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Abstract

We describe a method to model perspective distortion as
a one-parameter family of warping functions. This can be
used to mitigate its effects on face recognition, or synthesis
to manipulate the perceived characteristics of a face. The
warps are learned from a novel dataset and, by comparing
one-parameter families of images, instead of images them-
selves, we show the effects on face recognition, which are
most significant when small focal lengths are used. Addi-
tional applications are presented to image editing, video-
conference, and multi-view validation of recognition sys-
tems.

1. Introduction
The “dolly zoom” is a cinematic technique whereby the

distance to a subject is changed along with the focal length
of the camera, while keeping its image size constant. It
is also known as “vertigo effect,” from Hitchcock’s clas-
sic movie, and exploited by artists to manipulate the sub-
ject’s perceived character (Fig. 1 top). As evidenced by
psychophysical experiments [4, 6, 20, 21], the subject can
appear more or less attractive, peaceful, good, strong, or
smart depending on the distance to the camera and its focal
length.

Figure 1: (Top) sample images from our focal-distorted face
dataset. It is worth emphasizing that there is no artificial warp
or optical aberration, and the perceived difference among the vari-
ous samples is due solely to the distance. (Bottom) sample images
used as dictionary samples.

Just as it affects perception, perspective distortion can

affect the performance of any face recognition system. Our
first goal in this manuscript is to quantify such an effect
(Table 1). This is done by testing different face recognition
algorithms on images captured under different focal settings
than those used for training. This requires a dataset of im-
ages of the same subjects taken from different distances.
Given the absence of such a dataset in the public domain,
we designed and collected a novel one.

Having quantified the effect, our second goal is to model
perspective distortion, and to learn the model parameters
from the training set. It is worth emphasizing that perspec-
tive distortion is not an artificial warp or an optical aberra-
tion, but a complex deformation of the domain of the im-
age due to the combined physical effects of distance and
focal length. It depends on the shape of the underlying face,
which is typically unknown, and can involve singularities
and discontinuities.1 Nevertheless, it can be approximated
by a one-parameter family of shape-dependent domain de-
formations. This model enables hallucination of perspective
distortion, even without knowledge of the underlying shape.

We illustrate this task by interactively manipulating the
perceived distance from the camera. In particular, we
demonstrate “focal un-distortion” of videoconference and
videochat images, that are often perceived as unattractive
due to the short focal length of forward-looking cameras in
consumer devices.

Our third and final goal is to exploit the structure of our
model to render face recognition systems insensitive to per-
spective distortion. This is done by performing comparisons
between image families, rather than between images them-
selves. We validate this method by testing the same face
recognition systems studied in our first goal, where each
family is represented by a canonical element computed via
pre-processing.

1.1. Related Work

An application of this work is to face recognition, a field
too vast to properly review here (see [29] for a survey of

1For instance, the ears of the subject are visible on the right in Fig. 1
but not on the left.
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the state-of-the-art as of a decade ago, and [1] for a more
recent account). Since our goal is not to introduce a new
face recognition algorithm, but to devise a method for any
face recognition system to deal with perspective distortion,
we select two representative algorithms in section 3.1. One
is chosen for simplicity, the other because representative of
the state-of-the-art.

More specifically, our work aims to reduce nuisance vari-
ability. A nuisance is a phenomenon that affects the data
but should ideally not affect the task. Most prior work on
handling nuisances in face recognition focused on illumina-
tion [11, 23, 2, 13] and pose variation [13, 5], as well as par-
tial occlusion [28], age [18, 15] and facial expressions [1].
To the best of our knowledge, variability due to optics has
not been studied in a systematic way, and while its effects
on recognition is not as dramatic as illumination or pose
variability, it nevertheless can exceed intra-individual vari-
ability and thus lead to incorrect identification, especially at
short focals.

Many face datasets for recognition are publicly available.
The FERET database [22], the AR-Face database [16] or
the Extended Yale Face Database B [14] are among the most
widely used to benchmark face recognition algorithms. A
more thorough review is done in [1]. Despite the number
of available datasets, to the best of our knowledge, none
tackles the problem of optical zoom variability.

Additionally, our method requires the distance from
the subject in the training set to be known or estimated.
[9] tackles the problem of estimating this distance by solv-
ing the camera pose via Effective Perspective-n-Point. We
however do not leverage 3D modeling and use a different
method reminiscent of deformable templates instead (sec-
tion 4.3). Using this estimate to improve face recognition in
presence of perspective distortion is also suggested there.

The psychophysical effects of perspective distortion
have been studied in [4]. It is shown to be a crucial factor af-
fecting how a subject is perceived, notably how trustworthy,
competent and attractive she looks like. The idea of using
some kind of quantification of the perspective distortion, to
manipulate the perceived personality, is also mentioned. In-
spired by paintings from the Renaissance that use several
centers of projection at once to control the viewer’s percep-
tion, [21] studies how the same effect can be achieved with
photographs and shows compelling experiments by combin-
ing multiple images of the same scene (a human) taken from
different viewpoints, using an image editing software.

[25] describes a system to solve perspective distortion
in videochat applications. The method differs from ours in
that it relies on matching a 3D face template to the image,
and generate a reprojected image as if viewed from a farther
viewpoint.

1.2. Organization of This Paper and Its Contribu-
tions

In section 2 we describe the dataset we have collected to
test the hypothesis that warping due to perspective distor-
tion affects the performance of face recognition. There we
further explain the reasons that motivate it, and detail the
protocol used.

In section 3 we quantify the impact of perspective distor-
tion on face recognition by comparing the performance of
several algorithms when the test image was captured from
the same distance as training images and when it was cap-
tured from a different distance. We show that the effect is
negligible when the distance used in both sets is above half
a meter, but significant otherwise.

In section 4 we begin addressing the issue of manag-
ing nuisance variability due to perspective distortion. The
derivation we propose is generic, in the sense that it applies
to any one-parameter group transformation, and in fact even
higher-dimensional groups, provided that the dataset spans
a sufficiently exciting sample of the variability. Other ex-
amples of applications that we have not considered in this
work, but where our method could in principle be applica-
ble, include aging and expression, but not pose changes that
induce self-occlusions.

We present our results in section 5, both qualita-
tively (i.e. visually) and quantitatively (i.e. showing numer-
ical improvements on face recognition success rate). There,
we also show an application to un-warping of videoconfer-
ence and videochat images, to illustrate the synthesis com-
ponent (as opposed to recognition) of our method. Finally
in section 6 we discuss possible extensions and applications.

2. Dataset

For testing the hypothesis that perspective distortion af-
fects face recognition, we have generated a protocol and
constructed a dataset that comprises 12 images each for over
100 subjects. Most subjects are in their twenties, Caucasian
or Asian, with about 47 % females. The dataset spans 7 fo-
cal lengths and 5 different expressions for each subject, and
is captured against a green screen with photographic studio
quality but otherwise uncontrolled illumination.

2.1. Focal-Distance Relation

Throughout this work, we assume that the distance be-
tween the subject and the center of projection (COP) is var-
ied along with focal length so that the face occupies the
same area on the image plane. More precisely, under a sim-
plistic optical model, for an aspect ratio of 3:2, this corre-
spondence is given by

d = f

√
13hK

2γ35
(1)



where d is the distance from the subject to the COP, f is the
focal length of the lens, h is the height of the face (typically
around 19 cm), K is the crop factor of the image sensor
and γ35 is the diagonal of a full-frame 35 mm (36 mm ×
24 mm), i.e. γ35 = 43.3 mm.

Based on this relation we will use the terms “focal” and
“distance” interchangeably, although the source of variabil-
ity is really the distance. The term “focal” will be pre-
ferred because easier to control during the construction of
the dataset.

2.2. Dataset Requirements

As we explain in section 4, our method relies on aver-
aging the dependency on the shape of the underlying face,
which improves with the number of samples in the dataset.
Of our set, 33 % are to be used in the learning phase, and
67 % in testing.

Also, our method models the warping by learning it on
face images where perspective distortion is the only nui-
sance. Therefore illumination is assumed to be constant
within the training set, pose is frontal and expression neu-
tral. The images we collect span from wide-angle (10 mm
or distance of 12.7 cm) to telephoto (70 mm or distance of
88.6 cm) in a fine-grained fashion (7 focals in our case).

We also need an additional 5 pictures of each subject
with different expressions to serve as dictionary (on the
67 % subjects not used during learning). The 7 focal-
varying images will serve as test samples.

2.3. Protocol

Each individual was asked to sit on a stool lit on both
sides by a 70 W softbox RPS Studio RS-4070 to reduce the
effects of cast shadows. Behind them was a green screen to
remove background variability.

The camera used was a Canon EOS 30D. For wide-
angles we used a Canon lens EF-S 10-22 mm f/3.5-4.5 USM
and for medium-range we used a Canon lens EF 25-70 mm
f/2.8L II USM. The sensor’s crop factor is K = 1.6. All
photos were shot at 1/60, f5.6, ISO 400 with a white bal-
ance fixed at 5000 K. However to ensure uniformity images
were further processed to adjust brightness and contrast.

In a first stage subjects were asked to remove their
glasses and if needed to put their hair up so as not to hide
the eyes and eyebrows. They had to look towards the cam-
era with a frontal pose and neutral expression, but the latter
was not strictly enforced, resulting in some minor expres-
sion variability. Seven photos were taken in sequence with
focals 10 mm, 17 mm, 22 mm, 24 mm, 34 mm, 50 mm and
70 mm.

Then in a second stage they were asked to smile, to vary
expressions, to look at a fixed object, resulting in about 30◦

out-of-plane rotation, to show a neutral frontal expression,

and finally to make a “funny face” (akin to the “joker” ex-
pression in the IMM Face Database [17]).

In a post-processing step, all images were normalized
and aligned with respect to the similarity group by placing
the eyes in canonical position, as customary. Fig. 1 shows
the resulting 12 samples for one of the 100 subjects used in
this work.

3. Impact of Perspective Distortion on Face
Recognition

In this section we examine how the particular variability
due to perspective distortion influences recognition success
rate. Although many algorithms are designed to be insensi-
tive to various sources of variability, we show that in prac-
tice extreme distortions lead to incorrect identifications.

3.1. Face Recognition Algorithms

We will consider two families of face recognition sys-
tems. The first one (EIGENDETECT) is chosen for simplic-
ity, based on the assumption that a linear subspace captures
the within-class variability, as suggested in [26, 24]. The re-
sulting “eigenfaces” then capture the principal components
of the space spanned by the samples in the training database.

The second algorithm is considered representative of the
state-of-the-art and based on sparse representation coding
(SRC) [28]: given learnt faces (Ii)

n
i=1 put side by side in a

dictionary-matrix A, solve the `0 minimization problem

min ‖x‖0 s.t. Ax = I . (2)

This NP-complete problem is relaxed to an `1 minimization
which naturally yields a sparse vector x. Lastly we com-
pute the per-subject residuals rk for all labels k, defined
as the norm of the difference between Ax and Ax̂k where
x̂k is x for components that correspond to subject k and 0
elsewhere. The output is the subject with lowest residual.
Since no code is provided, we implemented our own ver-
sion matching the same success rate on standard datasets
claimed by the authors.

SRC actually projects images on a low-dimensional sub-
space (e.g. R120) both for speed issues and efficiency rea-
sons. This projection can be done in several ways, including
downsampling (SRC+DOWNSAMPLE), masking to isolate
a part of the face (SRC+MASK) or using “randomfaces”
(projection using a random matrix).2 In the mask version
we isolated the right eye and the mouth in order to study the
class of algorithms that only rely on local features.

Both EIGENDETECT and SRC work well on sim-
ple datasets like the AT&T Laboratories Cambridge Face
Dataset (respectively 94.38 % and 95.62 %) but they differ
on challenging ones like the Extended Yale Face Database

2However this randomness introduces excessive variance between runs
and therefore is not used in this work.



Focal length EIGEN SRC+D SRC+M
10 mm 52.24 % 82.09 % 41.79 %
17 mm 77.61 % 91.04 % 76.12 %
22 mm 79.10 % 94.03 % 77.61 %
24 mm 91.04 % 98.51 % 82.09 %
34 mm 86.57 % 100 % 89.55 %
50 mm 88.06 % 98.51 % 89.55 %
70 mm 86.57 % 100 % 85.07 %

Table 1: Success rate for three face recognition algorithms
( EIGENDETECT, SRC+DOWNSAMPLE, SRC+MASK) for each
focal length, 70mm being the reference focal length. The learning
set is composed of 5 images of each individual with different ex-
pressions. The success rate is defined as the number of correctly
identified subjects over the number of subjects.

B [14] (respectively 38.38 % and 90.98 %). Our goal is to
show that managing perspective distortion improves perfor-
mance, so the actual performance figure is irrelevant other
than for serving as a baseline. Indeed, we will see that both
are affected by perspective distortion, especially from short
distances.

3.2. Experiments

We used the 5 expression-varying images as dictionary
samples (neutral, smiling, angry, looking left and “joker”).
Those photos were shot with a focal of 70 mm (thereafter
called the reference focal). Then we ran 7 recognition tasks,
one for each focal length, over the last 67 % subjects of the
dataset (the first 33 % being reserved for face warping mod-
elization). We repeated the experiment for the three algo-
rithms considered. The results are summarized in table 1.

Success rate is at most slightly affected for focals close
to the reference focal, but dramatically drops with short fo-
cals. A wide-angle (10 mm) produces distortions that sig-
nificantly decrease recognition rate, even for state-of-the-art
algorithms (e.g. 41.79 % instead of the nominal 89.55 % for
SRC+MASK).

4. Learning Perspective Distortion

In this section we describe a method to hallucinate image
domain deformations due to changes in frontal distance. In
a first step we suppose that the initial focal is known (e.g.,
from EXIF metadata). Then we solve the problem where the
initial focal is unknown. In more general terms, the method
allows to generate the family spanned by a single data point
under a one-parameter group transformation, without other
knowledge

(3)

4.1. Formalization

4.1.1 Image Formation

With a simplified formalism that does not involve illumina-
tion, pose and noise, the image of a face taken with focal f
can be written:

If (x) = If0(wf (x)), x ∈ D (4)

where wf can be viewed as a warp from the image lattice
D to itself and f0 is the reference focal. A derivation of this
formalism is given in the supplementary material.

Our goal in this section is thus: given an image of a face
I : D → R3, corresponding to a known or unknown fo-
cal f0, find the set of functions {wf : D → D } modeling
perspective distortions for any focal f .

4.1.2 Representation of a Face

The warps wf depend on the shape of the face but not its
albedo. For this reason we can discard the albedo infor-
mation in our representation of a face. We only wish to
represent the shape S. Explicit reconstruction could be em-
ployed here, even though the absence of viewpoint variabil-
ity makes it entirely dependent on priors [3, 12, 19]. To
avoid that, and for simplicity, we consider the warp a func-
tion of the hidden variable S, represented by a few sample
points within. Active appearance models (AAM) [8, 7] can
then be employed to fit a template on unseen faces. The
points fitted via AAM are thereafter called landmarks. In
practice we used N = 64 landmarks, delineating the eye-
brows, the eyes, the nose and nostrils, the mouth and the
outline of the face (see supplementary material). As cus-
tomary, we remove the affine component (the mean) but
rather than doing so across the entire dataset, we index the
mean by focal length:

If ≡ Xf −Xf = ∆Xf ∈ R2N (5)

where X = [x1x x1y . . . xNx xNy]> and Xf is the aver-
age face at focal f .

4.1.3 Assumptions on Warps

To go further we need to make basic assumptions of regular-
ity on the warps wf . Namely we assume that, as a function
of ∆X , a warp is a diffeomorphism3 from R2N to itself. We
can then write the linear approximation:

∆Xf = wf (∆Xf0)

= wf (0) +Dwf (0)>∆Xf0 +O(‖∆Xf0‖2)
(6)

3In reality it is sufficient for the warp to be differentiable on R2N .



where ‖ · ‖ is some norm on R2N . This approximation is
valid so long as faces are “close” to the average face, which
should be the case in practice.

By letting bf , wf (0) and Af , Dwf (0)> we obtain
the following affine approximation:

∆Xf ≈ Af∆Xf0 + bf . (7)

4.2. Learning the Model

4.2.1 Face Warping as a Quadratic Minimization Pro-
gram

Eq. (7) gives a convenient way to warp any face taken at fo-
cal f0 to its counterpart at focal f . Unfortunately we cannot
compute Af and bf because they depend on the unknown
function wf . However, since they do not depend on the
face itself, we wish to learn them using a sufficient number
of samples.

To that end we want to minimize the quantity

nT∑
i=1

‖Af∆Xi
f0 + bf −∆Xi

f‖2

with nT being the number of training samples and the norm
being the Euclidian norm. However this problem is typi-
cally under-constrained because there are 2N(2N + 1) free
variables and each subject contributes 2N constraints. To
avoid overfitting it is necessary to regularize the elements of
A and b. We naturally want to encourage a matrix A close
to the identity and b close to zero, because this corresponds
to wf being the identity, and even though a face undergoes
important changes that motivate this work, it should stay
close to itself through perspective distortion. Note that we
need to learn a matrix A and a vector b for each pair of pa-
rameters (f1, f2). We thus propose to solve the following
quadratic minimization program:

Af1→f2 , bf1→f2 = argmin
A, b

q(A, b) (8)

where

q(A, b) =

nT∑
i=1

‖A∆Xi
f1+b−∆Xi

f2‖
2+λ‖A−I‖2+µ‖b‖2 .

(9)
Lagrange multipliers λ and µ are selected via grid

search, using 67 % of the training data for learning and 33 %
for cross-validation. Once λ and µ are selected, we learn A
and b again over the entire training data. In practice we used
λ = 105 and µ = 10−2.

4.2.2 Interpolation Between Focals

The quadratic program (8) enables the transformation from
any parameter f1 to any other parameter f2 for which we

have data. Obviously data is only collected for a small
sample of focal lengths.

Provided that the sampling is fine enough, and that the
sensitivity of Af1→f2 and bf1→f2 to source focal f1 and
destination focal f2 is smooth, bilinear interpolation can
be used to approximate Af→f ′ and bf→f ′ for any focals
(f, f ′). Should the sampling be too coarse, one can resort
to finer methods, such as cubic spline interpolation.

4.3. When the Source Focal is Unknown

So far we have seen how to hallucinate an image If ′ of a
face at any focal f ′ given the image If , provided we know
the source focal f . In typical applications we may not know
this focal and therefore need to infer it. Formally, we seek
a function φ : R2N → R such that |φ(Xf ) − f | < η with
high probability for some tolerance η ∈ R+. The tolerance
depends on the sensitivity of A and b to the source and des-
tination focals. Indeed mistaking f1 for f2 may be tolerable
if Af1→f ′ ≈ Af2→f ′ and bf1→f ′ ≈ bf2→f ′ .

Several approaches can be considered. Provided the fo-
cal space is sufficiently densely sampled and the data is
clustered by focal length (which seems suggested by [9]),
a nearest-neighbor search can be attempted. However our
data did not prove clustered enough and a reliable estimate
of the focal length could not be obtained. Linear SVM ap-
proaches also proved insufficient. To deal with the non-
linearity of the data, we instead trained a neural network
with one hidden layer containing 4 nodes.4 This leads to
an RMS error of 13.17 mm on the testing data, which is
surprisingly accurate given that beyond a threshold, even a
trained human cannot achieve such precision.

4.4. Comparison of Families for Perspective Distor-
tion Mitigation

We saw in section 3 that both a basic and a state-of-
the-art algorithms occasionally fail when shown faces taken
from an unusual standpoint. To address this issue, based
on the interpretation of perspective distortions being a one-
parameter group transformation, we propose to compare
families spanned by images, rather than images themselves.
This idea is common in applications where the data is acted
upon by a group [10].

A distance between families can be defined by minimiz-
ing over all possible group actions: If (I1, I2) are two im-
ages that we want to compare, and [I] is the family spanned
by I under the action of the group, then we can define a
distance between families via

d([I1], [I2]) = min
I′
1∈[I1], I′

2∈[I2]
d0(I ′1, I

′
2) (10)

where d0 is a base distance in the data space. This however
requires solving an optimization problem at decision time.

4More complex architectures, e.g. three hidden layers with 32, 16 and
8 nodes, also gave good results but took longer to train.



Alternatively, one can exploit the fact that each family is
an equivalence class, which can be represented by any of its
elements. So long as it is possible to select a unique “canon-
ical element,” one can simply compare canonical elements
(eq. 11). This does not entail any optimization, and this is
the approach we take, with the canonical element being the
mapping of an image to reference focal length. This can be
seen as a pre-processing step, after which the warped im-
age can be fed to any standard face recognition system. In
practice the focal estimation takes 0.3 s and the actual warp
2.0 s for a 256× 256 frame on consumer hardware.

d([I1], [I2]) = d0(Î1, Î2) . (11)

5. Experimental Assessment

5.1. Qualitative Results

As suggested in [4], extrapolation of perspective distor-
tions can be applied directly to image editing. The warp de-
scribed in section 4 can easily be extrapolated by letting the
source and destination landmarks be respectively control
points and their images, and using a thin-plate spline [27]
to obtain a dense warp. We implemented this solution in a
Matlab GUI application (see Fig. 2) that allows warping an
input image into its hallucinated version at any focal in the
range [10 mm ; 70 mm].

Figure 2: Face warping GUI. The handles allow to correct the
source focal and to control the destination focal. The first panel
is the input, the middle panel is the warped face image. When a
ground truth face is available it is displayed on the third panel.

In Fig. 3 we show an application to un-distortion of
videoconference streams. In this proof-of-concept demon-
stration, it is assumed that a detector/tracker yields a smooth
estimate of the location of the eyes. Landmarks are fitted
using AAMs. The distance to the screen (and hence the
“focal”) is simply estimated using the distance between the
eyes, since the focal of the camera is known, and the face is
then warped to the desired viewing distance. This applica-
tion enables mitigating the undesirable effects of the typical

optics employed in forward-looking cameras on mobile de-
vices and tablets.

Figure 3: Application of face unwarping to videoconference
streams. (Top) original frames 1, 115 and 403. (Bottom) unwarped
versions. Since the focal is known (30mm in 35-mm equivalent),
the image uncropped and the face frontal, the distance from the
subject is estimated using the distance between the eyes, and is
then converted to an estimated “focal” using formula 1. The face
is then warped to f = 63mm which corresponds to a viewing
distance of 50 cm. Not counting the detection of the eyes and the
fitting of AAMs, the application runs at an average rate of 4.1 s
per 432 × 270 frame, time mostly spent for resampling in Mat-
lab’s affine transformation function and for thin-plate spline inter-
polation. The warp is only applied to the face area and smoothly
vanishes on its edges by fixing control points on them before using
thin-plate spline interpolation.

5.2. Managing Perspective Distortion in Face
Recognition and Validation

To illustrate the mitigation of perspective distortion in
face recognition, we conducted two experiments. In the first
one we pre-processed the images by warping them from
their true focal length (known in our dataset) to the refer-
ence focal length. In the second experiment we do not sup-
pose the focal length known and instead estimate it as ex-
plained in section 4.3. Fig. 4 summarizes improvement of
success rate by comparing the three experiments: without
pre-processing, with pre-processing when focal is known
and with pre-processing when focal is estimated.

The most noticeable results appear for the extreme fo-
cal length f = 10 mm. Because of huge distortions hap-
pening at this distance, algorithms perform at their worst.
Our method compensates for these distortions and allows
to achieve higher success rates. Above a certain threshold,
perspective distortion becomes negligible and, as expected,
our method only produces negligible random fluctuations.
Note that our focal estimate is reliable enough to give re-
sults that are almost as good as when the focal is known.

In a final proof-of-concept experiment (Fig. 5), we take
the opposite approach where the focal length is known and
controlled by the system. Because the warp induced by per-
spective distortion is shape-dependent, it is possible to cap-
ture multiple images at different focal lengths, rescale them,
and then test the compatibility of the resulting deformation
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(a) EIGENDETECT
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(b) SRC+DOWNSAMPLE
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Figure 4: Success rate of face recognition algorithms with and
without pre-processing.

with the shape of the underlying scene. This would allow
validation of the identity of a face in a way that a single-
image based recognition system cannot do (even the best
face recognition system based on a single view cannot dis-
criminate between an image of a person and an image of an
image of a person). Practically, the application estimates the
warping between images taken from different distances and
validates or invalidates the output of the underlying single-
view recognition system.

Figure 5: Multi-view validation of an underlying single-view
recognition system. In this scenario, an impostor uses a photo-
graph pretending to be some authorized subject. The camera con-
trols its own viewing distance and focal length and triggers the
shutter from different distances. After scaling and processing, the
standard deviation of each landmark trail, averaged over all land-
marks, can be thresholded to unveil the impostor. Single-view ap-
proaches would inevitably fail here.

5.3. Limitations

The effects of perspective distortion in face recognition
are modest for long focals. Certainly they are not as delete-
rious as out-of-plane rotations, occlusions, and illumination
changes, but nevertheless significant, as they affect the per-
formance of face recognition systems, especially at close
distances where such deformations exceed inter-class vari-
ability.

It would be tempting to extend the method presented
in 4.3 to estimate the distance from the COP to the sub-
ject. This could be of interest in image forensics. However
the effects of perspective distortion become negligible for
distances beyond a few meters, and our method would not
be of any use for such a purpose.

The application of the warps for synthesis purposes
(Fig. 2, 3) requires the location of the face to be known to
high accuracy. When the focal needs to be estimated, an
accurate location of the fiducial points is also required (be-
cause this involves non-linear steps sensitive to small varia-
tions). As a result a proper implementation of a system like
the one in Fig. 3 would require on-line accurate face detec-
tion and tracking and possibly other pre-processing to warp
the face to fronto-parallel, and would fail altogether in the
presence of significant out-of-plane rotation that yields self-
occlusions. Lastly, one would probably want to segment the
face from the background to avoid warping the latter.

The videoconference demonstration in Fig. 3 may seem
superfluous in actual scenarios where participants are typ-
ically far from the camera. However it addresses a
real-world, large scale problem when applied to personal
videochat contexts, or in “selfie” mobile applications, in
which one cannot back off from the camera more than an
arm’s length [25].

6. Conclusion

We study the effects of varying distance in frontal face
images. While such variations have significant perceptual
impact, and have been exploited by artists for centuries [21],
an explicit modeling and a quantitative assessment of this
phenomenon and its impact on face recognition have not
been attempted before.

It is also possible to employ the system for synthesis pur-
poses to modify the appearance of a photograph or a video
as if it was taken from a different distance, thereby manip-
ulating a person’s perceived qualities.

The methodology developed could be extended to other
families of one-parameter transformations, assuming that
they yield differentiable and differentially-invertible warps,
which is not the case in the presence, for instance, of oc-
clusions. This includes self-occlusions from out-of-plane
rotation.
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