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Abstract—Deep networks are state-of-the-art models used
for understanding the content of images, videos, audio and raw
input data. Current computing systems are not able to run deep
network models in real-time with low power consumption. In
this paper we present nn-X: a scalable, low-power coprocessor
for enabling real-time execution of deep neural networks. nn-X
is implemented on programmable logic devices and comprises
an array of configurable processing elements called collections.
These collections perform the most common operations in deep
networks: convolution, subsampling and non-linear functions.
The nn-X system includes 4 high-speed direct memory ac-
cess interfaces to DDR3 memory and two ARM Cortex-A9
processors. Each port is capable of a sustained throughput
of 950 MB/s in full duplex. nn-X is able to achieve a peak
performance of 227 G-ops/s, a measured performance in deep
learning applications of up to 200 G-ops/s while consuming less
than 4 watts of power. This translates to a performance per
power improvement of 10 to 100 times that of conventional
mobile and desktop processors.

I. INTRODUCTION

The next grand challenge for mobile devices is to be
able to understand the world in the same way we do.
By understanding their environment, these devices will be
able to provide a new ecosystem of abilities to increase
user perception and connect user preferences to human
knowledge. Perceptive mobile devices should be able to
parse and understand relationships between objects in a
scene. Perceptive algorithms can enhance speech processing
and allow always-on hearing capabilities. Such devices will
be able to understand the world around them and allow
verbal interaction with users, just like two human beings.

Deep neural networks that achieve state-of-the-art percep-
tion in both vision and auditory systems have been presented
in [11], [13]. Deep networks are models that make sense
of raw input data and parse them into symbols. Many
deep learning algorithms are loosely inspired models of
the human visual system. These algorithms use convolution
operations to model the receptive fields of real neurons [16].

A typical deep neural network comprises multiple con-
volution layers followed by a classification module, as por-
trayed in Figure 1. The convolution layers are interspersed
with a pooling operation and a non-linearity. The inputs and
outputs of each layer are sets of arrays called feature maps.
Each feature map represents a particular feature extracted
at all locations for that layer’s input. Deep neural networks
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Figure 1: Architecture of a typical convolutional deep neural
network for object recognition: a convolutional feature ex-
tractor followed by a classifier (like a multi-layer perceptron)
for generic multi-class object recognition. Once trained, the
network can parse arbitrarily large input images, generating
a classification map as the output.

are currently considered the state of the art in speech and
image processing, as exemplified by the recent use of these
techniques by Google, Facebook, Yahoo and Baidu, to name
a few [11], [13].

Deep neural network models are computationally very
expensive, requiring up to billions of operations per second
[11]. Typically, high performance processors like server
CPUs and GPUs are needed to process large deep networks
in real-time. This makes computation on mobile devices pro-
hibitive, especially when running on battery power. Mobile
processors like the ARM Cortex-A9 and Cortex A-15 have
higher performance per unit power, but they are not able to
scale to the raw computational performance needed to run
deep networks in real-time.

In this paper we present nn-X: neural network next.
nn-X is a low-power mobile coprocessor for accelerating
deep neural networks and is optimized to process mul-
tiple streams of information. The coprocessor efficiently
implements pipelined operators with large parallelism, thus
delivering very high performance per unit power consumed.
nn-X advances the state-of-the-art in multiple domains: in
data-streaming architectures, in efficient processing of deep
neural networks, in providing high performance in real appli-
cations and ultimately, in efficient use of system power using
standard digital circuits and programmable logic devices.

The rest of this document is organized as follows: Section
II reports related literature and results in this area, Section
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Figure 2: A block diagram of the nn-X system. nn-X is composed of a coprocessor, a host processor and external memory.
The coprocessor has three main components: processing elements called collections, a system bus called the memory router
and a configuration bus to control flow of data. Collections perform the most typical deep neural network operations: data
routing, convolutions, pooling, non-linear programmable functions.

III describes the system architecture in detail, Section IV
shows the results of running real applications on nn-X,
Section V contains a discussion on why nn-X outperforms
general purpose processor implementations and Section VI
concludes this paper.

II. RELATED WORK

Neural network accelerators for images, videos and other
type of data systems have been implemented on FPGAs
before. In [9], Graf, et.al. describe a processor for accel-
erating, training and running neural networks. This work is
designed for generic machine learning algorithms. However,
the results provide low performance for specific network
models, like deep neural networks. In addition, it targeted
desktop computers. Newer work by the same team on deep
neural networks claims a theoretical performance of 23G-
ops/s but can achieve 6.74G-ops/s in a real application [15].
A more recent work by Chakradhar demonstrates a dynami-
cally reconfigurable coprocessor but their peak performance
and performance per watt are significantly lower than the
work presented here [2] .

A similar FPGA implementation has been previously
documented by Farabet in [6] and [7]. This system uses
ethernet to communicate to a host computer, making it
inefficient. The architecture also does not scale as well as
nn-X. Furthermore, nn-X is 2 to 15 times faster than the
works mentioned above while consuming 8 watts for the
entire platform and only 4 watts for the coprocessor, memory
and host.

ASIC implementations have been described by Mesa-
Camunas [1] and Chen [3]. [1] is a low power accelerator
but is limited to processing 128×128 inputs. [3] describes a
complete neural processor but their performance is measured
only when processing small inputs. Memory access latency
is not taken into account.

III. SYSTEM ARCHITECTURE

A block diagram of the nn-X system is shown in Figure 2.
nn-X has three main components: a host processor, a copro-
cessor and external memory. The coprocessor comprises an
array of processing elements called collections, a memory
router and a configuration bus. The collections are a group of
mathematical operators required to perform the most typical
operations of deep neural networks.

A. The Host Processor

Two ARM Cortex-A9 CPUs function as the host processor
for the nn-X implementation described here. The processor
is responsible for parsing a deep network, compiling it into
instructions for the coprocessor and processing operations
that are not implemented in the programmable logic. The
host also controls transfer of input and configuration data to
the coprocessor.

B. nn-X Coprocessor

The nn-X coprocessor is implemented on programmable
logic and interfaces with the host via the AXI bus. Input
data in the form of 2D planes is streamed into the nn-X co-
processor, one data word per clock cycle. Data is organized

683



as an array, with data words streamed in one row at a time.
These data words can be pixels in the case of images or
videos. This section describes in detail the components of
the nn-X coprocessor.

1) Collections: Each collection comprises of: one con-
volution engine, one pooling module and one non-linear
operator. All operators use the Q8.8 number format, which
has been tested to provide virtually identical results to neural
networks implemented in 32-bit floating point [9], [3], [10].
As can be seen in Figure 2, each collection also has an
internal router to direct input data to the desired operator
or to neighboring collections. Each operator is pipelined
which results in one output word produced every clock
cycle, notwithstanding an initial setup time. The following
paragraphs define the flow of data in a generic deep network
of the type described in [11].

Convolution engine: Convolutions are the most typical
operation in deep and convolutional neural networks. Con-
volution is inherently parallel and can be accelerated on data
parallel architectures. The operation is described here:

y[m,n] =

k−1∑
i=0

k−1∑
j=0

x[m+ i, n+ j] · w[i, j] (1)

where y[m,n] is one data word in the output plane, x[m,n]
is an input data word and w[m,n] are the weights in the
filter kernels.

When a convolution needs to be performed, the weights
are first streamed in. These weights are cached for the dura-
tion of the convolution. The nn-X implementation described
here supports a kernel size of up to 10× 10.

The convolution engine is implemented as fully pipelined
logic and uses memory to cache incoming data. This cache
is needed for pipelined implementation of the convolution
operation [8]. For a row width of W and a k×k convolution
filter, the size of this cache is W ×k×2 bytes. After a delay
that is equal to the depth of this cache, outputs are available
every clock cycle. This requires the system to have the max
allowable data width as a design parameter.

Output data can then be routed to other operators in
the collection to perform cascaded pipelined sequences of
operations. It can also be sent to a neighboring collection
to be combined with the output of a convolution performed
there.

The convolution engine can also perform pooling opera-
tions. The kernel can be used to smooth the pooling function
(for example, Gaussian) or perform a simple averaging of
pixels or data words (with a uniform kernel).

Non-linear operator: The non-linear operator computes
a piecewise linear approximation of any arbitrary non-linear
function. The non-linear operation is described in equation
(2).

y(x) = amx+ bm for x ∈ [lm, lm+1) (2)

where lm is the lower bound of the m-th segment and am
and bm are its slope and y-intercept.

The non-linear operator can be programmed to approx-
imate the typical non-linear functions used in deep neural
networks like sigmoids, hyperbolic tangents and the recently
popular threshold operation, i.e. max(x, 0) [11].

The number of linear segments used is also a design
parameter. This affects the precision of smooth, non-linear
function approximations.

Pooling module: Pooling of data is necessary in deep
neural networks to increase spatial invariancy and reduce
the size of data after each layer. nn-X includes a special
max-pooling module that calculates the maximum over a
2D region of p × p data words and outputs the maximum
value as the result.

nn-X’s max-pooling module requires one digital compara-
tor and memory. The input data is streamed into the module
one row at a time and the max operation is computed by
first computing the max of each bWp c group of data words
in the row, with W being the width of each row. As data
words are streamed in, each group of p is compared to the
previous max value stored in memory. This requires storing
bWp c values into a local cache, as the first output cannot be
computed until the first p data words of the p-th row are
streamed in. After operating on p rows, the final output can
be computed and output values start to stream out of the
module.

The advantage of this implementation is that it requires
a very small amount of memory to compute the maximum
over a 2D region. In fact, the total memory required is equal
to the maximum width of the input image.

2) Memory Router: The memory router interfaces the
collections with external memory. Its purpose is to route
independent data streams and feed data to the collections.
The router is implemented as a crossbar switch, allowing nn-
X access to multiple memory buffers at once and performing
full-duplex data transactions. It interfaces with the Zynq’s
AXI memory interconnect, which allows for up to four DMA
channels with an aggregate bandwidth up to 3.8GB/s.

DMA transactions to and from memory are initiated by
a custom Linux device driver. This driver enables nn-X to
initiate up to four simultaneous bidirectional transactions at
a given time. nn-X uses register polling to determine when
a transaction is complete.

3) Configuration Bus: The collections and the memory
router are configured via a 32-bit memory-mapped con-
figuration bus. 32 registers are implemented to configure
all parameters needed by nn-X to perform operations. The
host processor reads the compiled configuration data from
memory and writes it on the config bus. The configuration
bus programs the memory router to multiplex inputs to
multiple collections. It also programs all parameters of the
convolution engine, the non-linear functions and the flow of
data within and across collections. This bus is also controlled
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by a custom Linux device driver. The time taken to transfer
one packet is 16 clock cycles.

IV. RESULTS

The nn-X implementation described in this paper was
prototyped on the Xilinx ZC706 platform (refer to Table I).

This board contains two ARM Cortex-A9 cores, 1GB of
DDR3 memory and a large programmable logic array. nn-X
on the ZC706 board features eight collections, each with one
10 × 10 convolution engine, one max-pooling module and
one non-linear mapping module. We measured the power
consumption of the entire board to be 8W and 4W for the
Zynq SoC and DDR3 memory.

The ZC706 platform was chosen because performance
increases linearly with the number of collections, and being
able to fit 8 collections gave us a favorable balance of
performance and performance per watt.

Platform Xilinx ZC706
Chip Xilinx Zynq XC7Z045 SoC
Processor 2 ARM Cortex-A9 @800 MHz
Programmable Logic Kintex-7
Memory 1GB DDR3 @533MHz
Memory bandwidth 3.8GB/s full-duplex
Accelerator frequency 142MHz
Number of Collections 8
Peak performance 227G-ops/s
Power consumption 4W (Zynq+mem), 8W (board)

Table I: This table describes nn-X’s hardware specifications

Torch7 was used as the main software tool in this work
[5]. Torch7 is a module implemented in the Lua program-
ming language. It is a machine learning tool optimized
for nn-X, CPUs and GPUs. We developed demonstration
applications for neural networks in Torch7 and used a
Lua/Torch7 interpreter to translate the networks into con-
figuration sequences for nn-X.

Figure 3: Single neural network layer with 4 input planes
of 500 × 500, 18 outputs planes and 3.6 billion operations
per frame. nn-X computed one frame in 6.2ms and was 271
times faster than the embedded processors.

We measured the performance of nn-X and compared it to
that of the Zynq’s dual ARM cores in multiple applications.

Figure 3 shows a still from the first application: a fully-
connected neural network layer with 4 inputs and 18 outputs.
The network used 10 × 10 convolution kernels with 4 ×
18 random filters, a max-pooling operation of 4 × 4 and
thresholding. This network required 3.6 billion operations
per frame. In this application, nn-X computed one frame in
6.2ms and achieved a speed-up of 271x with respect to the
embedded ARM processors. nn-X’s measured performance
was 200G-ops/s, which is more than 83% of its theoretical
peak performance.

The next application is the face detector used in [8].
We used a slightly modified version of this network. The
first layer comprises 16 feature maps of 5 × 5 and is
fully connected with the second convolution layer which
comprises 64 feature maps of 7× 7. Each of these layers is
interspersed with max-pooling of 4×4 and thresholding. The
input to the network was a 500×350 greyscale image. This
network requires 552M-ops per frame and includes a multi-
scale pyramid with scales of 0.3, 0.24, 0.1. Construction of
this pyramid is a pre-processing step that is performed on
the ARM processors. The multi-scale input is then sent to
the network for detection. nn-X was more than 115 times
faster than the embedded ARM processors.

Figure 4: A face detector application with 552M-ops per
frame. nn-X was able to process a 500 × 350 video at 42
frames a second and was 115 times faster than the embedded
processors. The image on the left is a multi-scale pyramid
to provide scale-invariance to the input.

The third application was a street scene parser capable of
categorizing each pixel of the input image into one of eight
categories: buildings, cars, grass, persons, road, street signs,
sky and trees. This network requires 350M-ops to process
one frame.

Figure 5 demonstrates nn-X performing full-scene under-
standing of a typical scene encountered when driving an
automobile. nn-X processed a 510× 288 video sequence in
4.5ms, and was 112 times faster in processing time than the
embedded ARM cores for this application.

We finally compared nn-X to other computing platforms
commonly used to execute neural networks. The results
(shown in Figure 6) report performance per unit electrical
power consumed. Most desktop and laptop CPUs and GPUs
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Figure 5: Road scene-parsing application requiring 350M-
ops per frame. This application processes a 510 × 288
video sequence in 4.5ms and produces an 8-class label for
each frame. nn-X is 112 times faster than the embedded
processors.

peaked at under 3G-ops/s-W even when the algorithm was
optimized to take advantage of hardware acceleration. Mo-
bile processors reported better efficiencies of 8G-ops/s-W.

nn-X (red) implemented in programmable logic was able
to deliver more than 25G-ops/s-W. nn-X’s embeddable fac-
tor is six times that of the Snapdragon 800 SoC and twenty
times that of NVIDIA’s GTX 780. Figure 6 compares nn-X
to custom processors running at much higher frequencies.
An implementation of nn-X in silicon at similar process
nodes would significantly improve its performance.

0 5 10 15 20 25
performace per watt [G-ops/s-W]

Intel i7-3720QM

NVIDIA GTX780

NVIDIA GT650m

Xilinx Zynq ARM

Qualcomm SD 800

nn-X ZC706 8x

Figure 6: Performance per watt of different platforms. Most
desktop CPUs and GPUs gave under 3G-ops/s-W while
mobile processors performed slightly better. nn-X (red)
implemented in programmable logic was able to deliver
more than 25G-ops/s-W.

V. DISCUSSION

In this section we analyze the large performance benefit of
this architecture. One advantage is nn-X’s large parallelism;
eight convolutional engines of 10 × 10 can deliver up to
227 G-ops/s.

Another advantage is its efficient hardware utilization. The
use of streaming data and lack of conditional statements

allows nn-X to use every clock cycle to perform the desired
operations. CPUs and GPUs are not able to use every clock
cycle for useful computation. Conditional statements result
in inefficient use of a processor’s pipeline [14]. Another
inefficiency arises from the long latency of main memory
accesses. Processor caches are generally small compared to
the total size of the inputs, intermediates and outputs [4].
This requires a processor to initiate memory accesses for
data that is not cached.

In deep neural network applications, the convolution
operator has few branches in its code as compared to
the max-pooling and thresholding operators. Furthermore,
branches in the convolution operator are highly predictable.
Conditional statements in the max-pooling and thresholding
operator, on the other hand, are difficult to predict because
their path is based on the value of the input pixel. This causes
a performance drop in CPUs due to branch mispredictions.
On GPUs, control divergence causes a drop in performance
throughput[12].

To demonstrate this, we used two model deep networks.
The first model consisted of an input layer of 3×16 kernels
of 10×10 and an output layer of 16×32 kernels of 7×7. The
second model consisted of the same convolution layers but
these were interspersed with max-pooling and thresholding
operations. We used the same platforms from Figure 6 to
perform this experiment.

In this context, we define efficiency as the performance
achieved when running the model with only convolution lay-
ers versus the performance achieved when running the model
with the max-pooling and threshold operations included.
With the Torch7 package, all general purpose processors
achieved an efficiency between 75% to 85%. nn-X achieved
an efficiency close to 100%.

We explain this by the fact that in nn-X, the output of a
convolution does not need to be written to memory due to
the cascade of pipelined operators. Furthermore, as nn-X has
no control flow, the output latency of the entire operation is
simply equal to the combined latencies of each individual
operator.

VI. CONCLUSION

We presented nn-X, a coprocessor for accelerating deep
neural networks. Deep networks are used in synthetic vi-
sion systems because of their versatility and as such, are
suitable for a variety of vision tasks. Deep networks like
convolutional neural networks are inherently parallel and can
be accelerated on custom hardware to give a low powered
mobile system capable of achieving high performance.

We demonstrated the performance of nn-X on a single-
layer neural network, a face detection and a road scene-
understanding application. nn-X was faster than embedded
processors in all these applications. More prominently, nn-X
achieved better performance per watt than platforms that
are commonly used to process deep networks. This makes
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nn-X an excellent candidate as an embedded deep network
accelerator and for mobile platforms.
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