
 

4321 

 
Abstract 

 
We propose a method for fusing a LIDAR point cloud to 

camera data in real time, which will also backfill the 
myriad of data holes LIDAR creates. This is done in a way 
that also leverages the images features to weight how 
point clouds are filled. Multithreaded programing and 
GP-GPU methods allow us to obtain 10 fps with a 
Velodyne 64E LIDAR completely fused in 360º using a 
Ladybug panoramic camera. The method also generalizes 
to other kinds of point clouds such as those obtained by 
aerial vehicles. The primary advantage of our approach is 
it combines 360º fusion with upsampling in real time 
without mode smoothing.   

1. Introduction 
This is a method which will take in a stream of frame 

data from a 2D camera such as a standard video or 
panoramic camera, and it will fuse that data in real-time to 
a point cloud frame provided by a 3D metric sensor such 
as a LIDAR (see figure 1). The colored 3D point cloud, 
which is created by fusion, is denser than the original 
LIDAR point cloud. This is because we project pixels 
from the 2D video source back into the point cloud to fill 
in empty regions. Figure 2 shows an example. 
 

Fusion is completed and rendered in real time. Here, 

real time refers to the speed of the Velodyne 64E sensor 
that completes 10 360º sweeps per second. Thus, at 10 
frames per second, image data is fetched from the 2D 
sensor and is painted onto the LIDAR data that natively 
has no color. This painted point cloud is then backfilled 
and the new colored backfilled point cloud is rendered and 
displayed for the user. The device also displays live output 
and can save streaming data at 10 fps. For practical 
purposes, we will refer to our demonstration system as a 
PanDAR (Panoramic EO / LIDAR).  

 
Our approach can be contrasted with prior art in the 

following ways. First, many prior works only deal with 
one or a few standard cameras fused to a 360º LIDAR 
scan and do not cover the full 360º with a camera [1]. 
Many methods use basic interpolation to try and fill back a 
point cloud [2]. Our method of backfilling attempts to be 
very careful in how it creates an interpolative effect. Some 
prior works do fusion of full 360º  image to LIDAR but 
probably do not run at frame rate [3-5]. Also, many 
methods do not try to leverage camera data to help with 
filling but work primarily on local point cloud gradient 
data [6]. Compared with [7], this method puts emphasis on 
finding a small set of exemplar support points over which 
the most complex statistics are performed. This allows 
expensive point cloud gradients to be computed over the 
entire image area quickly without mode generalization that 
can aggressively smooth out surfaces. Each image pixel is 
essentially treated independently as it is back projected to 
the depth map. Ideally, this should help preserve texture.    

2. The Fusion Process Overview  
The fusion process produces several outputs. The first 

one is the painted point cloud. This is the image data 
projected out into the point cloud. The fusion process also 
returns a depth map which overlays the distance from 
camera to points in the image. This is interpretable as a 
type of image and the fusion process will create a color 
representation of the depth map and overlay the original 
image (see figures 1 and 4).  

 
The fusion process is also responsible for backfilling the 

point cloud. It does this by projecting image pixels into the 

 
Frame Rate Fusion and Upsampling of EO/LIDAR Data for Multiple Platforms 
 

T. Nathan Mundhenk, Kyungnam Kim, Yuri Owechko 
HRL Laboratories LLC 

Malibu, California 
tnmundhenk@hrl.com 

 
 

Figure 1: The left pane shows the PanDAR demonstrator sensors 
with the red Ladybug sensor mounted over the silver Velodyne 
64E LIDAR. A custom aluminum scaffold connects the two 
sensors. The right pane shows the graphical interface with 
displays of the 3D model in the top, help menus and the depth 
map at the bottom.  
.  
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point cloud where points do not exist. Thus, it deduces 
new points from the existing point cloud and input image. 
It attempts to determine where projected points in fact 
belong since some holes in a point cloud belong there. 
This is done in part by restricting backfilled window sizes, 
selecting reasonable support points and checking the 
sanity of obtained gradients.    

 
The fusion process attains frame rate speed through the 

usage of a variety of methods of parallel processing. These 
include the usage of SSE intrinsics, parallel threading, and 
GPU processing. The style of parallel processing used 
depends on what is most prudent for the given component 
of the fusion process. To reduce the wait time as each 
frame arrives, the fusion process creates and maintains 
threaded service pools that are responsible for different 
computations. For instance, if we have eight computing 
cores on a machine, the fusion process will create eight 
point cloud painting thread threads. When a new point 
cloud needs to be painted, the process manager will 
transfer the bare point cloud and image data to the waiting 
threads.  
 

The fusion process can be thought of as being 
comprised of a set of major steps (seen in figure 3).  
 
(1) Depth Map Projection – In this step, the point cloud is 

projected onto the camera. 
(2) Depth Normalization – This is a step that normalizes 

the distances of point cloud points to the camera. 
(3) Backfilling – Given the point cloud and how it is 

projected into the camera, this creates a much more 
dense new point cloud. 

(4) Point Cloud Painting – This is the inverse of the 
Depth Map Projection step. Here we project point 
clouds that we had prior projected into the image back 
out into a new point cloud.   

2.1. Calibration Notes 

The cameras are calibrated with LIDAR in different 
ways depending on the camera model. If we have a 
standard EO camera, then we use EPnP [8] to derive a 4 x 
4 perspective transformation matrix. For the Ladybug 
camera, we use their provided panoramic image. This has 
the shortcoming of inaccurate seams that are created 
where each camera image overlaps. However, the 
Ladybug driver can provide this image very quickly. So, it 
is convenient to use. Each pixel in the panoramic image 
corresponds linearly to the azimuth and elevation from the 
camera to the location in space. For example, pixels in 
image column 0 all project to 0º azimuth from the camera. 
If the image has 2048 columns, then all pixels in column 
1024 are at azimuth 180º. Rows of the image are also 
similarly linear. It is convenient to solve projection by 
triangulation because of this. Given the azimuth, elevation 
from the Ladybug camera to a LIDAR point in space (��, ��), the center image pixels (�� , �	) and pixels per 
degree (
� , 
	) we get the coordinates from a LIDAR 

 
Figure 3: This is a block diagram for the general fusion process. 
The details for each of the blue boxes can be seen in the block 
diagrams located in their sections. Flow of data is shown with 
dashed lines and flow of instructions is shown with a solid 
arrow.  
 

Figure 2: The figure shows a room rendered at frame rate with our method. The left image is the raw point cloud (enhanced to make 
points easier to see). The middle image is the fused point cloud and the right image is the backfilled and fused cloud. The user can toggle 
through different modes in the interface to show the plain unfused point cloud, the fused and painted, but unfilled cloud or the fused and 
filled cloud. This is rendered and updated to the screen in real time and can be manipulated to show different views using a mouse.  
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point to the panoramic image as:   
 
(1)      � � ��� � ���(�� � �� ∙ 
�) 
 
(2)      � � ��� � ���(�	 � �� ∙ 
	) 
2.2. Depth Map Projection 

Depth map projection takes in the point cloud and 
projects it into the 2D image. The camera model is flexible 
and allows for many different types of images and 
cameras to be used. The implementation is made more 
efficient through parallelization of workload using 
multiple work threads. Given N input points in a point 
cloud and M threads, each thread will process 
approximately � �⁄  points. Some threads may process a 
few more or less than the other threads if N does not 
evenly divide by M. 

 
The depth projection process will first check to see if it 

has any work. If there are no elements in the point cloud 
that are ready, it will simply return. Otherwise, it will 
translate each point in the point cloud to the input image. 
Given M threads ���, �� …��  and N points �!�, !� …!"  
each point contains a Euclidian coordinate in x,y,z space #$% , &% , '%( ∈ !% for any point �. Points can contain other 
properties as well, but for now we are just interested in the 
coordinates. We want to find the location in an image at 
some pixel location u,v where !%projects to. Depending on 
the type of camera model we have, we will do this 
differently.  
 

A thread will take a slice of work based on the formula: 
 

(3)      ��*�� � � ∙ +,-
.  

 

(4)      /01 � � ∙ +,-2�
. � 1 

 
The value of start is the index for the first point P we 

will operate on while end is the index of the last point we 
will operate on. That means the thread will operate on /01 � ��*�� number of points. The value tid is the thread 
id (the subscripted value of t). As an example, if we have 
12 threads, tid will be an integer between 0 and 11.  

 
For each point in a thread, we will now translate that 

point into camera coordinates, create a depth map of the 
distance to the point and handle the odd situation where 
points may overlap in camera coordinates. This last item 
can happen because the LIDAR and camera are not 
exactly aligned, so they have a slightly different 
perspective. Points in the LIDAR may occlude one 
another from the perspective of the camera. So we need to 
have some way of dealing with these occlusions when 
they are encountered.  

2.3. Computing the Depth Map 

Next we compute the depth map. This yields the 
distance of a point in the point cloud mapped to the pixel 
location u,v. The depth map will be used in back filling 
and later to project the filled/painted depth map into a new 
painted point cloud.  

 
Let 4�	 be the distance from the camera to the point 

mapped to pixel u,v. More than one point might map to the 
same pixel. We will handle that one later. For now, we 
compute this depending on the camera model. For a 
standard camera, we compute: 
 

(5)      4�	 � 5$�� � &�� � '��  
 
We know the u,v for this pixel already because we just 
computed it using projection transformation. We also take 
a copy of the $� , &� , '� which we got from computing u 
and v. We now need to handle the case in which more than 
one point maps to a pixel. We do this by taking the 
minimum value. This is the point closest to the camera: 
 

(6)      4�	 � 64�	7 							if	4�	7 ; 4�		4�												otherwise  

2.4. Depth Normalization 

Given the depth map, normalize the values to range 
from 0 to 1. Also, store the normalizing value so that we 
can denormalize the depth map at a later point. The 
essential reason for doing this is that is makes the math 
easier to deal with. The general form of normalization we 
use is: 
 

(7)      ‖4�	‖ � DEF	GDHIJ	DHKLGDHIJ  

 

Figure 4: The image shows the depth map superimposed over an 
input image section from the Ladybug camera. The colors 
correspond to the distance from the camera to the point.  
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This forces the value to range from 0 to 1. Typically, we 
will set the parameters 4�MN and 4�," manually rather 
than computing the max and min values. This helps to 
reduce potential outliers (see figure 4).  
 

By setting max and/or min manually, we will then need 
to clamp values so that the new normalized depth map 
ranges from O to 1. Here O is the smallest positive floating 
point number representable on the machine (i.e. 
FLT_EPSILON). We set O  as the minimum distance 
because we will reserve 0 for locations that need to be 
filled. We use the following rule for clamping values: 
 

(8)      ‖4�	‖ � 61	if	‖4�	‖ P 10	if	‖4�	‖ ; O  

 
Notice that we set ‖4�	‖ to 0 if the value is less than O. 
Additionally, we set all locations in the normalized depth 
map to 0 if no value was ever projected to it. That is, all 
pixel locations in ‖4�	‖ are set to 0 if no point cloud point 
ever mapped to it when we computed the depth map. This 
will be used during backfilling and point cloud painting to 
determine which image locations to skip. Additionally, 
this allows us to unset values in the depth map if needed; 

as we just did when we clamped the values.  

3. Backfilling 
At this point, we have our initial depth image. This is 

the trimmed set of LIDAR points placed into an image that 
corresponds to the camera image. We will now interpolate 
over the depth image with a sliding window in a manner 
very similar to convolution. The window is sized RN SRT . Note that RN � RT. We will start with the smallest 
window RN � 5 and scan the entire depth map and fill in 
the values where we can, then we increase the window 
size by 2 s.t. RN � 7. We will then scan the entire depth 
image again. We will do this for s scales until we have 
reached a maximum size. We will then iterate t times, 
scanning the image from smallest to largest in the same 
way. Each iteration will backfill more points. Each local 
window will make a determination of which points to use 
to try to backfill. This is a critical component for reducing 
error and keeping the linear approximation run time sane. 
The steps for this process can be seen in figure 5. 
 
Step 1:  Scan the image with windows of increasing size. 
This helps to try to fill holes using more proximal points 
first and then expand the area if that fails. We will try to 
interpolate between points that are nearest in order to try 
to preserve finer details. In addition, by limiting the 
window size, we limit the size of the hole we can fill in. 
This is one component which helps to prevent us from 
accidentally filling in data where there are in fact 
supposed to be holes (e.g. between railings).  

 
Notice that as we add points from backfilling, we can 

use them in the next iteration to compute new points. This 

Figure 5: (1) The LIDAR point cloud and camera image are 
fused. We then scan over the image with windows. In each 
window we will try to backfill (deduce) a point at its center. We 
can see the window in (2). Here we first try to make sure we do 
not fill in a real hole by making sure there is at least one point 
projecting into each quadrant of the window. This is 
computationally cheap, so we do it first. (3) We select support 
points from the set of points that project into the window by 
selecting points which are closest to the camera but which are 
also most typical. (4) We select the top N points from the metric 
we created in 3 by taking the best point in each quadrant and any 
extra points after that which measure highly. (5) We now have n
points with at least one point in each quadrant. (6) We use a 
linear model to predict the missing point. The new deduced point 
is shown in red. If its depth is not too different than the nearest 
point in the support set, then it is placed back into the set of 
LIDAR points (backfilled).  
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allows us to span some larger gaps by filling them in. Also 
notice that we check to make sure new depth points are 
within the normalized space. This is an easy way to get rid 
of possible outlier error points.  
 

The function Backfill_Location will scan over points in 
the window sized RN S RTat the location l. It will apply 
the support point selection process and execute linear 
approximation to estimate the missing point location. 
These steps help to reduce errors such as pass through 
(figure 6) and noise replication/amplification. The 
function Backfill_Location goes through the following 
steps: 
 
Step 2: Are there enough points within the window to 
make a linear fit and is there one point in each quadrant? 
If not, return. Support points help to make sure we do not 
build a shelf of points out from a ledge. A hole must be 
surrounded on all sides in order to be filled.  
 
Step 3: Compute goodness for each point in the window. 

This is derived as a combination of the distance of the 
point from the camera and its similarity to other points in 
the window. Let n be the number of points that project into 
this window. We will want to find a goodness for each 
point i of the n points. The first element of goodness is 
similarity. So, we define feature responses W�	�	W� given 
m number of features. Each F is a measure of a feature 
such as pixel image location, color, intensity etc. The 
feature dissimilarity of point at i, to all other points at j in 
the window s.t.	X ≠ Z and points i and j project into the 
window we write as:  
 

(9) Μ, � ∑ ]^_`,IG_`,abc2⋯2^_H,IG_H,abcJae`
"  

 
As the point at i becomes more like all other points Μ, 
approaches 0. So, if this number is high, it means that this 
point is very different from the other points in the window. 
For speed, our implementation only uses RGB color 
values and the location of the point as features (i.e. 
{r,g,b,x,y}). However, other features could also be used. 
By inputting location as a feature, this will tend to favor 
points that are proximal to each other.  
 

Next, we take the distance measure of point i from the 
camera as:  

 
(10)       Δ, � 1,g ∙ h   

Here, h is a normalizing constant to make the distance 
from camera metric range similar to features. However, if 
both feature and distances are normalized between 0 and 
1, this can be set to √j. The idea here is to favor points 
closer to the device. This rule is most useful if there is a 
preponderance of similar looking points at very different 
distances.  
 

The goodness score for the point at i in the window is 
then: 
 

(11)      k, � 5Μ,� � Δ,�  

Now we can do the next steps: 
 
Step 4: Sort points in the window by their score G, take 

 

Figure 6: On the left we can see an area of the roof top not filled correctly when we do not select support points but instead use all the 
points in the window. The points estimated in this case are placed half way between the roof and the base ledge. This is because the roof 
occludes the base ledge in that area of the camera view. Support point selection prevents us from using points in the wall behind the roof 
and gives a more correct output. As an additional note, the trees appear to retain their texture, which is desirable.   
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the lowest scoring (top N) points per quadrant 
 

Sorting is done using a static memory non-recurrent 
quick sort that can run on GPU [9]. In our method, we 
select the point with highest density in each quadrant. This 
guarantees that we have one point in each quadrant if it 
exists. We add points using these steps: 

 
(1) Find the highest density point in quadrant 1, add to 

support point list.  
(2) Find the highest density point in quadrant 2, add to 

support point list.  
(3) Find the highest density point in quadrant 3, add to 

support point list.  
(4) Find the highest density point in quadrant 4, add to 

support point list.  
(5) If we desire to add more than 4 points, add N-4 points 

not already added with the highest density 

We now have our final set of support points. We have two 
last steps before returning a new filled point.  
 
Step 5: Linear approximate 1lg from support points 
 

This is done using any number of linear solvers for k 
number of values where the matrix is over determined. 
The current implementation uses singular value 
decomposition (SVD) to solve a linear system. Since we 
only input 5 support points, this keeps SVD sane in 
computation time.  

 
What we want is the distance to some point i given its 

location u,v: 
 

(12)   1mlg � no � �l ∙ n� � �l ∙ n� 
 
We can solve this since we know the u and v from the 
support points as well as their distance d. This is done by 
solving a standard over determined matrix in least squares 
for the weights: 
 

(13)    p 1 �� ��⋯ ⋯ ⋯1 �" �"
q pnon�n�

q � p1�o⋯1"o
q 

 
Note that it is easier to solve this by using image 
coordinates relative to the center of the current window 
coordinate.   

Step 6: Check that 1mlg is in bounds. If not, set 1lgto 0 and 
return. Otherwise return 1mlg. 
 

We want to make sure that the new estimated point is 
not too far from the nearest point in our windowed point 
set. This prevents points from draping across regions they 
should not. For instance, it prevents the top of trees from 
connecting to the ground in an overhead view. We 
compute it as: 
 

(14)      4�MN- � 4"rMsrt+ ∙ u1 � v ∙ wx� y 

 

(15)      4�,"- � 4"rMsrt+ u1 � v ∙ wx� yz  

 
Here 4"rMsrt+ is the distance to the point closest to the 
camera within the kernel window boundaries. This is 
drawn from all the points in the kernel region, not just the 
support points. �{ is the width of the kernel. Generally, 
this is in pixels. v is an adjustable parameter we set 
constant in our implementation. The higher this number is, 
the further away points can be from the nearest point. In 
practice it appears that this number can be hand tuned and 
then left alone. Thus, there appears to be a good fixed 
setting for many sensors.  

 

Figure 8: The top table shows the number of points in the new 
back filled point cloud given an initial set of 791,000 points. The 
bottom table shows the amount of time it took to process fusion 
and backfilling on the data. From the data, it appears that two
iterations and a kernel from 9x9 to 17x17 is optimal for the 
number of points filled and time taken. 
 

 

Figure 7: The left most figure shows the image of a top of a 
building from the CSUAV data set of Columbus Ohio (same 
building seen in figure 6). The middle image shows the image 
fused to the raw point cloud. The image on the right shows the 
image fused in a backfilled point cloud. The colors in the fused 
only point cloud are correct, but it can be hard to make out 
features given its sparseness. The back filled cloud is much 
easier to interpret and appears to be generally correct. 
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The goodness rule is applied very simply. If the new 

distance we derived is not within bounds, we will set it to 
0 and return: 
 

(16)      	1mlg � |0	if		1mlg P 4�MN- 	0	if	1mlg ; 	4�,"-   

 
The backfilled point cloud is returned from normalized 
distances by inverting equation (7) and denormalizing the 
distance. 

 
Backfilling is essentially a convolutional like 

computation. This makes it trivial to port it to GP-GPU 
processing whereby each pixel that is projected back into 
the point cloud can be computed independently in parallel. 
Depending on the GPU used, this gives it an 
approximately 5x speed up over conventional CPU 
processing and allows frame rate computation.  

 

Figure 9: This is a single frame from the PanDAR device. The top frame shows the panoramic image input. The unfilled cloud is created 
by fusing the image to the raw point cloud. Next to it is the backfilled point cloud. The lower left image shows the original point cloud in 
white and the new filled in points in red. In this instance, 138,907 new points are created which up samples the cloud by just over 3.5x. 
78% of these new points are less than 6.25 cm from the original point. 3D Images in this figure were rendered with CloudCompare.    
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4. Experimental Results 

4.1. Backfilling Standard Camera Model and 
Aerial Data 

Depending on the size of kernels used and the number 
of iterations, more points are filled in a given scene, but 
will also take more time. In general, the minimum set up 
will return about three times more points than were in the 
original cloud. For aerial data experiments, we use the 
public Columbus Surrogate Unmanned Aerial Vehicle 
(CSUAV) data set [10]. Figure 7 shows a breakdown of 
the amount of time taken to fill in the point cloud. This is 
the cloud seen at close up on a single building figure 8. In 
general, there is a diminishing return with the number of 
iterations for filling. For CSUAV data, and qualitatively 
for PanDAR data, two iterations seem sufficient.  

 
With kernel size selection, there is an upper size for 

filling in a reasonable working LIDAR scan that will 
nonetheless ignore large data holes. So for example, if the 
LIDAR scan beam can be observed spaced every 4 pixels 
when projected into the image, then a kernel of size 5 will 
sufficiently fill in the gaps between the returns. If one has 
an area with specular surfaces, the observed gap between 
the beams can be very large. It will take a much larger 
kernel to fill in the missed returns from mirrored windows 
or fountains. With the CSUAV data, a kernel sized from 
9x9 to 17x17 seems enough to fill in general gaps between 
the LIDAR scans. Much larger kernels can be used, but 
kernel sizes larger than 51x51 pixels begin to show 
noticeable artifacts. As such, the method cannot be used in 
its current form to fill in very large holes in the LIDAR 
scan. Areas that are occluded from the camera in the point 
cloud are not filled in. This is because we are projecting 
pixel data from the camera back into the point cloud.  

 
Since the PanDAR fusion/backfilling and the UAV 

fusion/backfilling use the same process, some of the 
lessons can be applied from one to the other. However, the 
PanDAR system processes point clouds much faster due to 
the fact that the PanDAR point cloud has fewer points and 
the operable region of interest is very constrained in the 
Ladybug image.  

4.2. Panoramic Camera Model Results 

The current implementation  runs on a Dell Precision 
T7600 Workstation with a GeForce 690 GTX GPU, 64 Gb 
RAM and two six core 2.0 GHz Xeon E5 processors. To 
get frame rate performance out of the fusion process when 
running the PanDAR demonstrator, we limit the maximum 
kernel size to 7x7. As processors increase in efficiency 
and/or the code is improved, we should be able to increase 
this number and get more filling than we are getting 

currently since we can increase the size of kernels. Figure 
9 shows an example of a fused and backfilled point cloud 
rendered at 10 fps on the PanDAR demonstrator. Much of 
the noise in the PanDAR image that can be seen is due to 
the usage of a first generation Velodyne 64E. This is seen 
as jagged edges on what are in actuality smooth surfaces.   

5. Conclusion 
At frame rate, we can fuse EO from a 360º Ladybug 

sensor to a Velodyne 64E LIDAR sensor as well as 
backfill the point cloud to increase detail. The same fusion 
approach can be used on other types of cameras by 
defining a different camera model. Qualitatively, 
backfilled locations look free of error and texture is at 
least partially preserved.  
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