of dealing with face images, the within-class

samples consist in a low dimensional manifold and are



linearly dependent. Therefore, sub-dictionaries should be

properly trained as low-rank to represent samples from the

same class. To this end, we want to find the one with the

most concise atoms from all the possible sub-dictionary Di,

that is to minimize the rank of Di. Recent researches sug-

gest that the rank function can be replaced by the convex

surrogate [4], that is ‖Di‖∗, where ‖.‖∗ is the sum of sin-

gular values of the matrix, called nuclear norm.

2.2. Locality constraint

In this paper, we deploy locality constraint on the coeffi-

cient matrix instead of the sparsity constraint. As indicated

by LCC [28], compared to sparsity, locality is more indis-

pensable under certain assumptions. That is because locali-

ty constraint results in sparsity but not necessary vice versa.

Specifically, the locality constraint uses following criteria:

min
x

‖li � xi‖2, s.t. 1Txi = 1, ∀i, (2)

where li ∈ R
k is the locality adapter, and � represents dot

product. According to each basis vector’s similarity to the

input sample yi, li gives each one different weight. Specifi-

cally,

li = exp(
dist(yi, D)

σ
). (3)

where dist(yi, D)=[dist(yi, d1), . . . , dist(yi, dk)]
T , and

dist(yi, dj) is the Euclidiean distance between sample yi
and each dictionary atom dj . σ controls the bandwidth of

the distribution.

2.3. Our proposed model

Considering the low-rank regularization term on the dis-

criminative sub-dictionaies and the locality-constrained on

the coding coefficients all together, we have the following

LC-LRD model for each sub-dictionary:

min
Di,Xi,Ei

R(Di, Xi) + α‖Di‖∗ + β‖Ei‖1
+λ

∑ni

k=1‖li,k � xi,k‖2 s.t. Yi = DXi + Ei

(4)

Basically speaking, LC-LRD is based on the following

three observations:

1. The discriminative term is introduced to give the dis-

cerning ability to each sub-dictionary,

2. Each sub-dictionary should be low-rank to separate

noise from samples and discover the latent structure,

3. Inspired by [25] and the above discussions, locality is

more essential than sparsity. That is similar samples

should have similar representations.

2.4. Optimization of LC-DLRD

We consider dividing Eq.(4) into two sub-problems to

solve the proposed objective function: First updating each

coefficient Xi(i = 1, 2, . . . , c) one by one by fixing all oth-

er Xj(j �= i) and dictionary D then putting together to

produce the coefficient matrix X; Second, updating Di by

fixing others. The locality-constrained coefficients Xi, the

discriminative low-rank sub-dictionary Di, and the sparse

error Ei are obtained by iteratively operating this two steps.

Algorithm 2.4 Updating coefficients via ALM

Input: Training data Yi, Initial dictionary D,

Parameters λ, σ, β1

Initialize:Z = Ei = P = 0, μ = 10−6, μmax = 1030,

ε = 10−8, ρ = 1.1,maxiter = 106, iter = 0

while not converges and iter ≤ maxiter do
1. Fix others and update Z by:

Z = Yi − Ei +
P
μ

2. Fix others and update Xi by:

Xi = LLC(Z,D, λ, σ)1

2. Fix others and update Ei by:

Ei = argmin
Ei

(β1

μ ‖Ei‖1+
1
2‖Ei − (Yi −DXi +

P
μ )‖2F )

3. Update multipliers P by:

P = P + μ(Yi −DXi − Ei)

4. Update μ by:

μ = min(ρμ, μmax)

5. Check if it is converged:

‖Yi −DXi − Ei‖∞ < ε

end while
output: Xi, Ei

Assume that the discriminated dictionary D is given in the

first sub-problem, the coefficients Xi(i = 1, 2, . . . , c) is

updated one after another, then the original objective func-

tion Eq.(4) reduces to locality-constrained coding problem

as follow:

min
Xi,Ei

λ
∑ni

k=1‖li,k � xi,k‖2 + β1‖Ei‖1
s.t. Yi = DXi + Ei

(5)

which can be solved by the following ALM method [3].

1We set Z, D, λ and σ as the input of LLC [25] and the code can be

downloaded from http://www.ifp.illinois.edu/ jyang29/LLC.htm.



min
Xi,Ei

λ
∑ni

k=1‖li,k � xi,k‖2 + β1‖Ei‖1
+ < P, (Yi −DXi − Ei) > +μ

2 ‖Yi −DXi − Ei‖2F
= min

Xi,Ei

λ
∑ni

k=1‖li,k � xi,k‖2 + β1‖Ei‖1 + μ
2 ‖Z −DXi‖2F

(6)

where Z denotes to Yi − Ei + P/μ, μ is a positive penal-

ty parameter, P denotes the Lagrange multiplier and li =
exp(dist(zi, D)/σ). Different from traditional locality-

constrained linear coding (LLC) [25], we add an error term

which could handle large noise in samples.

The detail of the coefficient updating can be referred

to Algorithm (2.4). For the procedure of updating sub-

dictionary, we have the same method with [16].

2.5. Classification based on our model

A linear classifier is used for final classification. In previ-

ous training process, the dictionary is learned, the locality-

constrained coefficients X of training data Y and Xtest of

test data Ytest are calculated. The test sample i’s representa-

tion xi is Xtest’s i-th column vector. The linear classifier V̂
is obtained by a multivariate ridge regression model [30]:

V̂ = argmin
V

‖L− V X‖22 + γ‖V ‖22 (7)

where L is the class label matrix for Y . This produces V̂
= LXT (XXT + γI)−1. When testing points Ytest comes

in, we first compute V̂ Xtest. Then label for sample i is as-

signed by the position corresponding to the largest value in

the label vector, that is: label = argmax
label

(v = V̂ xi).

3. Locality-constrained Collaborative Auto-
Encoder (LCAE)

Suppose we have input image x ∈ R
D, and hidden unit

z ∈ R
d in which D is the visual descriptor’s dimension.

There are two important non-linear transformation in the

auto-encoder’s feed-forward process: “input→hidden unit-

s", and “hidden units→output" as:

zi = σ(W1xi + b1); h(xi) = σ(W2zi + b2) (8)

where W1 ∈ R
d×D, b1 ∈ R

d, W2 ∈ R
D×d, b2 ∈ R

D,

and σ is the sigmoid function in the form of σ(x) =
(1+e−x)−1. Auto-encoder is basically a single hidden lay-

er neural network, in which the input and target have same

identity. Consequently, the output of auto-encoder is en-

couraged to be as similar to the target as possible. That is,

min
W1,b1,W2,b2

L(x) = min
W1,b1,W2,b2

1

2n

∑

i

‖x̂i − h(xi)‖22, (9)

where n is the number of samples, x̂ is the target and h(xi)
is the reconstructed input. By this means, the neurons in the

hidden layer of auto-encoder are able to reconstruct the data

and can be seen as a good representation for the input.

In order to introduce locality into the coding procedure,

the input data is first reconstructed by LLC coding criteria

then to work as the target of the auto-encoder. That is x̂
in Eq. (9) is replaced by a locality reconstruction which

followed as:

min
C

∑N
i=1‖xi −Dci‖2 + λ‖li � ci‖2

s.t. 1T ci = 1, ∀i
(10)

where dictionary D will be initialized by PCA on the in-

put training matrix X . The proposed LCAE can be trained

using the backprop algorithm, which updates W and b by

back propagation the reconstruction error gradient from the

output layer to the locality coded target layer. After the it-

eration of forward and backward propagation, the locality

coefficients will be updated using new output layer h(xi).

4. Experiments
We verify the performance of our LC-LRD and LCAE on

various visual classification applications to demonstrate the

efficiency and generality of the proposed methods. First, the

LC-LRD is evaluated on four datasets including two face

datasets: Extend YaleB [11], AR [17], one object catego-

rization dataset COIL-100 [19], and one handwritten dig-

its recognition dataset MNIST [10]. Second, Extend Yale-

B, AR, CMU PIE [24] and a newly built Virtual MakeUp

(VMU) dataset [5] (samples shown in Fig. 3) are used to

evaluate our LCAE method. Experimental results will be

presented with some analysis in this section.

4.1. Experiments on LC-LRD

Several state-of-the-art algorithms were compared on

each dataset, to show our advantage, including LDA [2],

linear regression classification (LRC) [18] and several lat-

est DL based classification methods, i.e. FDDL [27], DL-

RD [16], D2L2R2 [12] and DPL [7]. In each experiment, we

keep all the steps the same as that of the baselines except for

the learning stage for fair comparison.

Parameter selection One of the most important param-

eters in majority of dictionary learning methods is the num-

ber of atoms in every sub-dictionary which denoted by mi.

In this paper’s experiments, we set all the mi equal, i =

1, 2, . . . , c. We analyze the effect of mi on the performance

of LC-LRD, D2L2R2, DLRD, FDDL and DPL. We take Ex-

tended YaleB as an example (20 training samples per class

and the other setting is given in next subsection). Fig. 2

shows the accuracy of five methods versus different num-

ber of dictionary atoms. We can see that all methods have

an increasing performance along with more atoms, and in



Figure 2. The recognition rates of five DL based methods versus

the number of dictionary atoms with 20 training samples per class

on Extend YaleB dataset.

all cases our LC-LRD method has nearly 2% improvement

over other methods. Since each method’s performance has

a similar trend with the atoms’ increasing, we fix the num-

ber of the dictionary columns of each class as training size

for all of following experiments except for MNIST dataset,

which is set to 30 each class. We will study the influence of

neighbors’ number k used for approximated LLC in exper-

iments on LCAE, and in this section k is set equal to 10 as

suggested in [25].

Figure 3. Sample images in the (a) Extended YaleB with 10%,

20%, 30% random pixel corruption; (b)AR dataset; (c) COIL-100

and (d) VMU datasets

There are five parameters in our approach: α, λ, σ in Eq.

(4) and β1, β2 for error term of dictionary updating and co-

efficients updating separately. In the experiments, we found

that β1 and β2 make more difference in recognition, there-

fore, other parameters α and λ are set as 1 in this paper.

If no specific, the parameters β1, β2 and the parameters of

other compared methods are chosen by 5-fold cross valida-

tion. For Extended YaleB, β1 = 15, β2 = 100; for AR, β1 =

5, β2 = 100; for COIL-100 , β1 = 3, β2 = 150; for MNIST,

β1 = 2.5, β2 = 2.5.

The two face recognition datasets and splits subsets are

downloaded from CAD website2. Through these dataset-

s, the robustness of our algorithm to illumination changes,

pose variations will be tested. Furthermore, we will eval-

uate LC-LRD’s performance to noise by adding pixel cor-

ruptions.

Extended YaleB Dataset. The Extended YaleB dataset

contains 2414 frontal-face images of 38 subjects captured

under various lighting conditions. For each class, there

are between 59 and 64 images for each person normalized

to size 32 × 32. This dataset is diverse due to differen-

t illumination conditions, therefore we denote two exper-

iments on this dataset. First, we choose random subsets

with p(= 5, 10, ..., 40) images per subject as the training

set, and the rest of the dataset formed the testing set. There

are 10 randomly splits for each given p; Second, a certain

percentage of randomly selected pixels from the images are

replaced by setting the pixel value as 255 (show in Fig. 3

(a)). Then randomly take 30 images as training samples,

and the rest as testing samples and also repeat the experi-

ment ten times. These two experiments results are given in

Table. 1 and Table. 2 respectively.

Table. 1 shows the recognition rates with different train-

ing size. It can be observed that under all situations our

method archives the best accuracy. Our method’s robust-

ness to noise is demonstrated in Table. 2, that along with the

percentage of corruption increases our algorithm perform-

s the best constantly. The performance of FDDL as well as

DPL, LRC and LDA drops rapidly, by contrast, our method,

D2L2R2 and DLRD can still get much better recognition ac-

curacies under different levels of corruption. This demon-

strates the effectiveness of low-rank regularization and the

error term when noise exists. Comparing with D2L2R2 and

DLRD, our method still performs better due to the locali-

ty constraint part, especially in cases that the occlusion is

small.

AR Dataset. The AR dataset consists of more than 4,000

frontal-face images of 126 subjects, that is there are 26 pic-

tures for each subject taken in two separated sessions. We

follow the experimental setting in [27], for fair compari-

son, to choose 50 male subjects and 50 female subjects as a

subset. For each subject, the 7 images from session 1 with

illumination and expression changes were used for training,

and the other 7 images from session 2 under the same con-

dition served as testing. We do experiments on different

features: original 60 × 43 images, resized 27 × 20 images

and the feature provided by [9].

We illustrate the recognition rates under different feature

in Fig. 4. From the figure, we can observe that our method

achieves the best results on all the features and the improve-

ment is larger compared with which on YaleB dataset. This

could result in the variation of AR dataset and locality is

proved to be better on dealing with this kind of data.

2http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html



Table 1. Recognition rate(%) of different algorithms on Extended YaleB dataset with different number of training samples per class.

Training images DPL [7] D2L2R2 [12] DLRD [16] FDDL [27] LRC [18] LDA [2] Ours

5 75.17±1.86 75.96±1.20 76.17±1.16 77.75±1.34 60.24±2.02 74.12±1.52 78.62±1.20
10 89.31±0.62 89.60±0.89 89.94±0.89 91.16±0.85 82.98±0.82 86.67±0.90 92.07±0.89
20 95.69±0.90 96.02±0.91 96.03±0.85 96.15±0.66 91.80±0.97 90.64±1.07 97.86±0.91
30 97.80±0.36 97.87±0.42 97.90±0.47 97.86±0.35 94.60±0.60 86.84±0.92 99.23±0.47
40 98.67±0.43 98.09±0.39 98.80±0.37 98.84±0.46 96.10±0.58 95.27±0.79 99.54±0.44

Table 2. Recognition rate(%) of different algorithms on Extended YaleB dataset with various corruption percentage(%).

Occlusions DPL [7] D2L2R2 [12] DLRD [16] FDDL [27] LRC [18] LDA [2] Ours

0 97.80±0.36 97.87±0.42 97.90±0.47 97.86±0.35 94.60±0.60 86.84±0.92 99.23±0.47
5 78.27±1.22 91.90±1.14 91.84±1.07 63.55±0.87 80.49±1.10 29.03±0.82 93.31±0.69
10 64.58±1.09 85.71±1.51 85.82±1.54 44.65±1.22 67.61±1.33 18.53±1.15 86.97±0.86
15 53.77±0.86 80.46±1.64 80.89±1.37 32.76±1.03 56.81±1.24 13.63±0.53 81.71±0.81
20 44.95±1.38 73.59±1.54 73.56±1.63 25.26±0.42 47.23±1.59 11.30±0.46 74.14±1.01
25 35.87±1.01 65.93±1.15 65.88±1.50 18.45±0.82 38.85±1.18 9.23±0.81 66.45±1.06

Figure 4. Average recognition rate(%) of different algorithms on

AR dataset with three different features. Feature 1: row pixel 60×
43; feature 2: row pixel 27×20; feature 3: feature provided by [9]

.

COIL-100 Dataset. In this section, we assess our ap-

proach on object categorization by using the COIL-100

dataset. The training set is constructed by randomly select-

ed 10 images per object, and the rest of the images consist

the testing set. We repeat this random selection ten times,

and the average results with standard deviations are report-

ed. To evaluate the scalability of our method and compet-

ing methods, we separately utilize samples of 20, 40, 60,

80 and 100 objects in this dataset. Fig. 5 shows the average

recognition rates with standard deviations of all compared

methods. The results show our algorithm’s generality that

the locality not only works on face recognition but also on

object categorization.

MNIST Dataset. We evaluate our algorithm on the sub-

set of MNIST handwritten digit dataset downloaded from

Figure 5. Recognition rate(%) with standard deviations of different

algorithms on COIL-100 dataset.

CAD website, which includes first 2000 training images and

first 2000 test images with the size of each digit image is

28× 28. This experimental setting follows [12], and we get

consistency results. The recognition rates and traing/testing

time by different algorithms on MNIST dataset are sum-

marized in Table 3. Our algorithm achieves the highest

accuracy than its competitors. Compared within the top 4

highest accuracy methods, ours’ training time is the short-

est because locality-constrained method only updates parts

of dictionary atoms each time.

4.2. Experiments on LCAE

We report experimental results based on four datasets:

three widely used face recognition datasets Extended Yale-

B, AR, CMU PIE and one newly built Virtual MakeUp (V-

MU) database. For all these datasets, we train both tradi-



Table 3. Average recognition rate(%) & running time(s) on MNIST

dataset.

Methods Accuracy Training time Testing time

D2L2R2 [12] 84.23 233.429 84.863

DLRD [16] 86.15 243.271 99.787

FDDL [27] 84.85 263.137 388.219

LDA [2] 72.30 0.261 0.576

LRC [18] 82.70 365.605 –

DPL [7] 83.60 4.328 0.125

Ours 88.75 140.793 88.180

tional auto-encoder and LCAE separately, then use SVM as

classier to provide the recognition rates. For Extended Yale-

B and AR datasets, we follow the setting in above section

and specifically set training images in Extended YaleB as 10

per class. For CMU PIE, we also randomly choose 10 im-

ages per class as training and the rest images as testing. The

VMU dataset is built to simulate the application of make-

up by artificially adding makeup to 51 female Caucasian

subjects (show in Fig. 3 (d)). There are 4 makeup statues

(a) no makeup; (b) lipstick only; (c) eye makeup only; and

(d) a full makeup including lipstick, foundation, blush and

eye makeup. Hence, the assembled dataset contains total

204 images and four images per subject. We randomly se-

lect half as training and half as testing. The improvement of

recognition rate on four dataset is shown in Table 4. We ver-

ify the effectiveness of the locality components of our ap-

proach by comparing it with baseline method in [20] which

only differ in this aspects. We can see the LCAE algorithm

gets higher recognition rate by introducing local informa-

tion into the built auto-encoder, which enables it to provide

similar inputs similar features.

The most important parameter in LCAE is k which used

to determine how many local atoms of a dictionary are used

to reconstruct the target in each iteration. As show in Fig. 6,

the effect of k is explored on AR dataset. k = 0, means no

locality reconstruct applied, is considered as baseline, and

k = 5, 25, 45, 65, 85 are tested respectively. We can see

the highest accuracy occurs when k = 5, and the accuracy

decreases along with the increase value of k. When k =
85, means all the dictionary atoms are used, the accuracy

falls back to the baseline, which is desirable since the local

information will disappear with all the atoms used.

4.3. Discussion

From above experiments on our two proposed algorithm-

s, we could find that locality constraint has the ability to im-

prove both the dictionary learning method and auto-encoder

by introducing local information. For LC-LRD, our method

not only performs good on clear dataset but also gets better

Figure 6. Accuracy on AR dataset with varying k. 0 means no

locality applied, and k = 85 means all the dictionary atoms used.

Table 4. Average recognition rate(%) of AE and LCAE on different

datasets.

Methods YaleB AR PIE VMU

AE 73.82 72.25 68.05 81.37

LCAE[Ours] 81.43 84.36 72.33 86.27

results on corrupted data. For the LCAE, we show its effec-

tiveness on four face datasets and also explore its properties

by varying k’s value.

5. Conclusion

This paper investigated the efficiency of locality-

constrained both on dictionary learning and auto-encoder.

We first presented an algorithm which iterative learns a dis-

criminative sub-dictionaries with low-rank regularization

and locality constraint on coefficients. By applying local-

ity constraint, we exploited the underlying manifold of data

space and dictionary space in a more thorough manner than

sparse representation. Second, we proposed a LCAE algo-

rithm which introduce locality constraint to the target layer

of auto-encoder. Extensive experiments have shown that

our LC-LRD method outperforms the state-of-the-art meth-

ods on four benchmarks both in clean and corrupted cases

and the LCAE also has the ability to give learned feature

local information.
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