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Abstract

We consider a problem of identifying people based on

their styles in performing actions from an arbitrary prede-

fined set of action types. We present a generative model

describing the action instance creation process and derive

a probabilistic identity inference scheme, which implicitly

includes action type inference as one of its components.

Our experiments validate the power of the approach. We

report high recognition rates on four publicly available ac-

tion recognition datasets and one dataset for person authen-

tication, on which we obtain state-of-the-art results. We

make use of existing action representations and show that

combining them with an action-specific Mahalanobis met-

ric, learned from examples, improves the results.

1. Introduction

A typical question, action recognition is concerned with,

is: “What is the performed action?”. Another important

question we consider in this work is: “Who is the person

performing the action?”. It was shown that gait motion pat-

terns recorded using accurate motion capture (mocap) sen-

sors, attached to skeletal joints, convey significant informa-

tion which may be used to infer the subject’s identity and

demographic attributes [20, 21, 18]. In this work we ad-

dress the problem of inferring persons’ identities based on

their style in performing arbitrary actions, captured using

Kinect [17]. Unlike 3D skeletons captured using mocap,

those recorded with Kinect are much noisier, and yet proved

themselves useful for action recognition [24, 25, 29, 16].

However, a much higher precision is required for differen-

tiating between instances of a particular action, performed

by different users, than instances of different actions. Thus,

it is uncertain that such noise is insignificant when actions

of the same type, varying in style, are compared. Figs. 1(a)

and 1(b) show two persons, a male and a female, perform-

ing a hand wave gesture. Looking at the trajectories of the

limbs’ joints, one can easily notice the stylistic differences

between the performers, pointing on their gender as well as

identity.

(a) (b) (c)
Figure 1. Two users – a male (a) and a female (b) – perform a

“hand wav” gesture. (c) - Generative models describing the for-

mation process of N action instances. Xi depends on the action

label Ai and the user’s identity label U . In the left diagram the la-

bels Ai are known and the user’s label U is unknown. In the right

diagram the labels Ai and U are unknown.

1.1. Action Recognition

In the early works on action recognition articulated pose

estimation was used to model the action, e.g., [30]. How-

ever, due to the high complexity of the articulated body

modeling, the attention has switched to appearance based

approaches [2, 10, 3]. Thanks to the recent developments

in low cost depth sensors and the accompanying skele-

ton tracking technologies [17], model based approaches re-

gained their popularity [25, 29, 16, 24]. Yao et al. [31]

show that pose-based action recognition typically outper-

forms appearance based methods even when pose estimates

suffer from high levels of noise. Wang et al. [25] employ

a multiscale Fourier temporal pyramid on pairwise rela-

tive joint positions gaining invariance to noise and tempo-

ral misalignment. Xia et al. [29] represent a pose as a his-

togram of normalized joint positions in 3D, and model an

action as an evolution of poses using HMM. Ofli et al. [16]

present a method for automatic selection of the most infor-
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mative joints for a specific type of action. Hussein et al. [7]

report impressive results using covariance descriptors ex-

tracted from sequences of absolute joint positions in mul-

tiple scales. In the recent work by Vemulapalli et al. [24]

the authors propose a combination of Dynamic Time Warp-

ing (DTW) [23], a Fourier Temporal Pyramid (FTP) [25]

and a linear SVM classifier to achieve state-of-the-art per-

formance in action recognition from 3D skeletons.

1.2. Individual Recognition

Person identification based on motion is a widely stud-

ied topic in the computer vision community [26, 6, 15, 21].

Most of these efforts focus on analyzing motion of a par-

ticular type, i.e., locomotions, paying special attention to

human gait due to its applicability in the surveillance appli-

cations domain. Early works on gait-based recognition used

silhouette sequences extracted from video frames, e.g., [26].

The emerging depth sensors made other modalities, such

as depth [6] and 3D skeletons [15], available for this task.

Munsell et al. [15] use sequences of 3D skeletal represen-

tations from the Kinect to model two types of locomo-

tions, i.e., walking and running. Given a test sequence,

the authors use a two-step classification process in which

they first classify the locomotion type and then apply a

locomotion-specific identity classifier to identify the indi-

vidual.

Inspired by the seminal work on biological motion per-

ception by Johansson [8], many efforts were made to clas-

sify person identities and personal attributes from gait pat-

terns, collected using accurate mocap sensors attached to

major body joints [20, 21, 18]. Troje [20] uses gait pat-

terns to classify the walker’s gender. The gait patterns are

modeled using the frequency and the amplitude of the tra-

jectories’ four major principal components. One of the con-

clusions of this work is that the walkers’ gender is better

identified using their gait dynamics than their skeletal struc-

ture. The follow-up work by Troje et al. [21] extends the ap-

proach to identify other personal attributes. Sigal et al. [18]

automatically infer these attributes from videos of walking

people using a 3D pose tracker.

In contrast to the surveillance applications’ nature,

where subjects are unaware of the underlying identification

process, in the access-control authentication scenarios, sub-

jects voluntarily provide the system with their identification

samples. Gesture based biometrics is an evolving topic ask-

ing the question whether the human gesture may be used

as an authentication modality. Lai et al. [9] demonstrate

encouraging results using covariance descriptors extracted

from silhouettes. In the follow-up work by Wu et al. [27]

the authors demonstrate improved results by replacing the

silhouettes with Kinect skeletons. In the recent work by

Wu et al. [28] the benefits of using Kinect skeletons cap-

tured from multiple viewpoints are explored.

The “content-style” generative model, introduced by

Tenenbaum and Freeman [19], represents an observation

as a bilinear mixture of content and style. This approach

was successfully applied in several domains including gait-

based person recognition [22, 11]. The gait patterns were

decomposed into “content”, i.e., the periodic gait pattern,

and “style”, i.e., the personal stylistic variations, which was

used to recognize the person. However, the primary fo-

cus of these works was to automatically synthesize novel

(never-seen-before) graphic animations, rather than to iden-

tify the actor. Therefore, by decomposing action instances

into content and style, they tried to simulate the actual ac-

tion generation process. We are addressing a much simpler

problem of discriminating between styles, where the dis-

covery of underlying generative mechanism is not required.

This leads to an improved performance comparing to the

“content-style” separation based results.

1.3. Our Approach and Contributions

We present a general probabilistic framework, based on

generative models, for user identity inference. We show

that, in spite of the relatively high noise levels common to

low cost pose estimation devices, the individual motion pat-

terns collected from everyday actions as a single cue for

person identification, do indeed have good discriminative

properties. Moreover, we show that the identification accu-

racy is significantly improved when a combination of var-

ious action types is used. We evaluate our approach on

four publicly available datasets for action recognition and

one publicly available dataset for person authentication, on

which we exhibit state-of-the-art performance. To the best

of our knowledge, we are the first ones to report results on

the problem of identity classification from general actions.

Our results may serve as a baseline for further research in

this direction.

Our approach differs from previous works in the follow-

ing aspects:

1. Although reminiscent of the content-style separation

paradigm [19], our generative model does not assume

any specific dependence, e.g., bilinear, of the instance

on content and style [22, 11]. Instead we use a non-

parametric kernel density estimation to represent this

dependence.

2. Unlike [21, 20, 18, 15] our method is not tailored to-

wards any specific class of motion such as locomotion

and therefore may be applied in a more general setting.

3. While [28] do consider identification from action

rather than locomotion, their work is limited to iden-

tification in the “login” scenario, based on either

user-defined action, which amounts to classical action

recognition, or a single, shared-among-users, artifi-

cially designed “S” action. Besides showing that our



approach outperforms [28], we suggest identification

from a wide variability of natural, everyday actions ex-

tending the applicability of the idea far beyond the “lo-

gin” scenario. We also show that identification based

on a variety of actions significantly improves the re-

sults.

The rest of the paper is organized as follows. Section 2

describes the general framework including the generative

models and classifiers. In Section 3 action instance repre-

sentations and distance metrics are discussed. In Section 4

the experimental results are presented. Section 5 presents a

discussion and directions for future work.

2. Generative Model for User Identification

Under our model we restrict the allowed action types

to a limited set of atomic actions La = {α1, . . . , αNa
}.

Let Lu = {u1, . . . , uNu
} denote the set of possible user

class labels. We assume that the process of action instances

creation is governed by one of the generative models in

Fig. 1(c). {(Xi, Ai)}
N
i=1

denotes a set of N pairs of ran-

dom variables, defined over Rd × La, each associated with

i’s action instance representation and its label. Let U denote

the random variable associated with the user identity class,

defined over Lu. Some scenarios assume that action labels

are known, i.e., the Ai variables are observed, while others

do not. The diagrams in Fig. 1(c) correspond to these two

scenarios.

Let us first assume that the action labels are given. Thus,

{(xi, ai)|xi ∈ R
d, ai ∈ La, i = 2, . . . , N} denotes a set

of N action instances, performed by a certain user u ∈ Lu.

According to the left diagram of Fig. 1(c) and [1]:

p(U |{(xi, ai)}
N
i=1

) ∝ p(U)

N∏

i=1

p(xi|ai, U), (1)

where p(U) denotes a vector of prior probability values for
all u ∈ Lu and p(xi) is a shorthand notation for the proba-
bility p(Xi = xi). The result p(U |{(xi, ai)}

N
i=1

is a vector

of posterior probability values.

Now let us assume that we are given N action instances

{xi}
N
i=1

whose labels are unknown. The rightmost diagram

in Fig. 1(c) describes the instance set creation process for

this case. By marginalization over Ai we get:

p(U |{xi}
N
i=1

) ∝ p(U)

N∏

i=1

∑

ai∈La

p(xi|ai, U)

p(xi|ai)
p(ai|xi),

(2)

where p(ai|xi) is obtained by applying any given action

recognition algorithm on xi. Note that Eq. 1 is a special

case of Eq. 2 assuming a perfect action recognition algo-

rithm, assigning 1 to p(ai|xi) if and only if ai is the xi’s

true label, and 0 otherwise. In such case all the elements

in the sum vanish except for one, while the denominator

p(xi|ai) is constant with respect to U .

2.1. Classification

We propose to classify the user’s identity using a MAP

classifier corresponding to Eq. 2:

u∗ = argmax
u∈Lu

p(u)
N∏

i=1

∑

ai∈La

p(xi|ai, u)

p(xi|ai)
p(ai|xi). (3)

Assuming that we are given a set of labeled training sam-

ples, we use them to obtain a non-parametric estimate of

the likelihood distribution p(x1|a, u) for all pairs (a, u) ∈
La×Lu. LetDa,u denote the set of action instances of user

u performing action a. Thus, applying a 1-nearest neigh-

bor kernel density estimation (KDE), we obtain an estima-

tor p̂(x|a, u) for p(x|a, u):

p̂(x|a, u) ≡
1

|Da,u|V
, (4)

where V is the volume of the D-dimensional1 sphere of ra-

dius

r = min
x′∈Da,u\{x}

da(x,x
′),

centered at x, and da(·, ·) measures the distance between
action instances of class a. We show in Section 3.2, that

the use of an action-specific distance measure allows us to

take into account the instance variability of each particular

action, when discriminating between users.
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(a) (b)
Figure 2. Instance representations of the “Lift outstretched arms”

(a) and “Duck” (b) actions from the MSRC-12 [5] dataset per-

formed by three users. The representations are projected on the

two major components of the PCA subspace.

2.2.Homogeneous andHeterogeneous Instance Sets

The MAP classifier given in Eq. 3 classifies the user

based on a set of instances, {xi}
N
i=1

, belonging to certain

action types, regardless of whether the actual action labels

1
D is the intrinsic data dimension, i.e., the dimension of the actual

manifold in which the data resides.



are given or not. We categorize the sets, of size larger than

one, into two categories, namely the “homogeneous” and

“heterogeneous” sets. A homogeneous set contains iden-

tically labeled action instances, i.e., ∀i,j , ai = aj , while

all instances in a heterogeneous set are labeled differently,

i.e., ∀i6=j , ai 6= aj . Figs. 2(a) and 2(b) show the distribu-

tions of the “Lift outstretched arms” and the “Duck” ac-

tion instances, from the MSRC-12 [5] dataset, respectively.

These two action types utilize the torso and the legs differ-

ently, reflecting the various motion modalities of the human

body. The training action instances for both action types

(colored circles) come from three users colored with red,

blue and green. Note that the “red” user performs the “Lift

outstretched arms” action similarly to the “blue” one and

differently from the “green” one, while the “green” user

performs the “Duck” action similarly to the “blue” one and

differently from the “red” one. Let us assume that the un-

known user, at test time, is represented with a set of two

action instances, marked with black “⋆”s and “♦”s. Using a

homogeneous set of two stars for this task will result in high

probability values for the “blue” and the “red” users. A sim-

ilar ambiguous result – now for the “blue” and the “green”

users – is expected if a homogeneous set of two diamonds

is used. On the other hand, using a heterogeneous set of

one star and one diamond will unambiguously identify the

“blue” user. We remark that an alternative solution of in-

creasing the homogeneous set size, N , is not feasible since

N does not scale well with an increasing number of users

and an increased area of the overlapping regions belonging

to different users. We present extensive experimental vali-

dation of the above-mentioned claims in Section 4.3.

2.3. Framework Requirements

The MAP classifier introduced in Section 2.1 is general

and assumes it is provided with a particular set of compo-

nents. First, action instance representation, x, should be

selected, and action and user label sets, La and Lu, defined.

Second, a set of labeled training samples for each action-

user pair has to be provided. Third, an action-specific

distance measure da(·, ·) has to be defined. Note though

that this is not a mandatory component and if missing, any

generic distance measure, e.g., L2 norm, may be used at

a price of lower accuracy. In addition, if action labels are

unknown at test time, an action recognition algorithm giv-

ing p(a|x) has to be provided. In Section 3 we discuss the
choice of components used in our experiments.

3. Action Representation and Comparison

There exists a wide range of approaches for describing

skeletal joint ensembles in 3D. Joint positions [7], normal-

ized joint positions [29], joint angles [16], pairwise rela-

tive positions [25], geometric boolean features [14, 31] and

points in Lie group [24] – all of these proved useful for ac-

tion recognition and computer animation. In this work we

adopt one of the simplest existing skeletal representations,

namely the normalized joint positions (JP), due to its recent

success in action recognition reported in [24]. The JP rep-

resentation is constructed by taking the absolute joint po-

sitions in 3D and normalizing them with respect to the hip

joint position. In the case of Kinect, the resulting represen-

tation is a (19× 3)-dimensional vector.

3.1. Temporal Normalization

Rate variation is a well known problem in comparing ac-

tion instances performed under different conditions (speed,

style, etc.). Several methods were proposed to represent the

action in a rate-invariant fashion. Veeraraghavan et al. [23]

use a variant of Dynamic TimeWarping (DTW) [13] to han-

dle this issue. Wang et al. [25] build a Fourier Temporal

Pyramid (FTP) and represent the action using the low fre-

quency coefficients. In the recent work by Vemulapalli et

al. [24], the authors combine the DTW and the FTP to

obtain state-of-the-art performance in action recognition.

While it is intuitive why temporal normalization helps ac-

tion recognition it is not so with person identification. The

difference in rate may be exactly what differentiates be-

tween users. In practice we saw that temporal normalization

is indeed beneficial for user identification as well.

3.2. Action-Specific Metric Learning

Due to the highly constrained nature of the human skele-

ton structure and its dynamics [21, 30], most of the skeletal

motion representations are redundant. Therefore, we reduce

the instance dimensionality for each action class a ∈ La

using Principal Component Analysis (PCA). The resulting

representation is compact and less noisy, but considering

our final goal we are interested in transformations improv-

ing the discriminative capabilities of the identity classifier.

Therefore, we apply Linear Discriminant Analysis (LDA)

on the PCA-transformed representations. The LDA maxi-

mizes the ratio of the between-class scatter to the within-

class scatter so that the transformed instances of different

identities fall far apart while those belonging to the same

identity fall closer to each other. After applying LDA on

samples shown at Fig. 2, the overlapping regions will be

reduced while the clusters will be contracted as much as

possible.

To conclude, let Dp and Dl denote the number of com-

ponents selected in PCA and LDA, respectively. Given the

PCA and the LDA transformations, P
Dp×D
a and L

Dl×Dp

a

obtained from the D-dimensional instances of action a ∈
La, we defineZ

Dl×D
a = LaPa as the composite PCA-LDA

transformation for action class a.

Given the set of learned dimensionality reduction trans-

formations, {Za|a ∈ La}, we define the distance between a
pair of action instance representations xi and xj of class a,



as a squared Euclidean distance between their low dimen-

sional representations. Thus,

da(xi,xj) = ‖Zaxi − Zaxj‖
2

2
= (xi − xj)

T
Ma(xi − xj)

= ‖xi − xj‖Ma
,

(5)

where ‖·‖
Ma

is a Mahalanobis distance and Ma = Z
T
aZa.

We use this action-specific distance measure for computing

the likelihood estimator in Eq. 4. Note that the number of

action instances in the training set for each action-user pair,

Da,u, has to be larger than 3 in order for the PCA-LDA to

work properly.

3.3. Action Recognition for User Identification

The MAP identity classifier in Eq. 3 depends on action

recognition performance via the term p(a|x). In our exper-
iments we use one of the action classifiers proposed in [24],

namely the linear SVM classifier trained in a one-vs-all

fashion using normalized joint position (JP) representation

(see [24] for details). We refer to this classifier as to JP-

SVM. A given action instance, is classified as belonging to

the class with the largest JP-SVM classification margin. We

assign probability 1 to this class. An alternative approach of

assigning each class a probability proportional to its margin,

resulted in poor performance.

In our experiments we use the same datasets to train the

user and the action classifiers. Thus, special care should

be taken to ensures that, at test time, action classifiers are

applied only on action instances from different users than

those used during training. We solve this by using a leave-

one-out approach to train the JP-SVM classifiers. That is,

we train Nu action classifiers so that classifier number u

is trained on action instances from all users except u. At

test time, when computing the posterior p(u|{xi}
N
i=1

) we
always use the action classifier which was not exposed to

u’s instances during training.

4. Experimental Results

We evaluate our approach on four well known datasets

in the action recognition community and one public dataset

for gesture-based user authentication [28].

In all our experiments we use the normalized joint posi-

tions (JP) representation described in Section 3. We investi-

gate how the following temporal normalization approaches,

applied to JP action representations, affect the classification

performance:

1. None. No temporal normalization whatsoever.

2. Dynamic Time Warping (DTW). Normalize using a

nominal curve [23, 24] obtained using DTW [13].

3. Fourier Temporal Pyramid (FTP). Represent the ac-

tion with low frequency coefficients of a 3-level tem-

poral pyramid [25].

4. DTW+FTP. First apply DTW and then FTP [24].

In all our experiments we use the DTW and FTP implemen-

tation provided by [24].

To evaluate the benefits of action-specific metric learning

we use two metric types:

1. L2. No action-specific metric learning is performed,

i.e.,Ma = I, ∀a ∈ La.

2. Mahalanobis A Mahalanobis distance metric Ma

is learned using the dimensionality reduction as de-

scribed in Section 3.2. We setDp = 30 andDl = 15 in
all our experiments except for the BodyLogin dataset,

where we set Dp = 40 and Dl = 39.

We model the impact of action recognition performance

on the identity classifier in Eq. 3 by considering two cases:

1. Ground Truth (GT). Assume that the action label is

given by the dataset ground truth.

2. Action Recognition (JP-SVM). Assume that the ac-

tion labels are unknown, but may be inferred using the

action classifiers [24] discussed in Section 3.3. The ac-

tual average action recognition rate is reported in each

experiment.

In all our experiments we report recognition results aver-

aged over 10 random selections of action instances into

training and test sets.

4.1. Action Recognition Datasets

Most of the existing human motion 3D skeletal datasets

in the action recognition community contain the labels of

the persons performing the action. This is done to prevent

action recognition algorithms from overfitting towards ac-

tions of specific subjects during training. We use these la-

bels for our task. Table 1 presents a summary of four ac-

tion recognition datasets used in our experiments. For each

dataset the number of action types, the number of users,

the number of available action instances per user-action pair

and the total number of available instances are specified.

MSRC-12 [5] is the largest dataset used in our exper-

iments with 6243 action instance examples in total. We

eliminated the user with label 18 from the dataset because

no instances for the “Shoot” action were provided for him.

Manual annotation of the first and the last frames of each

action instance for this dataset is provided by [7].

The original MSR-Action3D [12] dataset contains

recordings of 10 users performing 20 types of actions (1-

3 recordings for each user-action pair). We chose a subset

of 9 users (indexed 1-3,5-10), and 16 actions (see Table 1)

so that each individual has at least two recordings for each

action type. The rest of the datasets are used without modi-

fications.



Dataset Users Actions Inst. Per Inst. Action Labels And Names

Name Num. Num. User-Act. Tot.

MSRC-12 [5] 29 12 8-10 6015
1.Lift outstretched arms; 2.Duck; 3.Push right; 4.Goggles; 5.Wind it up; 6.Shoot;

7.Bow; 8.Throw; 9.Had enough; 10.Change weapon; 11.Beat both; 12.Kick

UCFKinect [4] 16 16 5 1280
1.Balance; 2.Climb ladder; 3.Climb up; 4.Duck; 5.Hop; 6.Kick; 7.Leap;

8.Punch; 9.Run; 10.Step back; 11. Step front; 12. Step left;

13. Step right; 14. Twist left; 15. Twist right; 16. Vault

MSR-Action3D [12] 9 16 2-3 427

1.High arm wave; 2.Hor. arm wave; 3.Hammer; 4.Forward punch;

5.High throw; 6.Draw X; 7.Draw tick; 8.Draw circle; 9.Hand clap;

10.Two hand wave; 11.Side boxing; 12.Forward kick; 13.Jogging;

14.Tennis swing; 15.Tennis serve; 16.Golf swing

UTKinect [29] 9 10 2 180
1.Walk; 2.Sit down; 3.Stand up; 4.Pick up; 5.Carry; 6.Throw;

7.Push; 8.Pull; 9.Wave hands; 10.Clap hands

Table 1. Summary of action recognition datasets used in our experiments. In our results, we refer to actions using their labels specified in

the rightmost column.

4.2. User Identification

We evaluate the performance of our approach for user

identification on each one of the datasets in Table 1. In all

our experiments we classify the user at test time using a sin-

gle randomly selected action instance (N = 1). The number
of training instances vary with dataset.

MSRC-12 dataset. In our first experiment we use the

MSRC-12 dataset, to evaluate various combinations of tem-

poral normalization. For each user-action pair we randomly

select 4 action instances into the training set. Table 2 sum-

marizes the true positive rate (TPR) for each one of the ac-

tions in the dataset, using all possible combinations of met-

ric, action recognition and temporal normalization. Note

that the average contribution of DTW to performance is

higher than FTP, and the combination of both yields the best

performance. Thus, in all our further experiments we use

the DTW+FTP for temporal normalization. Note also that,

as expected, the Mahalanobis distance metric outperforms

the L2. We also see that the recognition accuracy degrades

gracefully with the uncertainty introduced by action recog-

nition. The actual JP-SVM’s TPR in this experiment is 94%

and is reported next to the algorithm name in the second col-

umn from left.

UCFKinect dataset. For each user-action combination

a random training set of size 4 is used. Table 3 summarizes

the results for this dataset. Note that the Mahalanobis met-

ric outperforms L2 for all action types, resulting in average

TPR of 95%, regardless whether the action labels are given

or not. Almost no accuracy degradation occurs as a result

of applying action recognition, mainly due to the high JP-

SVM’s TPR of 98%.

MSRAction3D dataset. The number of available in-

stances per each user-action pair limits the training set size

to one, and so only the L2 norm is evaluated. Table 4 sum-

marizes the results. Note that for some of the actions, e.g.,

“High arm wave”, a low TPR of 66% is obtained, while

for others, e.g., “Hand clap”, a TPR as high as 100% is

achieved. On average 90% TPR is achieved for the case of

unknown action labels while the action recognition accu-

racy was 88%.

UTKinect dataset. Table 5 summarizes the results for

this dataset. Again, a single action instance was used for

training. Looking at the TPR values, note that this is a more

challenging dataset – only 58% and 57% average TPR is

obtained when action labels are known and unknown, re-

spectively. Although the average results are not satisfactory,

using heterogeneous sets of four randomly selected action

types significantly improves the results. A TPR of 92% is

obtained using a heterogeneous set of four topmost action

types (highlighted in each row).

4.3. Homogeneous vs. Heterogeneous Sets

We now present experimental validation of the intuitive

claims presented in Section 2.2. In the following exper-

iments, a single action instance is randomly selected into

the training set for each user-action pair. A set of N ≥ 1
randomly selected action instances is used for classifying

the user’s identity at test time. In this experiment we as-

sume that the instances’ action labels are given. Figs. 3(a)

and 3(b) show the average and the maximal TPR as a func-

tion of N using both homogeneous and heterogeneous sets,

for the MSRC-12 and the UCFKinect datasets, respectively.

For the homogeneous case, the “Avg.” graph shows the TPR

for randomly constructed homogeneous sets of size N , av-

eraged across all action types. The upper bound “Max.”

graph shows the TPR for sets including instances from the

topmost, in terms of TPR, action type, for each N . For the

heterogeneous case, the “Avg.” graph shows the average

TPR for sets of size N , containing a random selection of

action types. The “Max.” graph shows the TPR for hetero-

geneous sets constructed of N topmost, in terms of TPR,

action types. For both datasets, an average heterogeneous

case outperforms the homogeneous one, and even outper-

forms the homogeneous’ upper bound starting with N = 3
for MSRC-12, andN = 4 for UCFKinect. As expected, the



Metric Act. Reco. (TPR%) Temp. Model # 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

L2

GT

None 85 81 92 84 82 87 85 91 86 88 85 84 86

FTP 87 88 96 90 91 92 88 98 89 97 92 91 92

DTW 94 89 96 96 98 95 92 99 98 96 93 93 95

DTW+FTP 97 93 97 98 99 96 94 99 97 98 95 98 97

JP-SVM (94)

None 86 82 88 77 73 80 79 86 81 87 79 88 82

FTP 85 85 96 87 83 86 87 93 89 93 83 89 88

DTW 94 87 94 92 92 91 92 92 98 96 85 93 92

DTW+FTP 92 92 98 94 89 91 90 93 96 96 87 94 93

Mahal.

GT

None 95 84 96 98 96 94 92 98 98 98 94 89 94

FTP 97 94 99 100 95 97 94 98 98 99 96 94 97

DTW 96 91 97 98 99 97 96 99 98 98 97 93 97

DTW+FTP 99 97 99 99 98 97 94 99 98 99 99 95 98

JP-SVM (94)

None 96 89 96 94 89 91 87 92 97 96 91 90 92

FTP 94 90 97 94 94 94 92 93 97 98 92 93 94

DTW 97 88 96 94 94 93 95 93 97 97 91 93 94

DTW+FTP 97 94 99 95 92 93 92 95 97 98 91 94 95

Table 2. TPR in % for each one of the 12 actions in the MSRC12 [5] dataset. The “Avg.” column is the average TPR across all 12 actions.

The highlighted numbers indicate the maximal value in each cell.

Metric Act. Reco. (TPR%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg.

L2
GT 93 94 95 90 94 88 96 75 96 89 91 96 98 83 93 97 92

JP-SVM (98) 93 94 95 90 94 86 96 72 96 88 91 96 98 81 93 97 91

Mahal.
GT 95 99 99 92 97 97 95 94 99 94 94 96 98 91 98 98 96

JP-SVM (98) 95 99 99 92 97 94 95 91 99 93 94 96 98 87 96 98 95

Table 3. TPR in % for each one of the 16 action in the UCFKinect [4] dataset. The “Avg.” column is the average TPR across all 16 actions.
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Figure 3. TPR obtained using homogenous vs. heteroge-

neous labeled action instance sets for the MSRC-12(a) and the

UCFKinect(b) datasets, as a function of set size N (see text for

details). Due to limited number of action instances for each

action-user combination in the UCFKinect dataset the homoge-

neous graphs terminate at N = 4.

selection of the best performing action types for the hetero-

geneous set results in the best performance.

4.4. User Authentication

The BodyLogin [28] dataset contains 3D skeletal se-

quences of 40 users performing two types of gestures.

The sequences were simultaneously captured from different

view points (center, right, left), using three Kinect devices.

Unlike the previously discussed datasets, created with the

action recognition problem in mind, this one was especially

created for gesture-based user authentication. In [28] the

authors discuss two user identification scenarios. In the first

one, users are identified based on the way they execute one

common-to-all “S” gesture. In the second one, users are

identified based on their personal (user-defined) gestures.

The latter is considered more of an action-recognition-based

approach and is less challenging for authentication than the

former, where a single action is shared among all users. To

simulate variations in gestures performed by the same user,

different interfering scenarios (“degradations”) were used

when recording the data. For example, a “User Memory”

degradation contains gestures recorded one week apart by

the same user, simulating variations caused by user’s mem-

ory. A “Personal Effect” degradation contains gestures per-

formed by the same user, while wearing heavier clothes,

such as a raincoat or carrying a backpack. This degradation

simulates variations caused by changes in user’s clothing.

Refer to [28] for details regarding all possible degradation.

We compare our results in user identification, based on

the “S” gesture, to those reported in [28]. Our approach

uses the DTW+FTP temporal normalization and the Maha-

lanobis distance, learned using PCA-LDA with the follow-

ing parameters: Dp = 40 and Dl = 39. We follow the



Act. Reco. (TPR%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg.

GT 86 94 98 97 100 100 97 93 100 99 90 92 91 90 82 88 93

JP-SVM (88) 66 94 93 90 90 100 97 88 100 99 84 86 91 90 81 88 90

Table 4. TPR in % for each one of the 16 selected actions from the MSRAction3D [12] dataset. The “Avg.” column is the average TPR

across all 16 actions.

Act. Reco. (TPR%) 1 2 3 4 5 6 7 8 9 10 Avg. Rand. 4 Best 4

GT 53 67 47 35 46 51 62 77 80 63 58 87 92

JP-SVM (96) 57 67 47 35 46 40 62 77 80 63 57 83 92

Table 5. TPR in % for each one of the 10 action in the UTKinect [29] dataset. The highlighted numbers indicate four topmost TPR values

in each row. The “Avg.” column is the average TPR across all 10 actions. The “Rand. 4” and “Best 4” columns are the average TPRs when

heterogeneous sets of four randomly selected action types and four topmost action types are used, respectively.

leave-one-out evaluation protocol used in the experiments

on the closed-set identification problem, where a nearest

neighbor with the Cov3DJ [7] descriptor was used.

Table 6 summarizes the results. Interestingly, the

most common, central, viewpoint results in the worst

average TPR. We get a TPR of 100% using either left or

right viewpoint when no degradations are applied. The

TPR slightly drops when a “Personal Effect” degradation

takes place and reaches about 90% when the effect of

“User Memory” degradation is considered. Our method

outperforms Cov3DJ in each of the camera viewpoints and

acquisition scenarios. Moreover, the rightmost column

reports the best results achieved in [28] by fusing the

information from all three Kinect views. All, except one,

of our single-view results outperform the multiple-view

results of [28].

Camera Left Right Center Multi. View

Method Cov3DJ [28] Our Cov3DJ [28] Our Cov3DJ [28] Our Best [28]

Train/Test

No degradation/No degradation 98.5 100.0 97.0 100.0 96.5 100.0 98.0

No degradation/Personal Effects 93.5 96.5 94.0 99.0 88.9 94.0 94.0

No degradation/User Memory 80.5 90.5 80.0 90.5 82.5 84.5 85.5

No degradation/Reproducibility 71.5 88.5 74.0 91.0 77.5 83.0 79.5

No degradation/All of the above 86.0 92.8 86.2 93.7 86.4 86.7 89.1

Everything/Everything 98.7 99.9 98.9 99.9 98.7 99.8 99.5

Average 88.1 94.7 88.4 95.7 88.4 91.3 90.9

Table 6. TPR in % of our method compared to that of [28] for the

“S” action under various degradation. The highlighted numbers

indicate the best methods for each combination of degradation and

viewpoint. Our approach outperforms Cov3DJ in all categories.

(Note that we converted the results, originally reported in terms of

Correct Classification Error (CCE), to TPR).

5. Discussion and Conclusions

In this work we introduced a general framework for per-

son identification based only on motion patterns, generated

while performing arbitrary actions from a predefined set.

The accuracy of our approach on four publicly available

action recognition datasets and one person authentication

dataset is high enough to be practical, and is improved even

more when different action types are used for classification.

This direction opens space for future research. Even

though the classification problem we considered in this

works is person identification, the approach is general and

may be used for other problems, e.g., gender classification,

medical state estimation and even action recognition. De-

veloping new action representations and distance metrics,

tailored specifically for the task of user identification, is an-

other potential line of research.
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