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Abstract

It is known that image registration is mostly driven by
image edges. We have taken this idea to the extreme. In
segmented images, we ignore the interior of the components
and focus on their boundaries only. Furthermore, by as-
suming spatial compactness of the components, the similar-
ity criterion can be approximated by sampling only a small
number of points on the normals passing through a sparse
set of keypoints. This leads to an order-of-magnitude speed
advantage in comparison with classical registration algo-
rithms. Surprisingly, despite the crude approximation, the
accuracy is comparable. By virtue of the segmentation and
by using a suitable similarity criterion such as mutual infor-
mation on labels, the method can handle large appearance
differences and large variability in the segmentations. The
segmentation does not need not be perfectly coherent be-
tween images and over-segmentation is acceptable.

We demonstrate the performance of the method on
a range of different datasets, including histological slices
and Drosophila imaginal discs, using rigid transformations.

1. Introduction
Image registration [31] is one of the basic tasks in

biomedical image processing and is part of most biomedical
image processing pipelines. In this work we shall address
the task of registering the images fast. This remains a chal-
lenge as processor speeds are stagnating while the image
resolution keeps increasing. Fast registration is important
for example for interactive and large throughput applica-
tions. Currently used methods typically take tens of seconds
for registering medium size images up to several hours for
larger 3D images. This is prohibitive for many applications.
Hence the motivation to find faster methods.

In computer vision, registration is mostly approached by
detecting feature points in both images, matching them, and
fitting a motion model [20]. This has a potential of being
fast as long as the expected motion model is simple but can
only rarely be applied to medical imaging problems where

reliable feature points are hard to find.
Instead, our approach for image registration acceleration

is based on three observations: First, it is known that image
registration is indeed driven mainly by the edges and the
similarity criterion can be well approximated from points
of high gradient [26]. Second, when matching images from
different physical subjects, even if two regions are supposed
to match, because they correspond e.g. to the same organ of
two different subjects, the internal structure of this organ
might be so variable that there are no geometrically corre-
sponding structures in the region interiors of the two sub-
jects. Another example is matching two neighboring histo-
logical slices (Fig. 1), each containing physically different
cells, so there is no correspondence between the small scale
details. The third observation comes from the so-called ‘ap-
perture problem’ which implies that locally, we can only
distinguish motion in the direction normal to the boundary
between homogeneous regions.

We therefore propose to simplify the input images as
much as possible by segmenting them into a set of regions
which may correspond e.g. to different tissue types (Fig. 1).
Furthermore, we ignore the interior of the regions and con-
centrate on their boundaries. Finally, we sample the seg-
mentation labels in the moving image only on short normal
1D line segments (Fig. 2). As a result, the amount of data
the algorithm needs to consider in each iteration is reduced
from 106 ∼ 108 pixels for the classical formulation using
all pixels to about 103 ∼ 104 pixels in the proposed method,
with the corresponding potential for acceleration.

As an additional benefit of working with segmenta-
tions, we get ‘for free’ the possibility of registering images
with very different appearance, e.g. coming from different
modalities [17].

1.1. Other related work

We are not the first to address the task of registration of
segmented images. However, most authors have worked on
the special case of alignment of binary images, by moment
matching [10] or descriptor matching [13], which is fast but
possibly inaccurate. On the other hand, there are also regis-
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tration strategies based on level-sets [11] and distance func-
tion matching [16], which are accurate but slow.

It is possible to register multiple-class segmented images
using the demons algorithm [28], which, similarly to us,
samples points on the class boundaries. The idea of normal
sampling comes from active contour registration [9]. How-
ever, in both cases it is attempted to estimate the necessary
movement directly, without explicitely approximating and
minimizing the criterion function.

There is a number of methods combining segmentation
and registration but also mostly limited to the two-class
problem. They propagate a reference segmentation [7], seg-
ment objects by thresholding [3, 21], by level sets [2, 30,
29], or GraphCut [22], or alternate the segmentation and
registration [17, 24]. In many cases, the fast registration
method we describe here could be easily plugged into some
of those existing segmentation-registration framework, in
order to increase their speed.

Finally, fast registration methods have been succesfully
developed casting the problem into the discrete optimiza-
tion setting [12, 14] and using GPUs [27]. Both sources of
acceleration could be leveraged in our formulation, too.

2. Method

2.1. Problem definition

We assume we are given two segmented images, f :
Rd → L f and g : Rd → L g , and a bounded region of
interest Ω ⊂ Rd, where the dimension d is usually 2 ∼ 3,
and L f ,L g are small sets of class labels (see Fig. 1 for an
example). Any of the multitude of existing image segmen-
tation algorithms can be used; we provide some suggestions
in Section 2.8.

Let us choose a similarity criterion J :
(
Rd → L f

)
×(

Rd → L f
)
→ R which can be expressed as a sum of

pixel contributions

J(f, g) =

∫
x∈Ω

%
(
f(x), g(x)

)
dx (1)

where x is the pixel coordinate (see Section 2.7 for the dis-
cussion of the pixel similarity term %).

The final ingredient is a family of geometrical transfor-
mations T (see Section 2.9), such that T : Rd → Rd for
T ∈ T is a smooth transformation, depending continuously
on a parameter vector θ ∈ Rdim θ. We shall write Tθ when
we need to emphasize this dependence.

A segmented image g can be warped with a transforma-
tion T , yielding

g′(x) =
(
g ◦ T

)
(x) = g(y) (2)

with y = T (x) (3)

The task of registering the segmented images f and g is
then straightforwardly defined as finding the best transfor-
mation T ∈ T , such that the warped image g′ = g ◦ T
of the moving image g is as close as possible to the refer-
ence image f in the sense of the similarity criterion. More
formally,

T ∗ = arg min
T∈T

J(T ) (4)

with J(T ) =

∫
x∈Ω

%
(
f(x), g

(
T (x)

))
dx (5)

2.2. Criterion approximation

Numerical evaluation of the criterion (5) can be costly as
it needs to visit all pixels within the Ω region, of which there
can be easily 107 ∼ 109 or more in todays high-resolution
images.

To reduce the complexity, we will make a number of sim-
plifying assumptions, namely that (i) the optimal transfor-
mation T ∗ is close to a known transformation T0; (ii) the
transformation is locally close to affine; and (iii) the seg-
mented regions are sufficiently large. The last assumption is
only needed to obtain a good speed-up. The assumption (i)
means that we only need to evaluate J for T close to T0,
while the ‘close’ transformations can be defined by limiting
the maximum displacement to δ

‖T (x)− T0(x)‖ < δ for all x ∈ Ω (6)

Observe that in (5), it is enough to sum over x, which
are close to class boundaries, as elsewhere the classes do
not change and the contribution to the criterion J is there-
fore constant and does not change the position of the mini-
mum. More formally, let us define the ε-neighborhood ∂εf
of class boundaries ∂f in image f

∂εf =
{
x ∈ Rd;∃y ∈ Rd, (7)

‖x− y‖ ≤ ε ∧ f(x) 6= f(y)
}

∂f =
{
x ∈ Rd;∀ε > 0,∃y ∈ Rd, (8)

‖x− y‖ ≤ ε ∧ f(x) 6= f(y)
}

We can then modify the criterion (5) by integrating only
within a distance δ of the class boundaries in g by replacing
Ω with

Ω1 = Ω ∩
(
T−1

0 ◦ ∂δg
)

=
{
x ∈ Ω;T0(x) ∈ ∂δg

}
(9)

It can be shown from (8) and (6) that g
(
T (x)

)
= g
(
T0(x)

)
for all x far from the boundaries, x 6∈ ∂δg. Therefore, for
transformations T close to T0 in the sense of (6), there will
be a constant difference between the new criterion J1 based
on (9) and J in (5) and the minimum location is thus un-
changed.



Evaluating (9) is often not practical, as it requires invert-
ing T0. Hence, we propose to replace J1 by J2 obtained by
replacing Ω1 (9) with a region based on the boundaries in f

Ω2 = Ω ∩ ∂γf =
{
x ∈ Ω;x ∈ ∂γf

}
(10)

where the size of the neighborhood γ in f is chosen such
that (∂γf) ◦ T0 ⊇ ∂δg. Then J2 = J + const. A sufficient
condition is to choose γ so that γ ≥ 2δK, where K is the
Lipschitz constant of T−1

0 , provided that the class bound-
aries of f and g ◦ T coincide for some T satisfying (6). In
practice, exact match of the boundaries is not required and
thanks to the smoothness of T , the minima of J2 and J are
sufficiently close even for γ ≈ δK. An appropriate value
for γ is easy to determine directly as it can be interpreted
as the maximum expected displacement in the image f . So
if the optimal T is expected to keep scale, γ ≈ δ is a good
choice, with δ given by (6).

2.3. Normal approximation

We take advantage of the fact that the criterion is only
influenced by movement in the direction perpendicular to
the class boundaries, as in the direction parallel to the
boundaries, the classes are constant. Let us replace the d-
dimensional integral (5) over Ω2 = ∂γf ∩ Ω (10) by an
outer integral over the boundary ∂Ωf = ∂f ∩ Ω and an
inner integral in the normal direction

J3(f, g ◦ T ) =

∫
z∈∂Ωf

∫ γ

−γ
%
(
f(x), g

(
T (x)

))
dhdz (11)

with x = z + n(z)h

where n(z) is an oriented normal at point z of the bound-
ary ∂f , with ‖n‖ = 1. Since the transformation between
x and the new coordinates (z, h) is unitary, the difference
between J2 and J3 is only due to the parts of ∂γf truncated
by Ω and by the unsmooth part of the boundary ∂f . In prac-
tice the approximation is very good. By definition, f(x) is
determined by the side of the boundary where x falls, so we
write

f(x) = f(z + n(z)h) =

{
l+ if h > 0

l− if h < 0
(12)

for l+, l− ∈ L f , assuming that there are no other bound-
aries within the distance γ.

By assumption (ii) in Section 2.2 we linearize the trans-
formation T0 around point z

T0(x) = T0(z) +
(
∇T0(z)

)
(x− z) = u + mh (13)

with m =
(
∇T0(z)

)
n(z) and u = T0(z) (14)

and similarly for T . Supposing that T0 makes the images
approximately aligned, we expect g ◦T0 to depend predom-
inantly on the shift h along the normal and not on the move-
ment in the perpendicular direction. Hence we hypothesize

that locally there exists some scalar function g̃(u, h) such
that

g(y) = g̃
(
u, 〈y − u, m̃〉

)
(15)

where we have used m̃ = m/‖m‖2 for later convenience.
Assuming further that ∇T (z) ≈ ∇T0(z), i.e. that our

guess T0 is approximately correct with respect to orienta-
tion, we get after some algebraic manipulations

g
(
T (x)

)
= g̃
(
u, ξ(z) + h

)
(16)

with ξ(z) =
〈
T (z)− T0(z), m̃

〉
(17)

Consequently, the integral in (11) can be approximated as

J4(T ) =

∫
z∈∂Ωf

D
(
z, ξ(z)

)
dz (18)

where the inner integral

D
(
z, ξ(z)

)
=

∫ γ

−γ
%
(
f(x), g

(
T (x)

))
dh (19)

=

∫ 0

−γ
%
(
l−, g̃

(
u, ξ(z) + h

))
dh

+

∫ γ

0

%
(
l+, g̃

(
u, ξ(z) + h

))
dh

can be easily precomputed for various normal shifts ξ(z), to
accelerate the subsequent optimization.

2.4. Discretization

The last approximation of the criterion J4 ≈ J + const
from (18) can be evaluated numerically as follows. We pick
a set of sparse keypoints P = {p1,p2 . . .p|P |} on the class
boundaries, pi ∈ ∂Ωf . For each pi, we find the normal
direction ni = n(pi) and sample the class labels along the
normals for h ∈ {−γ,−γ + 1, . . . , γ − 1, γ}

g̃i(h) = g̃(pi, h) = g
(
T0(pi) + m̃ih

)
(20)

with mi =
(
∇T0(pi)(ni)

)
and m̃i = mi/‖mi‖2. Near-

est neighbor interpolation is used to evaluate g away from
integer coordinates. Locations outside of the image or the
region of interest return the last class encountered.

The class boundary ∂Ωf is partitioned into small and ap-
proximately flat pieces Si such that pi ∈ Si ⊂ ∂Ωf and⋃
i Si = ∂Ωf . Then the continuous criterion (18) can be

approximated as a sum

J4(T ) ≈ J5(T ) =

|P |∑
i=1

|Si|Di

(
ξi
)

(21)

where we have written ξi = ξ(pi) =
〈
T (pi)−T0(pi), m̃i

〉
and Di(ξ) = D(pi, ξ) to simplify the notation. The key-
point contributions Di are approximated by replacing the



integral (19) with a sum over h with unit step size, assum-
ing the units are pixels and the scaling is not too extreme

Di(ξ) =

0∑
h=−γ

%
(
l−, g̃i

(
u, ξ + h

))
+

γ∑
h=0

%
(
l+, g̃i

(
u, ξ + h

))
(22)

The values of Di(ξ) are precalculated for −δ ≤ ξ ≤ δ. In
the interest of notational simplicity, we now consider γ and
δ to be integers. Note that while the naive implementation
has complexity O(δγ), i.e. quadratic if γ ≈ δ, it is possible
to calculate all 2δ + 1 values in linear time O(δ + γ) by
precalculating the cumulative sums Q+, Q− given by

Q±(k) =

k∑
j=−γ−δ

%
(
l±, g̃

(
u, j
))

(23)

for −γ − δ ≤ k ≤ γ + δ and combining them

Di(ξ) = Q−(ξ)−Q−(ξ−γ)+Q+(ξ+γ)−Q+(ξ) (24)

In our implementation, we precalculate Q± for integer k,
which allows us to evaluate Di for integer ξ. For non-
integer ξ, the values are linearly interpolated.

The above procedure needs a preprocessing time propor-
tional to O

(
|P |(δ + γ)

)
per image. Then, evaluating J5 is

very fast, the most costly operations being to evaluate T in
|P | points.

2.5. Optimization

Finding the transformation T ∗ = Tθ∗ that minimizes the
criterion J5

θ∗ = arg min
θ
J5(Tθ) (25)

is solved by standard multidimensional minimization meth-
ods such as Powell’s BOBYQUA [25], taking advantage of
the fast evaluation of J(Tθ). Derivatives can be calculated
by the chain rule

∂J5

∂θj
=
∑
i

|Si|
∂Di

∂ξi
m̃T
i

∂T (pi)

∂θj
(26)

to allow higher-order optimization methods such as
BFGS [19], which are usually faster. The derivative
∂Di(ξ)/∂ξ is calculated by the first-order difference for-
mula from precalculated values of Di(ξ) on integers.

A barrier function is introduced to keep all displacements
ξi within the assumed range by replacing Di in (21) with

D̃i(ξ) = Di(ξ) + βmax
(
0, |ξ| − γ

)2
(27)

with β = maxi,ξDi(ξ). The idea is that if a displace-
ment larger than the precalculated range is needed, it will
be found by an iterative process as described below.

2.6. Iterative improvement and multiresolution

In the absence of a priori information, we set the initial
transformation T0 to identity. If the true transformation is
too far from T0, the minimum of the J5 criterion might be
a poor approximation for the minimum of the original cri-
terion J we actually want to minimize. Our solution is to
iterate the process if we suspect that the approximation is
wrong. This is detected if for the optimal T ∗ found, a frac-
tion larger than κ1 of the displacements T ∗(pi) − T0(pi)
are either too close to the last sampled point on the nor-
mal (|ξi| > γ − κ2), or if it is too far from the normal
(‖T ∗(pi) − T0(pi)‖ > κ3|ξi|). The constants are set to
κ1 = 0.2, κ2 = 0.1γ, κ3 = 3 based on preliminary testing.
The algorithm is as follows:

1. Given T0, sample classes g̃i(ξ) along normals (20).

2. Precalculate Di(ξ) (22)

3. Find T ∗ minimizing J5 (26)

4. If the approximation is wrong, T0 ← T ∗ and repeat
from the beginning, otherwise return T ∗.

To increase speed, robustness and capture range, mul-
tiresolution with a dyadic scale is used, with a few particu-
larities due to our formulation. First, when downsampling
the segmented images, we use majority voting. Second, the
number of keypoints is reduced by taking every second one
as long as there is enough left. The maximum displacement
γ stays constant when measured in pixels, but as the image
size is reduced on coarser scales, the capture range is actu-
ally larger on the coarse scale and is progressively reduced.

2.7. Similarity criteria

The similarity criterion is defined by the pixelwise
penalty %(lf , lg), where lf ∈ L f and lg ∈ L g are the
classes observed in corresponding locations of the images
f and g. If the same classes correspond, a suitable strategy
is to penalize the differences

%(lf , lg) = Jlf 6= lgK (28)

If the relationship between the classes in the two images is
not known, for example because unsupervised segmentation
has been used, we use negative mutual information [23] on
labels (MIL) [17].

%(lf , lg) = − log
Plf lg
PlfPlg

(29)

with Plf =
∑
lg
Plf lg , Plg =

∑
lf
Plf ,lg . The probability

Plf ,lg is calculated from the joint histogram of f and g ◦T0.
In the iterative registration procedure (Section 2.6), the val-
ues of %(lf , lg) for all combinations of lf , lg are calculated



and stored before calculating the contributionsDi in Step 2,
making the evaluation very fast. Not allowing % to change
in each iteration of Step 3 usually has negligible effect on
the result, since the changes of % are small.

2.8. Segmentation and geometrical transformation

The method we are presenting works with segmented im-
ages. The segmentation algorithm should be ideally tuned
to the images at hand, to well identify key structures which
are then registered. As a fallback, the following unsuper-
vised strategy often works reasonably well and is used for
the examples in Section 3 except one:

1. Find SLIC [1] superpixels.

2. For each superpixel, calculate suitable descriptors such
as the mean color, intensity, or texture features.

3. Cluster the descriptor vectors by the k-means algo-
rithm to find 3 ∼ 5 classes.

If needed, the segmentation is regularized spatially using
GraphCut [8].

Given a segmentation, we need to find the keypoints pi
(Section 2.4). If the superpixels are known, for all pairs
of neighboring superpixels which were assigned to differ-
ent classes, we identify all pixels on the boundary between
those superpixels. If there are too few, they are discarded.
Otherwise, a keypoint is created at the center of gravity of
the boundary pixels. A covariance matrix is calculated and
the normal is set to the eigenvector corresponding to the
smallest eigenvalue (Fig. 2).

If superpixels are not used, we use a greedy, non-
maxima-suppression-like approach. First, we identify all
class boundary pixels in the image. Second, we randomly
pick one of the boundary pixels and make it a keypoint.
Third, we go through the neighboring boundary pixels, dis-
carding and marking as already visited all that are closer
than the desired distance between keypoints q (typically
around 10 ∼ 30 pixels). As soon as a boundary point at
a distance q or larger is seen, it becomes a new keypoint and
the procedure is iterated. The points closer than q are used
to calculate the center and the normal as described above.

2.9. Geometric transformation

In this work, we use a rigid transformation in 2D and 3D,
parameterized by 1 or 3 angles, respectively, and a transla-
tion, e.g.

T (x) =

[
cosφ sinφ
− sinφ cosφ

]
x +

[
tx
ty

]
(30)

with θ =
(
φ, tx, ty

)
and similarly for 3D. Derivatives with

respect to θ needed for the optimization can be calculated
analytically. Any linear transformation can be used, for ex-
ample the affine transformation or B-splines [18].

3. Experiments
We illustrate the registration pipeline on two differently

stained (cytokeratin and HER2) histological slices of human
prostate of size approximately 2000 × 2000 pixels (Fig. 1,
top). The remaining rows of Fig. 1 show the automatic seg-
mentation of the two images, and the superimposed seg-
mentations and images before and after registration. Fig. 2
illustrates the superpixels, keypoints and normals. In Fig. 1,
bottom row, corresponding manually selected landmarks
are connected in both images before and after registration.
Note, that these landmarks are used only for evaluation, not
during the registration process. The registration error is al-
most zero thanks to the transformation being close to rigid.
The mean geometric distance e = meanj‖T (vi)−wi‖ be-
tween transformed manual landmarks vi from the fixed im-
age and the corresponding landmarks in the moving image
wi is used as an error measure.

Unless said otherwise, in all experiments we set the min-
imum image size in the multiresolution to 128 px, γ = 20,
k = 5, and SLIC superpixel size to 15 px with regulariza-
tion 20.

3.1. Parameter influence

In Table 1, we evaluate the influence of four different
parameters on the speed, accuracy and robustness of method
on a database of 153 images histological slices, with 508
image pairs to be registered (see Fig. 3 for examples). We
report the mean error e, mean µ(e), 90% trimmed mean
µ90(e), the robustness (proportion of runs that decrease the
error e at least by 50 %), and segmentation and registration
times. Only one parameter is varied at a time.

If the minimum size of the image in the image pyra-
mid exceeds a critical value (512 pixels), the coarsest level
displacement magnitude increases and the method progres-
sively starts to fail to recover large transformations, which is
translated by the decrease of robustness. For smaller values,
the accuracy is stable.

While reducing the maximum sample displacement γ re-
duces the complexity of precomputing the contributionsDi,
this reduction is often compensated by the increased num-
ber of iterations (Section 2.6), making the overall time and
accuracy almost constant. However, if γ is reduced below
10 px, it is no longer possible to recover the deformations
reliably even using multiresolution, so the error and robust-
ness deteriorate.

For our data, the optimal number of classes k is 5. In-
creasing k further increases the segmentation time but does
not improve the accuracy or robustness. On the other hand,
the performance deteriorates a lot when using only two
classes.

Setting the superpixel size is a trade-off. Bigger super-
pixels lead to larger registration errors but decrease the seg-
mentation and registration time. Smaller superpixels ap-



Figure 1. Top: Human prostate histological images with different
stainings and from different slices to be registered. 2nd row: Auto-
matic unsupervised segmentation of the images above using SLIC
superpixels and k-means based on color. 3rd row: Overlay of the
segmentations before and after registration. Bottom: Overlay of
the images before and after registration, with corresponding land-
marks connected.

proximate the image better and improve the accuracy but
the segmentation and registration are slower.

3.2. Comparison with alternative methods

We compare the precision and speed of our algorithm
with seven other existing methods using available imple-
mentations (see Table 2) — bUnwarpJ [5] and RVSS in-
cluded in Fiji1 [4], affine and B-spline registration from
Elastix [15], and the simultanous segmentatation and reg-
istration [17]. We use the same data as above. Examples of

1http://fiji.sc

Figure 2. Fixed image segmentation with keypoints (black), edge
normals (white) and superpixels (gray). (For better visualization,
slightly larger superpixels were chosen.)

Min. image size 64 128 256 512 1024
median(e) [px] 6.74 6.69 6.94 7.38 8.34
µ(e) [px] 27.39 28.94 31.77 36.06 43.15
µ90(e) [px] 7.88 7.79 8.48 9.83 13.14
Robustness [%] 88.73 88.91 87.04 85.02 78.22
Tseg [s] 17.28 16.77 16.62 16.83 16.59
Treg [s] 3.05 3.18 2.97 2.28 3.04

Max. displac. γ 5 10 25 35 50
median(e) [px] 12.43 7.47 6.71 6.66 6.76
µ(e) [px] 51.58 34.92 28.98 26.38 29.95
µ90(e) [px] 20.34 9.46 7.79 7.61 7.69
Robustness [%] 67.38 86.28 88.87 88.94 89.06
Tseg [s] 15.63 15.70 15.55 16.14 15.71
Treg [s] 3.41 2.29 2.23 2.82 3.22

Num. classes k 2 3 5 7 10
median(e) [px] 7.69 6.86 6.69 6.87 6.89
µ(e) [px] 41.55 31.43 28.94 29.22 30.17
µ90(e) [px] 11.04 8.38 7.79 8.00 8.09
Robustness [%] 81.00 86.49 88.91 89.06 89.90
Tseg [s] 11.00 13.95 16.77 19.81 19.11
Treg [s] 2.00 2.22 3.18 3.28 3.25

Superpixel size 10 15 20 40 70
median(e) [px] 6.60 6.69 6.96 7.89 9.63
µ(e) [px] 26.75 28.94 30.64 32.96 36.44
µ90(e) [px] 7.59 7.79 8.22 9.39 11.34
Robustness [%] 89.57 88.91 89.26 86.34 83.22
Tseg [s] 26.59 16.77 12.31 9.99 8.82
Treg [s] 4.16 3.18 2.06 1.55 0.96

Table 1. The dependence of the method performance on selected
parameters. We report the the mean, median and trimmed mean of
the geometrical error e, Tseg is the duration of the segmentation,
and Treg the time spent to register images. Best results are set in
bold.

the registration results are in Fig 3. Note that our method
performs faster than any other evaluated method, while the
precision remains comparable.

http://fiji.sc
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Figure 3. Registration result examples on histological slices evaluated using manually selected landmarks. 1st row: fixed images, 2nd row:
moving images, 3rd row: overlay of the images before registration and 4th row: overlay after registration. Landmarks should coincide.

Method Time µ(e) median(e)

ASSAR (Affine) [17] 45.78 37.04 13.45
bUnwarpJ [5] 572.98 51.44 10.19
ASSAR (B-splines) [17] 92.87 44.08 7.62
elastix (Affine) [15] 332.89 45.39 5.23
elastix (B-splines) [15] 555.64 52.17 4.80
RVSS [4] 91.26 83.86 4.89
openCV-SURF [6] 120.02 26.38 4.49
NEW 11.92 27.39 6.74

Table 2. Mean running time in seconds; mean registration error
µ(e), and median registration error in pixels for each method.
(Note that the timings are not directly comparable with Table 1,
since a different computer had to be used.)

Superpixels k-means Precompute Iteration Total
6.38 3.94 0.94 0.66 11.92

Table 3. Running time of the algorithm in detail. Note that we run
k-means 30 times to increase robustness.

You can see detailed breakup of the elapsed time of our
method in Table 3. Note that the registration itself only
takes about 15 % of the time.

3.3. Registering Drosophila imaginal discs

Stained images of Drosophila imaginal discs were regis-
tered using binary segmentations (Fig. 4) obtained by pixel-
wise nearest neighbour classification; two cluster proto-
types are selected manually for images pairs, superpixel size
is set to 30 px, superpixel regularization to 20. We register
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r

Figure 4. Registration of three sets of 2 ∼ 3 images of Drosophila
imaginal disks to a reference one. Overlay of the images before
and and after registration, shown together with the segmentation
contours.

image series of the same disc types and the same gene ex-
pression to a reference image. The motivation is to identify
the spatial expression patterns of the different genes in dif-
ferent disk types by combining several realizations.

4. Conclusions

We have presented a new approach to accelerating image
registration by reducing the image information to a small
number of 1D samples on lines perpendicular to boundaries.
Surprisingly, the registration accuracy is very little affected.
While we show that our approach is already faster than the
alternatives, we have not yet fully realized the potential for
speedup by limiting the amount of data being processed.
The main culprit is the repeatability and speed of the seg-



mentation algorithm, which is crucial for the success of the
complete pipeline.

Our method requires segmentation but this segmentation
does not need to be perfect. In fact, it is enough to simplify
the images by reducing it to a small number of classes, as
long as all important edges remain. It is perfectly acceptable
if the image is oversegmented and a one-to-one correspon-
dence between the two segmentations is not needed.

Our method can be applied to any transformation model
but in this work only rigid registration results are shown.
Nonlinear registration will be addressed in the future.

Further speedup is possible by using modern powerful
optimization methods and hardware acceleration (GPUs).
We believe that our work is a step towards bringing image
registration into new domains such as interactive image pro-
cessing pipelines with a human in the loop, as well as fast
processing of very large-scale image data collections.
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