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Abstract

In this paper, we analyze the relationship between the
corresponding descriptors computed from multimodal im-
ages with focus on visual and infrared images. First the de-
scriptors are regressed by means of linear regression as well
as Gaussian process. We apply different covariance func-
tions and inference methods for Gaussian process. Then
the descriptors detected from visual images are mapped to
infrared images through the regression results. Predictions
are assessed in two ways: the statistics of absolute error
between true values and actual values, and the precision
score of matching the predicted descriptors to the original
infrared descriptors. Experimental results show that regres-
sion methods achieve a well-assessed relationship between
corresponding descriptors from multiple modalities.

1. Introduction
In recent years multisensor data fusion receives more and

more attention [10]. The integration of images from multi-
ple modalities can provide complementary information and
therefore the accuracy increases with an observed and char-
acterized quantity. In the domain of computer vision, the
detected points can be represented by some descriptors. In
this way a point with its surroundings is described by a vec-
tor. Therefore, we represent an image with a set of vectors,
which get rid of the noises and some unnecessary informa-
tion. Moreover the computational costs are also reduced as
well as the memory costs, which shows to be more efficient.

Given multi-modal images, a series of applications are
provided such as matching objects and scene registration. It
is easy to obtain the interest points from the given images
and reform them by some feature descriptors. However, it
comes to a question if there is some relationship between
the two corresponding feature vectors. Or can we get the
feature descriptor of a point in infrared image by the corre-
sponding point in visual image. Moreover, with a mapping
function, a descriptor is mapped to an infrared image as a
new vector. So how would this new vector looks like, where

might this new vector locate in the infrared images. In this
paper, we address the aforementioned problems using re-
gression methods. To the best of our knowledge, there is no
existed work on analyzing the relationship among descrip-
tors in multimodal images.

In this work, we analyze the behavior of features in mul-
timodal images with focus on visual and infrared images.
In order to get a reliable result, we construct the datasets
with different types of images from different categories. We
present regression results of feature descriptors from visual
images to infrared modality, which indicates the existence
of the relations between the descriptors. The regression is
worked in two ways: linear regression and Gaussian pro-
cess for regression (GPR). The former has a computational
advantage that it runs faster and costs lower than other com-
mon regression methods. And the latter can obliquely rep-
resent the underlying regression function without claiming,
but rigorously. As a result, the descriptors of points de-
tected in visual images are mapped as the descriptors from
infrared images. We evaluate the performances of linear
regression mainly by the value of coefficient of determina-
tion and the results are evaluated by the mean and variance
of error between the descriptor vectors. In order to assess
the performance of Gaussian process regression, we apply
the regression result to the application of matching. The re-
sults are evaluated by the precision of matching. Moreover
the regression error is considered as the criterion as well.
From the results, we can find that, based on specific covari-
ance functions and inference methods, the regression pro-
cess performs well that the predicted descriptors are similar
to the actual descriptor vectors. Example results of GPR are
shown in Fig. 1.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 presents our two re-
gression methods for multimodal image analysis: linear re-
gression and Gaussian process for regression. In Section 4,
we provide a short review of related descriptors. Section 5
shows the results of two regression methods for the feature
descriptors in multimodal images. Finally, this work is con-
cluded in Section 6.
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Figure 1. Example results of GPR using SIFT. The left column are
original visual images with detected points and on the right side
are infrared images with relocated descriptors that are achieved by
Gaussian process regression.

2. Related Work

On account of the development of sensor fusion tech-
nique, many applications were developed under multiple
modality. [13] explored a statistic research on analyzing
the significant characters on infrared images. Compared to
corresponding visual images, the infrared images had no-
ticeably less texture indoors because of the homogeneous
temperature. Further, the joint wavelet statistics presented
strong correlation between object boundaries in visual and
infrared images, which could be used in vision applica-
tions with the combined statistical model. Moreover an
overview of registering different types of sensors was pro-
vided by [17]. [8] studied an approach to multimodal image
registration based on corners and Hausdorff distance. The
approaches using the mutual information as the matching
criterion are the state-of-the-art technique in multispectral
matching [12, 9]. Due to the points and the contours of in-
frared images are different enough relative to visual images
of the same scene, this region-based technique performs rel-
atively well. [7] implemented a line-based global transfor-
mation using the edge properties for the image registration
between visual images and infrared images. Besides, [6]
provided a feature based matching and multimodal RGB to
NIR registration with multispectral interest points. Further-
more an experiment for multimodal 2D and 3D face recog-
nition was presented by [4]. [1] pursued on the problem
of matching images with disparate appearance arising from
factors such as dramatic illumination (day vs. night), time
period (historic vs. new) and rendering style differences.
By using the eigen-spectrum of the joint image graph, the
persistent features were detected and matched into pairs.

3. Descriptor Regression

Given sets of descriptors DA detected from visual im-
ages and DB from infrared images, regression analysis is
to estimate the relationships between DA and DB. By
means of the relationship, which might be implicit or ex-
plicit, the predictions DA′ come out that the descriptor is
mapped from visual image to infrared modality. The re-
gression process includes two techniques for modeling and
analyzing variables. Since linear regression is a common
and light method used in stochastic problems, it is consid-
ered in this work at first. Then Gaussian process is used as
an advanced method, which can especially solve non-linear
problems.

3.1. Linear Regression

In statistics, linear regression is an approach to model the
relationship between a scalar dependent variable and one or
more explanatory variables, in which data are modeled by
linear functions and unknown model parameters are esti-
mated from the data [3].

Upon to the principle of linear regression, a descriptor
Da with n dimensions from visual image is mapped to a
descriptor as Db in the same dimension in infrared image
through a matrix as linear transformation, which is given
as:

Db = Da×H (1)

where H is a n× n matrix. H is calculated by training and
then used to predict the new input Da forward to a Db. The
process of linear regression is implemented by the method
of Least squares. It is a technique for mathematical optimiz-
ing that the sum of the squares of the errors is minimized by
equating its gradient to zero and then the regressors are ob-
tained through the mean value.

3.1.1 Regression estimating

The regression procedure is estimated by a set of statistics,
such as R2, F , p and the estimate of the error variance
err.var. R2 is the coefficient of determination defined as

R2 ≡ 1− SSres

SStot
, (2)

and SStot is the total sum of squared errors in the model that
does not use the independent variable, and SSres is the sum
of squared errors in the linear model. It is a very important
indicator to state if the regression is efficient while it in-
forms the goodness of fit of a model. In regression, R2 rep-
resents the percent of the data that is the closest to the line
of best fit, in other words, it informs how well the regres-
sion line approximates the real data points. The F statistic
is the test statistic of the F-test on the regression model, for
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a significant linear regression relationship between the re-
sponse variable and the predictor variables. P-value p is the
probability of obtaining a test statistic at least as extreme as
the one that was actually observed, assuming that the null
hypothesis is true. When the p-value is less than the given
significant level, in usual case as 0.05, the null hypothesis
will be rejected. By using these arguments, the performance
of linear regression is evaluated.

3.1.2 Predictions evaluating

After the regression procedure, the linear transformation
matrix H is obtained and then used to predict the new de-
scriptor Da forward to a Da′. For sake of predictions eval-
uating, we compare the prediction Da′ and the true de-
scriptor vector Db by the absolute difference between cor-
responding components in vectors as ε = |Da′ −Db|. Two
parameters are used to evaluate, that is mean, which is the
average value of ε and the variance of ε.

However, the method of linear regression can not solve
non-linear problems. Hence we use Gaussian process for re-
gression as an advanced method, in which a specific model
need not to be claimed at first.

3.2. Gaussian Process for Regression

Given some noisy observations of a dependent variable,
the estimate of a new value x comes out easily by using a
function f(x), which can describe the distribution of the ob-
servations. Rather than a specific model which the claimed
function f(x) relates to, a Gaussian process can represent
f(x) obliquely, but rigorously [15]. That is so-called Gaus-
sian Process Regression (GPR).

Taking account of the noise on the observed target values
from measurement errors and so on, which are given by

tn = yn + εn (3)

where yn = f(xn), and εn is a random noise variable whose
value is chosen independently for each observation n.

The conditional distribution of tN+1 given target values
t = (t1, . . . , tN )T is itself Gaussian-distributed as the form:

tN+1|t ∼ N (kTC−1N t, c− kTC−1N k). (4)

The mean, kTC−1N t, is known as the matrix of regression
coefficients, and the variance, c − kTC−1N k, is the Schur
complement of CN in CN+1. These are the key results that
define Gaussian process regression. While the vector k is
a function with respect to the test input value xN+1, the
predictive distribution is a Gaussian depended on xN+1.

As a crucial component of a Gaussian process predic-
tor, covariance function controls how much the data are
smoothed in estimating the unknown function [15]. Two

functions are considered: the squared exponential (SE) co-
variance function has the form

kSE(r) = exp(− r2

2`2
), (5)

with parameter ` defined as characteristic length-scale.
This covariance function has sample functions with in-
finitely many derivatives and thus is very smooth. Another
is rational quadratic (RQ) covariance function

kRQ(r) = (1 +
r2

2α`2
)−α (6)

with α, ` > 0, which can be regarded as a scale mixture (an
infinite sum) of squared exponential (SE) covariance func-
tions with different characteristic length-scales (sums of co-
variance functions are also a valid covariance).

The descriptors are treated in two ways:

3.2.1 Global descriptors

Assuming a particular structure, where the covariance func-
tion is set as the squared exponential function and the mean
of Gaussian process is defined as zero like the assumptions
in most cases. In addition, the Expectation propagation (EP)
is applied as the inference function and the likelihood func-
tion is in the form of Laplace. The parameters of covariance
function are initialized with zero at first and later they are
optimized by minimizing their negative log marginal likeli-
hood.

3.2.2 Local descriptors

The goal of this part is to check the potential location re-
lationship of the descriptors. Based on the training data,
the descriptor vectors DA from visual images are mapped
to the infrared images as DA′. For each descriptor Da in
the set DA, we are looking for the most similar descriptors
among all the descriptors DB in infrared images. In other
words, a vector is predicted by a descriptor from visual im-
age. And the task is to check the location of this vector in
the infrared image.

The processing procedure is as following: first the inter-
est points are detected from infrared and visual images and
then represented by feature descriptors. Hence we obtain a
set of vector pairs. Each vector consists of two parts, the de-
scriptor of the interest points and its location. The next step
is to obtain the predictions by Gaussian process. The initial
hyperparameter of covariance function is set with 0.7. And
then for one prediction vector, find the closest vector among
all the original descriptor vectors in infrared images by us-
ing the Euclidean distance between two vectors. Moreover
min-pooling approach is used to avoid too many incorrect
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matchings. In practice, assuming the infrared image and
visual image display completely the same scene. Five can-
didates are chosen with most similar vectors. And then the
prediction is determined to locate in the position of its near-
est candidate.

4. Feature Descriptors
Descriptors are used to represent the image structure in

spatial neighborhoods at a set of feature points. There are
various kinds of descriptors, and we can choose an appro-
priate one based on the application. In this section, we
will present four descriptors used in this work, that is SIFT,
SURF, LBP and HOG.

4.1. Scale-invariant Feature Transform (SIFT)

SIFT (Scale-invariant feature transform) is based on the
interest points detected by Difference of Gaussian [11]. The
descriptor records the direction for each interest point, thus
it has good scale and rotational invariance. A key point is
characterized with location, scale and direction. The orien-
tations of 16×16 neighbors of each keypoint are calculated
and then projected into one of eight directions with 4×4 re-
gion. Subsequently, a histogram is built with 8 bins, which
indicate 8 directions. As a result, the descriptor is in the
form of vector with 128 dimensions. With the help of this
descriptor, we can match key points between images.

4.2. Speeded Up Robust Feature (SURF)

Speeded Up Robust Feature (SURF) is an improvement
of SIFT, which is first presented by [2]. It is claimed that it
performs excellent on repeatability, distinctiveness and ro-
bustness. The interest points are detected using Hessian ma-
trix, that is named as Fast Hessian detector, which is calcu-
lated for each point. To solve it, SURF makes efficient use
of integral images. Then by comparing each point with its
26 neighbors on the same octave and the octave above and
below, the points with maximum or minimum responses are
considered as interest points after filtering by given thresh-
old. The descriptor is based on sum of Haar wavelet re-
sponses within the region in the size of 4 × 4, instead of
histogram in SIFT, which is in the form as:∑

dx
∑
dy

∑
|dx|

∑
|dy|,

dx and dy are the filter responses to the Haar wavelets. Thus
the output of SURF is a feature vector with 64 dimensions.

4.3. Local Binary Pattern (LBP)

Local Binary Pattern (LBP) is a type of texture spectrum
model proposed in [16] and first described by [14]. In this
approach, an examined window is first divided into 16× 16
cells. And then for each pixel in a cell, comparing the gray-
value with other eight neighbors. It is assigned as 1, when

the neighbor is greater than center pixel. Thus, an 8 bit
binary pattern comes, i.e LBP. Compute the histogram of
the frequency of each binary number occurring over the cell
and normalize. The feature vector for the window should
be the concatenate normalized histograms of all cells.

4.4. Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) is first repre-
sented by [5], which focuses on pedestrian detection at that
time. And the essential idea behind the Histogram of Ori-
ented Gradient descriptors is that local object appearance
and shape within an image can be described by the distribu-
tion of intensity gradients or edge directions. To implement
it, the image need to be divided into small connected re-
gions, called cells. And then compute the gradient for each
pixel in the region of a cell. The histogram of gradient in
each cell is the descriptor for the cell and the combination of
these histograms present the descriptor. In some advanced
process, the cells are grouped into larger spatial blocks and
these blocks are normalized separately. As a result, the final
descriptor is exact the vector composed of all the compo-
nents of the normalized cells by the blocks in the detection
window.

5. Experiments
We construct the experiments to regress the descriptors

by using linear regression and Gaussian process. And the
results are assessed by the criteria of error and the preci-
sion of matching.

5.1. Datasets

Three datasets are used in this paper, namely RGB-
NIR scene dataset from EPFL-IC-IVRG1, OutdoorUrban
by DGP-UofT2 and MoCap from LUH-TNT3.

These three datasets contain different image types with
different viewpoints. The dataset RGB-NIR consists of
numbers of images captured in RGB and Near-infrared
(NIR) by visible and NIR filters using separate exposures
from modified SLR cameras. There are totally 9 categories
such as field, forest, mountain and water. And the images in
the dataset OutdoorUrban are fully about the views around
the city, such as cars, buildings and some other city scenes.
Compared to the natural scenery, there are greater thermal
variations in urban environments [13]. In this dataset, there
are total 290 outdoor urban daytime image pairs as well as
about 30 urban night-time image pairs. The data are cap-
tured by a single axis, multiparameter camera which com-
bines an infrared camera and a visible light camera. And
the content of dataset MoCap is the human motions such as

1Image and Visual Representation Group at EPFL
2Dynamic Graphics Project at University of Toronto
3Institute for Information Processing at Leibniz University Hannover
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Figure 2. Sample images from the datasets RGB-NIR, OutdoorUrban and MoCap respectively. The images in the first row are visual RGB
images and the images in the second row are the corresponding infrared (or near-infrared) images with respect to the images above.

Table 1. Information of datasets
Dataset Type Data number Image size Contents
RGB-NIR near-infrared 370 640×480 nature views
OutdoorUrban infrared 330 384×288 city views
MoCap infrared 1300 640×480 human motions

Table 4. The test result of linear regression on HOG.
HOG size mean var
RGB-NIR 70 0.0356 0.1111
Urban 27 0.2710 0.0656
MoCap 500 0.0243 5.1046e-04

Table 5. The test result of linear regression on LBP.
LBP size mean var
RGB-NIR 70 449.8296 5.1483e+06
Urban 27 499.2019 4.8877e+06
MoCap 500 308.3616 2.0000e+06

waving, boxing and jogging indoors. Since the two cameras
are set with a small baseline, the taken images are not iden-
tical in view, but nor too far away from each other. Some
samples of the datasets are shown in Fig. 2 and the basic
information is summarized in Table 1.

5.2. Results of Linear Regression

Considering the regression, 300 images in RGB-NIR are
selected in the training set and the rest 37 images are kept
for testing. For dataset OutdoorUrban, the size of training
data is 100 and it is 27 of testing data. In dataset MoCap,
there are 800 images in the training dataset and 500 images
are regarded as testing data.

The regression is assessed by the results in Table 2 and

Table 3. In the tables, the value of R2 is around 0.9, which
means that the regression function is much closer to the true
values, and it understands the information of the data very
well. Also most of the p-value in two tables are greater
less than 0.05, so the null hypothesis is rejected, namely the
linear model is correct for the data. But HOG in dataset
OutdoorUrban with the value 0.0670 is an exception. In a
word, the two descriptors are both regressed well with the
training data, and they draw linear lines perfectly fitting to
the points.

For testing, the mean and var in Table 4 and Table 5
refer to the average value and variance of the error between
the actual value and the true value. Since the components
of HOG descriptor vectors are in the range of 0 to 1, that
the mean error is only about 0.03 on RGB-NIR and MoCap
indicates an excellent result. Meanwhile, the error of LBP
seems much greater, but if they were normalized in the in-
terval from 0 to 1, the average value of error is 0.0026 for
example of RGB-NIR.

5.3. Results of GPR

5.3.1 GPR for HOG and LBP

By using these hyperparameters, the new feature descriptors
are predicted. First set with 10 test data, the two criteria,
mean and variance are computed as shown in Table 6.
On datasets RGB-NIR and MoCap, the averages of absolute
error are both under 0.05. Meanwhile the variances on the
two dataset are in a great level as well.

Further, for the sake of analyzing the effect on training
and testing dataset, we enlarge the size of training data to
100 images and the size of testing data is amplified to 50
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Table 2. The statistics of linear regression on HOG.
HOG size R2 F p err.var
RGB-NIR 300 0.9206 35.1212 0 0.0011
Urban 100 0.9072 2.5281 0.0670 0.0055
MoCap 1300 0.8482 101.2218 1.9102e-276 2.4714e-04

Table 3. The statistics of linear regression on LBP.
LBP size R2 F p err.var
RGB-NIR 300 0.9735 8.3986 6.8146e-06 5.5635e+05
Urban 100 1 NaN NaN NaN
MoCap 1300 0.8842 49.4688 5.4552e-16 1.0459e+06

Table 6. The result of GP regression for HOG.
HOG RGB-NIR OutdoorUrban MoCap
mean 0.0342 0.1376 0.0146
variance 5.8757e-04 0.0070 8.3017e-06

Table 7. The result of GP regression for HOG with 100 training
and 10 testing data.

HOG RGB-NIR OutdoorUrban MoCap
mean 0.0310 0.1416 0.0042
variance 4.0629e-4 0.0036 4.5617e-06

Table 8. The result of GP regression for HOG with 100 training
and 50 testing data.

HOG RGB-NIR OutdoorUrban MoCap
mean err 0.0238 0.0280 0.0502
var err 0.0004 0.0010 0.0024
fron actual 21.1325 21.2427 20.8977
fron true 21.4242 21.4240 21.2131

Table 9. The result of GP regression with exact inference method
and Gaussian likelihood function.

HOG RGB-NIR OutdoorUrban MoCap
mean err 0.0251 0.0287 0.0500
corr2 0.8909 0.9609 0.8983
frob actual 21.1551 21.2685 20.8614
frob true 21.4242 21.4240 21.2131

respectively. Comparison the data in Tables 6, 7 and 8 in
vertical direction, the result indicates that the size of neither
training data nor testing dataset can effect the performance
of Gaussian process heavily. Therefore, Gaussian process
is robust and efficient with fewer training data.

Applying exact inference method and Gaussian as likeli-
hood function, the sizes of training data and testing data are
set with 100 and 50 respectively. Based on this setting, the
process runs much faster than using EP inference method.
From Table 9, we can see that the performance of evalua-
tion is excellent, the average value of error is less than 0.03.
According to Frobenius norm, the ratio between the actual
value and true value is over 99%, which shows the similarity

completely.
Also we consider the role of the initial value of the hy-

perparameters of the covariance functions. The values are
set to change with step of 0.1. Since the procedure of pa-
rameter optimization is applied, the initial values make no
sense to effect the result and performance.

For the purpose of LBP , the same process contents have
been executed as HOG. However, the result turns that we
can not obtain an answer to the regression for LBP.

5.3.2 GPR for SIFT and SURF

We consider squared exponential function (SE) and rational
quadratic function as the covariance function for Gaussian
process regression. And also the two inference methods:
EP inference method and exact inference method, are ap-
plied in this work. In addition the mean value of Gaussian
process is set as zero and 100. Thus, based on these three
conditions, where each has two values, there are totally 23

combinations.
From the results of SIFT, the process with RQ covari-

ance function by exact inference method outperforms than
the others with an optimal result, especially in RGB-NIR
with a precision over 90%. And the precisions on other sets
are also acceptable with about 50%. But the SE covariance
function is not fitted in this model. In addition, we can find
that the value of mean has little effect on the results. On
the aspect of SURF, both RQ and SE covariance functions
perform well in this work. Based on the value of preci-
sion as well as the illustration of the example result images
in Fig. 3, the regression results from EP method are totally
failed in each situation despite of higher computational cost.
In a word, the best performance is the process by exact in-
ference method with RQ covariance function.

5.4. Linear regression vs. Gaussian process regres-
sion

For descriptor HOG, both linear regression and Gaussian
process can predict reasonable mapping models from visual
images to infrared images. Comparing the two methods,
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Figure 3. Example of descriptor matching. The descriptors are regressed by Gaussian process with exact inference method. First two
columns refer to the results with RQ covariance function with mean value zero and 100, and the last two columns show the results with
SE covariance function with mean value zero and 100. The squares refer to the detected points in visual images and the stars refer to the
relocated descriptors in infrared images.

the results are shown in Table 10 depending on the condi-
tion of error introduced before. Both approaches perform
well with a low error. And it is obvious that Gaussian pro-

cess performs better than linear regression, where error by
Gaussian process is extraordinarily small. Another advan-
tage of Gaussian process appears when the training set is
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Table 10. Comparison of linear regression and Gaussian process
for HOG.

mean error Linear Regression Gaussian Process
NIR 0.1074 0.0553
OutdoorUrban 0.7019 0.0505
MoCap 0.0243 0.0475

small. It means that in practice, the requisite prior knowl-
edge is much less for GP than linear regression. However,
for this instance, linear regression also performs well, so it
is a good choice as well because the complexity and cost of
linear regression is much lower than GP. Notice that actu-
ally for the dataset OutdoorUrban, it does not fit into a lin-
ear model. But Gaussian process can deal with linear model
and also non-linear model problems. We can see that com-
paring to the error in OutdoorUrban by linear regression,
Gaussian process is much better than it in this case.

6. Conclusion
In this paper, we have focused on the relationships

among descriptors from infrared and visual image pairs.
Three extensive datasets of infrared and visual image pairs
are considered to explore the regressions. Between corre-
sponding HOG and LBP, linear relations have been pro-
vided by least squares method with good regression qual-
ities. This indicated the possibility to map a descriptor from
visual image to infrared modality by a linear transformation.
Furthermore, we have used Gaussian process for regression
on HOG and LBP. The optimal regression results have been
shown with small error by using squared exponential co-
variance function. The GPR results of SIFT and SURF have
been evaluated by the application of matching. The pro-
cess of SIFT with rational quadratic function as covariance
function has a good performance by evaluating the precision
score of matching. The results have presented not only the
relationships of SIFT and SURF corresponding descriptors,
but also the possibility of obtaining the relationship of de-
scriptors in multi-modal images by means of Gaussian pro-
cess. In addition, comparing the results of linear regression
and GPR of HOG, Gaussian process performs better than
linear regression but with a higher computational costs. For
the future work, we will perform some regression analysis
for other multimodal data, such as visual and depth images.

Acknowledgments
The work is funded by the ERC-Starting Grant (DYNAMIC
MINVIP). The authors gratefully acknowledge the support.

References
[1] M. Bansal and K. Daniilidis. Joint spectral correspon-

dence for disparate image matching. In CVPR, pages

2802–2809, 2013. 2
[2] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded

up robust features. In ECCV (1), pages 404–417,
2006. 4

[3] N. H. Bingham, N. Bingham, and J. M. Fry. Regres-
sion: Linear models in statistics. Springer, 2010. 2

[4] K. I. Chang, K. W. Bowyer, and P. J. Flynn. An eval-
uation of multimodal 2d+ 3d face biometrics. PAMI,
27(4):619–624, 2005. 2

[5] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In CVPR, pages 886–893,
2005. 4

[6] D. Firmenichy, M. Brown, and S. Susstrunk. Multi-
spectral interest points for rgb-nir image registration.
In ICIP, pages 181–184, 2011. 2

[7] J. Han, E. J. Pauwels, and P. M. de Zeeuw. Visible and
infrared image registration in man-made environments
employing hybrid visual features. Pattern Recognition
Letters, 34(1):42–51, 2013. 2
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