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Abstract

The use of sweat pores in fingerprint recognition is be-
coming increasingly popular, mostly because of the wide
availability of pores, which provides complementary infor-
mation for matching distorted or incomplete images. In this
work we present a fully automatic pore-based fingerprint
recognition framework that combines both pores and ridges
to measure the similarity of two images. To obtain the ridge
structure, we propose a novel pore-based ridge reconstruc-
tion approach by considering a connect-the-dots strategy.
To this end, Kruskal’s minimum spanning tree algorithm is
employed to connect consecutive pores and form a graph
representing the ridge skeleton. We evaluate our framework
on the PolyU HRF database, and the obtained results are
favorably compared to previous results in the literature.

1. Introduction
Most commercial Automatic Fingerprint Identification

Systems (AFIS) rely on Level 1 (i.e. global characteristics
– ridge flow and pattern type) and Level 2 (i.e. local fea-
tures – minutiae and ridge skeleton) features to distinguish
genuine and impostor individuals [5]. They achieve high
recognition accuracy, but depend on image quality to do so.
For this reason, the use of Level 3 features (e.g. sweat pores
and incipient ridges) as a complementary information for
matching has attracted the attention of many researchers in
the literature. Among these features, the use of pores stood
out as a promising way to improve the recognition perfor-
mance [5, 7, 8, 10, 13–15].

A pore-based AFIS usually has three main stages: (1)
pore detection, (2) pore correspondence establishment and
(3) similarity evaluation. Pore detection is a challenging
task since pores vary widely in size and shape (see Fig-
ure 1). Some initial works [5, 15] did not adapt them-
selves to such variations and, as a consequence, faced
large numbers of false positives and false negatives. Other
works [13, 14] addressed adaptability, but at the cost of us-
ing computationally expensive techniques, such as ridge re-
construction and frequency estimation. Recently, Lemes et

al. [7] proposed an accurate method, named Dynamic Pore
Filtering (DPF), that efficiently adjusts itself to pore varia-
tions without requiring these time-consuming calculations.

To establish pore correspondences, global alignment [5]
or local pairwise correspondences [7, 8, 10, 14] can be con-
sidered. The second one has become increasingly popular
because keypoint description and matching is a very hot
topic in computer vision research nowadays. There is a
number of descriptors that can be used to characterize pores
(e.g. sparse representation [8], SIFT [10], DAISY [7]), and
pore correspondences can be obtained by matching those
descriptors. In this stage, an outlier filtering step is usually
necessary to eliminate wrong correspondences.

Finally, a matching score is computed based on pore
correspondences and then employed to decide whether the
match is genuine or not. Typical score choices are the num-
ber of correspondences [8, 14] or the average reprojection
error [5]. This type of matching, however, does not con-
sider how pores are related to each other, and consequently
misses important pieces of information which could help
the decision making process.

In this work, we present a fully automatic pore-based fin-
gerprint recognition framework. Unlike other works in the
literature, we connect consecutive pores and use this infor-
mation for matching as well. To perform the connecting
task, as our first contribution, we propose a novel ridge re-
construction approach based on a connect-the-dots strategy.
To this end, pores are interpreted as vertices of a graph and
Kruskal’s algorithm [6] is employed to find the minimum
spanning tree that connects them. Then, as our second con-
tribution, we present a pore-based matching approach that
also takes the connection between pores in consideration.

2. Pore detection
Since we use pores for both ridge reconstruction and fin-

gerprint matching, we need a fast and accurate approach to
detect them. To fulfill such requirements, we use DPF [7].

DPF has two main stages: (1) pore size estimation and
(2) pore classification. To estimate the pore size, for each
pixel with value above a global threshold (i.e. bright pixel),
the closest neighbor with value under the global threshold
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(i.e. dark pixel) is found in four directions: up, down, left
and right. The distance to these neighbors is then used to es-
timate a global radius for pores (i.e. average valley width).
This global radius defines the size of a mask that is centered
on each bright pixel, which is then used to estimate a local
threshold and a local radius. In the classification stage, a
circle around each bright pixel with local radius is used to
determine whether it is a pore or not based on three condi-
tions: the proportion of bright pixels in the circle must be
under 40%; the number of transitions between bright and
dark pixels must be smaller than two; and the average pixel
value in the circle must be below the local threshold.

As may be seen in Figure 1(a), using the average val-
ley width to estimate global and local radius may return a
similar pore size in very different situations. We may also
observe that ridges seem to be a better clue for pore size
estimation, so we estimate global and local radius using the
average ridge width. With this small change, DPF adapts
even better to pore variations, as illustrated in Figure 1(b),
and the detection accuracy is improved.

(a)

(b)

Figure 1. Illustration of the pore size estimation step based on (a)
average valley width and (b) average ridge width.

3. Ridge reconstruction
Ridge reconstruction is an important step in different

AFIS and consists in locating ridges and representing them
through their skeleton. Ridges can be used in different fin-
gerprint analysis, such as matching [2], minutiae extrac-
tion [5] and image compression [4], and previous works ex-
plored different ideas to reconstruct them: line tracing [12],
ridge points detection [3], image binarization and thin-

ning [1] and so on. We propose a novel ridge reconstruction
approach based on a connect-the-dots strategy. The objec-
tive is to establish connections between pores and, by doing
so, to obtain the ridge skeleton. To this end, we build a com-
plete weighted graph using pores as vertices and then use
Kruskal’s algorithm [6] to find the minimum spanning tree
that discards non-ridge edges. To the best of our knowledge,
this is the first attempt to reconstruct ridges using pores.

First we interpret an input fingerprint image I as a
weighted graphG = (V,E). Every vertex u ∈ V represents
a pore and has coordinates (xv, yv). Every edge (u, v) ∈ E
represents a line between (xu, yu) and (xv, yv) in I , and has
a weight wuv computed as in Equation 1:

wuv = α|L|+
∑
p∈L

I(xp, yp)2

255 max(|xp − x̄L|, |yp − ȳL|)
(1)

where L is the set of pixels that form a line between u and
v, as illustrated in Figure 2, I(xp, yp) is the grayscale value
for the pixel p, and (x̄L, ȳL) is the midpoint in L, also illus-
trated in Figure 2.

Figure 2. Line of pixels between pores u and v. Pixels correspond-
ing to u, v and line midpoint are shown in blue.

Equation 1 is formulated in a way that penalizes edges
that contain bright pixels (i.e. I(xp,yp)2

255 ) in the center of
the line (i.e. 1

max(|xp−x̄L|,|yp−ȳL|) ) and/or edges that are too
long (i.e. α|L|). The value of α is a parameter of the ap-
proach that affects the importance of the edge length in the
reconstruction process. Details regarding this and other sub-
sequent parameters are presented in Section 5.3. In this for-
mulation, edges connecting consecutive pores tend to have
lower weights than edges crossing valleys since they are
both dark and short.

Although G could be constructed as a complete graph,
many edges are too long and would never be part of the fi-
nal ridge structure. To save processing power, we discard
edges if their length are greater than βd̄, where d̄ is the av-
erage distance between two consecutive pores and β is a
parameter that defines how long edges can get. Since the
ridge structure is not yet available, d̄ cannot be precisely
estimated. However, we assume a uniform grid spacing be-
tween pores to approximate its value, as in Equation 2.
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(a) GROUND TRUTH (b) DR: 90.1% / FDR: 15.2% (c) DR: 99.1% / FDR: 6.7% (d) DR: 97.4% / FDR: 0.3%

Figure 3. Results of the proposed pore-based ridge reconstruction approach: (a) ground truth, ridge structure after running Kruskal’s
algorithm in both (b) raw and (c) enhanced images; and (d) ridge structure after edge filtering. False positives are shown in red and false
negatives are shown in blue. Edges in black were correctly detected by the proposed approach.

d̄ ≈

√
|V |

Irows ∗ Icols

−1

(2)

Finally, we run Kruskal’s algorithm and take the result-
ing tree as the ridge structure. A pseudocode for Kruskal’s
algorithm is provided in Algorithm 11, and, as may be ob-
served, it is a greedy search that takes low-weight edges first
and removes all cycles in the graph. As edges between con-
secutive pores have lower weights, they are frequently taken
as part of the minimum spanning tree.

Algorithm 1: Kruskal’s minimum spanning tree.

Data: G(V,E)
Result: A

1 A = ∅;
2 forall the v ∈ V do
3 setv = v;
4 end
5 sort E by wuv in increasing order;
6 forall the (u, v) ∈ E do
7 if setu 6= setv then
8 A = A ∪ (u, v);
9 merge setu and setv;

10 end
11 end

An example of the ridge reconstruction result is shown
in Figure 3(b). As may be seen, this initial result is very
far from ideal, which is mainly caused by noise and con-
trast changes in the fingerprint image. To reduce effects of
these artifacts, we apply the Contrast Limited Adaptive His-
togram Equalization (CLAHE) [11] to enhance image con-

trast. Using CLAHE, however, may end up sharpening the
noise (see Figure 4(b)). To avoid this, we apply a 3× 3 me-
dian filter to the input image before applying CLAHE. The
resulting image is shown in Figure 4(c), and the improve-
ment in ridge reconstruction results when using enhanced
images is presented in Figure 3(c).

(a) ORIGINAL (b) CLAHE (c) MEDIAN+CLAHE

Figure 4. Fingerprint image enhancement: (a) original image, and
result for CLAHE-based image enhancement (b) without and (c)
with noise filtering.

After image enhancement, reconstruction results are
much more visually sound, but many false positives (i.e.
edges that should not be part of the ridge structure) are still
present. Most of them are selected in Algorithm 11 because
the resulting tree must also be a connected graph, which
is not the case for a graph of a fingerprint image (see Fig-
ure 3(a)). In addition, Kruskal’s algorithm has no infor-
mation on how ridges are arranged, so it may over-connect
vertices and/or select intersecting edges.

To overcome these problems, we specified some criteria
to filter out false positives. First we created two rules to
add an edge (u, v) to A in Algorithm 11: (1) (u, v) can-
not intersect any other edge already in A; and (2) neither u
or v can already have two or more edges. The second rule
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prevents us from properly representing bifurcations in the
ridge structure, but it also prevents forming non-existing bi-
furcations, which is a common mistake (see Figure 3(c)).
Then, any edge whose weight is greater than µA + γσA is
discarded, where µA is the average weight for all edges in
A, σA if the standard deviation, and γ is a parameter that
defines how bright an edge must be to be discarded.

The result of this edge filtering step is shown in Fig-
ure 3(d). Both detection rate (DR) and false discovery rate
(FDR) are also presented in Figures 3(b)-3(d). DR repre-
sents the percentage of edges in the ground truth that were
successfully found, and FDR represents the proportion of
false positives among the edges in A. As may be observed,
DR decreased about 1.7% after edge filtering, but FDR de-
creased even more, to 0.3%. The final ridge structure is very
accurate, and is further used for matching in Section 4. A
more detailed analysis of the reconstruction performance is
presented in Section 5.3.

4. Fingerprint matching
Most pore-based fingerprint matching systems rely on

finding corresponding pores and filtering outliers to mea-
sure the similarity between two images [8, 16]. Following
this idea, we extract a descriptor for each pore using the
Scale-Invariant Feature Transform (SIFT) [9] with scale s
(i.e. details on parameters are given in Section 5.4). Then,
we look for bidirectional correspondences between pores
from gallery and probe images (i.e. the ratio between the
closest and the second closest descriptor distances must be
smaller than r – see Section 5.4) and use these correspon-
dences to compute the matching score. The score consid-
ers both ridge structure and consistency of corresponding
points to measure the similarity, as in Equations 3-5:

score =

|C|∑
i=1

f(i) (3)

f(i) =

{
g(i), if ∃j 6= i | ∃uAi . . . uAj ∧ ∃uBi . . . uBj
0, otherwise

(4)

g(i) =

|C|∑
j=1

1

1 + |‖uAi − uAj ‖ − ‖uBi − uBj ‖|
(5)

where C = {(uA1 , uB1 ), . . . , (uA|C|, u
B
|C|)} is the set of cor-

responding pores, A and B are ridge graphs for gallery and
probe images respectively, u . . . v is a path of edges con-
necting u to v, and ‖u − v‖ is the Euclidean distance be-
tween the coordinates of u and v. Equation 4 takes the
ridge structure in consideration by discarding correspond-
ing pores that are not connected to at least one other pair of
corresponding pores through a path in both A and B. Thus,

only pores in ridges with multiple correspondences are se-
lected, and the remaining ones are considered false posi-
tives. Equation 5 verifies if the distance between two pores
in the gallery image is similar to the distance between their
corresponding pores in the probe image, and consequently
measures the consistency of pores selected in Equation 4.
Even though fingerprint distortion affect g(i), a global anal-
ysis of the consistency is preferred to avoid local maxima.

5. Experimental results
5.1. Database

In this work we use The Hong Kong Polytech-
nic University High-Resolution-Fingerprint1 (PolyU HRF)
database [8, 14–16]. This database has one training set and
two testing sets, and its images have 1200 dpi resolution.
The training set has 210 images of 35 different subjects (i.e.
6 images per subject acquired in two different sessions –
3 images per session). Both testing sets, named DBI and
DBII, have 1480 images from 148 different subjects (i.e. 10
images per subject acquired in two different sessions – 5
images per session). Images in training and DBI sets have
320 × 240 pixels (i.e. partial fingerprints), while DBII has
images with 640 × 480 pixels (i.e. full-size fingerprints).
The PolyU HRF database also contains a subset of DBI im-
ages that contains the ground truth coordinates of pores (i.e.
30 images with an average of 425 pores).

5.2. Pore detection results

In this experiment, we use the subset of the PolyU HRF
database that contains the ground truth coordinates of pores
to compute DR and FDR. We compare DPF’s performance
with four state-of-the-art approaches, as may be seen in Ta-
ble 1 (i.e. results for Jain et al. [5] and Zhao et al. [14, 15]
were reported in Teixeira et al.’s work [13]).

Table 1. DR and FDR for pore detection.
Method DR FDR
Jain et al. [5] 75.9% 23.0%
Zhao et al. [15] 80.8% 22.2%
Zhao et al. [14] 84.8% 17.6%
Teixeira et al. [13] 86.1% 8.6%
DPF [7] 83.5% 9.9%
Enhanced DPF 90.8% 11.1%

Table 1 shows that enhanced DPF and Teixeira et al.’s
work [13] have comparable results and both outperform
other reported works. However, DPF requires less com-
putational resources since it does not require any time-
consuming and quality-dependent processing steps, such as
ridge reconstruction, ridge map estimation, ridge orienta-
tion estimation and/or frequency estimation.

1http://www4.comp.polyu.edu.hk/b̃iometrics/HRF/HRF_old.htm
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5.3. Ridge reconstruction results

To evaluate the accuracy of the proposed ridge recon-
struction approach, we also use the subset of the PolyU
HRF database that contains the ground truth coordinates of
pores. We extended the ground truth to include the ridge
structure of these images by manually marking valid edges
between annotated pores. An example of the extended
ground truth is shown in Figure 3(a).

In our experiments, we run our approach using ground
truth pores and then compare the obtained reconstruction to
the ground truth graph. If an edge is present in the recon-
struction result but is not in the ground truth, it is considered
a false positive. If it is in the ground truth but is not in the
reconstruction result, it is considered a false negative. We
count the number of false positives and false negatives over
the entire test set to obtain both DR and FDR.

This experiment was repeated several times, and differ-
ent values for α, β and γ were considered. α was tested
over the range [0, 255] with step size 1, β over the range
[1.0, 5.0] with step size 0.5, and γ over the range [1.0, 3.0]
with step size 0.1. The best performance was obtained with
α = 16, β = 2.5 and γ = 1.7, and the results are shown in
Table 2. As may be observed, image enhancement and edge
filtering considerably reduce the number of false positives
and false negatives.

Table 2. DR and FDR for ridge reconstruction.
Modality DR FDR
Raw image 92.8% 13.1%
Enhanced image 95.3% 10.8%
Enhanced image + edge filtering 94.1% 3.9%

Finally, we use the best configuration found to recon-
struct fingerprint ridges using automatically detected pores.
This task is more challenging since we may have missing
pores, pores detected multiple times, or false positives from
pore detection. Figure 5(a) illustrates these problems and
shows that the proposed approach is still able to provide
a meaningful interpretation of the ridge structure, although
reconstruction results are better when the pore detection is
more accurate (see Figure 5(b)).

5.4. Matching results

Both pores and ridges were automatically extracted for
matching. The training set of the PolyU HRF database was
used to find the parameter values that maximize the recog-
nition accuracy of the proposed approach. SIFT scale s was
tested over the range [1, 8] with step size 1, and threshold-
ing ratio r over the range [0.1, 1.0] with step size 0.1. The
highest recognition accuracy in the training set was obtained
when s = 4 and r = 0.8. These were then used unchanged
in our experiments on DBI and DBII.

(a)

(b)

Figure 5. Pore-based ridge reconstruction results using (left)
ground truth pores and (right) automatically detected pores.

We used the same methodology proposed by Liu et
al. [8] to evaluate our matching performance on DBI and
DBII. First we match images of the same subject in dif-
ferent sessions to obtain the genuine score set (i.e. 3,700
combinations). Then, we match the first image of each sub-
ject in the first session to the first image of all other subjects
in the second session and obtain the impostor score set (i.e.
21,756 combinations). The obtained scores are then used
to compute the Receiver Operating Characteristic (ROC)
curve, which combines the False Rejection Rate (FRR) and
the False Acceptance Rate (FAR). The resulting curves for
DBI and DBII are shown in Figure 6. Results for DBII are
better than for DBI, as expected, since DBII images have
full-size fingerprints.

We also compared our results to other pore-based fin-
gerprint recognition works in the literature. Table 3 shows
the Equal Error Rate (EER) for DBI and DBII using
Minutia and Pore alignment with Iterative Closest Points
(MICPP) [5], Direct Pore matching (DP) [16], Sparse
Representation-based Direct Pore matching (SRDP) [8] and
the proposed approach (i.e. results for MICPP, DP and
SRDP were reported in Liu et al.’s work [8]). As may be
observed, we reduced EER for DBI and DBII in more than
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Figure 6. ROC curves of the proposed approach for DBI and DBII.

40% and 20%, respectively, when compared to the best re-
sults in the literature. These results show the potential of
using pore connections in pore-based fingerprint matching
and also validate the proposed pore-based ridge reconstruc-
tion approach.

Table 3. EER for fingerprint matching using DBI and DBII.
Approach DBI DBII
MICPP [5] 30.45% 7.83%
DP [16] 15.42% 7.05%
SRDP [8] 6.59% 0.97%
Proposed 3.74% 0.76%

6. Conclusion
We propose a novel strategy to reconstruct fingerprint

ridges, which consists in connecting consecutive pores
through edges to obtain the ridge skeleton. We also pro-
pose an approach to automatically perform this reconstruc-
tion based on Kruskal’s minimum spanning tree algorithm.
To the best of our knowledge, this is the first attempt to re-
construct ridges using pores. Our approach detects 94.1%
of the ground truth edges with only 3.9% of false detections.

Then, we incorporate this ridge information in the pore-
based matching stage in order to discard wrong pore corre-
spondences. We achieve a 3.74% EER on DBI and a 0.76%
EER on DBII, which outperform other works in the litera-
ture. These results validates the proposed ridge reconstruc-
tion approach, showing that the obtained ridge structure is
suitable for fingerprint recognition.

The entire recognition framework does not rely on
quality-dependent processing methods, making it well
suited for distorted or damaged fingerprint images. As a
future work, we intend to investigate this issue and other
options for graph-based ridge matching (e.g. graph isomor-
phism and maximum common subgraph).
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