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Abstract

We address the problem of object recognition in egocen-
tric videos, where a user arbitrarily moves a mobile cam-
era around an unknown object. Using a video that cap-
tures variation in an object’s appearance owing to cam-
era motion (more viewpoints, scales, clutter and lighting
conditions), can accumulate evidence and improve object
recognition accuracy. Most previous work has taken a sin-
gle image as input, or tackled a video simply by a collec-
tion i.e. sum of frame-based recognition scores. In this pa-
per, beyond frame-based recognition, we propose two novel
set-of-sets representations of a video sequence for object
recognition. We combine the techniques of bag of words for
a set of data spatially distributed thus heterogeneous, and
manifold for a set of data temporally smooth and homoge-
neous, to construct the two proposed set-of-sets representa-
tions. We also propose methods to perform matching for the
two representations respectively. The representations and
matching techniques are evaluated on our video-based ob-
ject recognition datasets, which contain 830 videos of ten
objects and four environmental variations. The experiments
on the challenging new datasets show that our proposed so-
lution significantly outperforms the traditional frame-based
methods.

1. Introduction

Object recognition is one of the most important top-
ics in computer vision and has been intensively studied in
the past decades. It has found applications in many areas
including human-computer interaction, intelligent surveil-
lance, industrial inspection, robotics, medical imaging, to
name a few. Although numerous recognition algorithms
have been developed, most of them [3, 4, 18, 22, 39]) are
image-based recognition, taking a single image as input.
Although they may as well be extended into a video by
straightforward accumulating frame recognition scores as
in [21], exploiting a full potential of videos for object recog-

∗indicates equal contribution.

nition still remains. Especially when nowadays videos are
often available owing to widespread video cameras, video-
based object recognition is becoming more and more pop-
ular [7, 13, 20, 28, 31, 32, 33, 36]. Among these meth-
ods, normally a video is treated as a collection of multiple
images, and/or features are augmented by feature tracking
before a single image based recognition framework is ex-
ploited (see Section 2).

In the setting we consider for video-based object recog-
nition, a user moves a mobile camera around an unknown
object of interest, while putting the object roughly in the
center of images and capturing multiple viewpoints in an
arbitrary manner with variations in scale, clutter, and il-
lumination. Therefore, practically there is no assumption
that a query video has the same or similar camera mo-
tion/viewpoint as those of model videos. This contrasts the
fields of gesture, activity, and behaviour recognition where
motion is the key discriminative information to use. We for-
mulate the problem as representation and matching of sets
of sets. Both queries and models are video clips, and a query
video is recognised into one of objects in the dataset. Our
main contributions can be summarised as:

1. We recognise a video rather than individual frames:
a video captures multiple-views and smooth varia-
tions in object appearance, revealing more about object
identities.

2. We explore two novel representations and matching
methods for video-based object recognition, which go
beyond frame-based recognition.

(a) Video is represented as a set of (unordered)
frames (ignoring temporal ordering due to ran-
dom camera motion), where each frame is given
a histogram vector of codewords using the BoWs
technique powered by Randomised Decision For-
est. Those histogram vectors along a temporal
axis draw a smooth manifold, thus we perform
manifold-to-manifold matching for recognition.

(b) A set of feature vectors collected from a feature
point trajectory is well constrained onto a low-
dimensional manifold. Thus, a set of trajectory
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manifolds is obtained from a video. We propose
a novel Kernel Random Forest as a codebook of
manifolds, by which trajectory manifolds of a
video are quantised to form a bag of manifolds.

3. The proposed methods are evaluated on new video-
based object recognition datasets consisting of 830
videos. The proposed methods and their combination
improve the recognition accuracies of frame-based
methods by a large margin. Additionally, the com-
bined method runs in real-time.

In the rest of the paper, literature review is done in Sec-
tion 2. Section 3 formulates the video-based object recogni-
tion problem and proposes the novel video representations
and matching methods. Experimental results and discus-
sion are presented in Section 4. Conclusions are drawn in
Section 5.

2. Relevant Work
There has been an increasing attention to object recogni-

tion in videos [7, 13, 20, 28, 31, 32, 33, 36]. In [28], an input
video is captured by an egocentric camera, and the motion-
based foreground object segmentation technique is devel-
oped to improve object recognition accuracy. In [23], A
topic model is extended from still images to motion videos
for unsupervised object discovery, which is limited to the
type of motions in a long-range surveillance camera. A
video typically contains multiple views of an object. An
unsupervised multi-view feature selection algorithm is pro-
posed to improve object recognition accuracy in [7]. Al-
though the technique may be made useful for video-based
object recognition by efficiently removing redundant views,
the work tackles the problem of distributed object recogni-
tion with no temporal information considered.

A majority of algorithms [13, 20, 31, 32, 33] for object
recognition in videos propose to utilize the temporal infor-
mation in video and improve local video descriptors by fea-
ture tracking. In [20], the set of descriptors called Best Tem-
plate Descriptor (BTD) are trained using tracked features
in videos and then the vocabulary tree forms a BoWs used
to recognise a single test frame. [33] proposes an efficient
search space for interest points to track features, then the
tracked features are exploited to recognise objects. In [32],
an invariant feature is learnt by tracking image patches over
time using optical flow. These methods improve feature
descriptors for video, however, perform object recognition
frame by frame.

The other line of works for object recognition in videos
takes human faces as target objects. One example is [19]
where temporal information is captured by the transition
probabilities between pose manifolds, however, the strong
temporal constraint harms object recognition when it moves

arbitrarily. A video, therefore, has been taken as a set of
unordered images and how to match a set-to-set has been
intensively studied [35, 37, 14] (see below).

We briefly discuss three methods to represent a set of ob-
servations: bag of words (BoWs), probability density, and
manifold methods.

BoWs is the most common representation for object
recognition [31], which treats an image as a set of feature
points (or descriptors), describing their semantic distribu-
tions and their structural relations [29]. Commonly a three-
step framework is adopted: feature point extraction, code-
word quantisation (or forming a BoWs), and classification
e.g. by Nearest Neighbor, Support Vector Machine or Ran-
dom Forest. Although BoWs is often used for object cat-
egorisation, it is adopted in object instance recognition as
well for fast implementation [20]. It is used in our work
also because we need vector representation for image and
video, rather than pairwise key-point matching [24].

Probability density used for a set representation naturally
provides an estimate of uncertainty. [15] employs Gaus-
sian Processes (GPs) to place a prior probability on the spa-
tial correlation of training data points, offering confidence
estimates of new data points for probabilistic object cate-
gory recognition. Gaussian, Gaussian mixtures [1], non-
parametric densities and kernel methods [40] have been
proposed to capture nonlinear data distributions, and vari-
ous probabilistic distances e.g. KL divergence, measure the
similarity between two distributions. A drawback of these
methods lies in the computational complexity and they of-
ten fail when the model and query sets do not exhibit strong
statistical similarity.

Another alternative to represent a set is a manifold. It
has been very successful in face recognition where a set
of face images draw a smooth low-dimensional manifold.
The problem of classifying face image sets by Manifold-
to-Manifold Distance (MMD) has been well formulated
in [35], and standard techniques include Principal Angles
(PA) and Kernel Principal Angles (KPA), which measure
the angles between two manifolds. The similar techniques
have also been successfully applied to dynamic texture
recognition [6]. In [8], KPA was used to measure the sim-
ilarity between two images for object recognition, where
each image is a set of local image features. However, this
was found poorer than other methods in [8], mainly because
data variations in a set of local descriptors of an image are
not smooth to be constrained on a low-dimensional mani-
fold and forming a manifold loses discriminative informa-
tion. [16] learnt a discriminative PA for object recognition
with image sets, but their image description is not suitable
for our work since they do not use local features.

Gesture recognition, activity recognition, and any sim-
ilar problems, where motion is key discriminative infor-
mation [11, 38], are different from the problem we tackle.
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Figure 1. Set-of-sets representations for object recognition in videos. v: video, q: query, m: model, p: feature point, i: image, t: trajectory,
I, II: two proposed representations. The two representations are combined at the classifier score level.

We do not assume any motion patterns for object classes,
but random camera motion around objects. Structure from
videos, shape recognition in point clouds [5, 12, 27] are also
rather off the topic we consider. Such explicit 3D shape
recovery and exploitation for object recognition can be an
extension of this work in future.

3. Video-based Object Recognition

3.1. Problem formulation and overview

Video-based object recognition takes a video rather than
a single image as input. The videos of the same object may
contain common parts of the object at different viewpoints
and scales.

As shown in Figure 1, a video v contains a couple of
elements, such as images i, feature points p (represented
by SURF [2] for scale and rotation invariance), and trajec-
tories t of the feature points (see Section 4.2 for details).
On one hand, a video v is, temporally, a set of images {i}
(frames), and each image i is, spatially, a set of feature
points {p|p ∈ i}. On the other hand, a video v can be seen
spatially as a set of trajectories {t}, and each trajectory t is,
temporally, a set of similar feature points {p|p ∈ t} along
the trajectory. Therefore, a video forms the notion of a set of
sets {{p}}, and the problem of video-based object recogni-
tion primarily concerns how to represent and match a query
set of sets and a model set of sets, i.e. establishing a kernel
function, K(vq, vm) = K({{p}}q, {{p}}m). We may then
use any kernel classifier in a multi-class setting.

We propose two different set-of-sets representations for a

video (see Figure 1): (1) The first one represents each image
i in a video as a set of feature points {p|p ∈ i}, then rep-
resents all images of the video as a bigger set {{p|p ∈ i}}.
(2) The second one first takes each trajectory in a video t as
a set of feature points {p|p ∈ t}, then all trajectories of the
video are formed as a bigger set {{p|p ∈ t}}. Two popular
means of representing a set, Bag of Words (B) and Man-
ifold (M ) methods are exploited respectively for a set of
data spatially (thus being multi-modally distributed) and a
set of data temporally (thus being smoothly changed). Man-
ifolds enclose BoWs in the first representation (Section 3.2),
while BoWs embrace Manifolds in the second representa-
tion (Section 3.3). The two representations are combined at
the classifier score level.

3.2. Manifold of BoWs

In this representation, we see a video v as a set of im-
ages {i}, where each image is a set of feature points {p}
(see Figure 2). Due to random camera motion, although a
video is composed of images in a sequence, it is treated as
an unordered set of images. Those images collected along a
temporal axis exhibit smooth data changes well constrained
on a low-dimensional manifold (see Figure 7(a)). Manifold-
to-manifold matching is a well-studied area. We exploit the
Kernel Principal Angle (KPA), a nonlinear extension of
the Principal Angle (PA) by a kernel trick, to measure the
similarity between the two manifolds by cosines of the prin-
cipal angles [37].

Given a query video vq and a model video vm, each im-
age in them is first represented as a set of feature points.
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Figure 2. Manifold-of-BoWs based matching.

Those spatially distributed feature points embody a distinc-
tive appearance. They are represented as a bag of word
histogram vector B using a Randomised Decision Forest
as a fast and discriminative codebook [26, 30]. Quantisa-
tion of feature points using this compact and discrimina-
tive codebook helps robust image matching. Then the query
video and the model video can be represented respectively
as two sets of BoWs. KPA takes the two sets as input, com-
putes two best-matched manifolds MB

q , MB
m respectively

and outputs the principal angles as the similarity between
the two sets. The Manifold of BoWs captures appearance
changes (due to e.g. viewpoint, scale or lighting changes) of
an object, reflects a set-property and facilitates robust data
matching by interpolation [9]. Therefore the similarity be-
tween the query video and the model video is calculated as
follows:

K(vq, vm) = K({i}q, {i}m)

= K({{p|p ∈ i}}q, {{p|p ∈ i}}m)

= K({B}q, {B}m)

= K(MB
q ,M

B
m) (1)

where the kernel function K is given by KPA (itself a posi-
tive semi-definite valid kernel) as

K(MB
q ,M

B
m) = cos θ = max

φ(u)∈MB
q

max
φ(v)∈MB

m

φ(u)Tφ(v)

(2)
where φ(u), φ(v) are arbitrary vectors on the respective
manifolds and φ(·) is a nonlinear mapping from an input
space onto a feature space by a kernel function k(x, x′) =
φ(x)Tφ(x′). In the experiment, we used the RBF kernel
k(x, x′) = exp(−|x − x′|2/σ2) and the minimum kernel
principal angle i.e. the maximum cosine value between the
two manifolds, which measures how well two manifolds in-
tersect, to represent the similarity.

Figure 3. Bag-of-Manifolds based matching.

3.3. Bag of Manifolds

In this representation, we see a video v as a set of tra-
jectories {t}, where each trajectory is a set of feature points
{p} along it (see Figure 3). Feature points in the initial
frame are tracked in following frames to form trajectories
(see Section 4.2 for details). Note that the feature points in
a trajectory are feature vectors (SURF in our experiments)
rather than 2D locations, so a trajectory is equal to a set of
feature vectors. While the feature points within a trajectory
are alike i.e. smoothly changed (see Figure 7(b)), those of
different trajectories have distinctive appearances.

In contrast to the method in Section 3.2 where we first
represent images as BoWs then a video as a manifold of
BoWs, here we use the two techniques in the reversed order.
The manifold method is first used to learn each trajectory
as a manifold, then the BoWs technique is used to collect
all trajectories i.e. manifolds, to form a so called Bag of
Manifolds. The proposed method can be seen as a temporal
extension of the standard Bag of Words.

It has been mentioned in the previous section that KPA
can find two best-matched manifolds for two sets and output
the similarity, and RF can be used as a fast and discrimina-
tive codebook. In order to learn trajectories as manifolds
as well as to make a codebook of manifolds, we propose a
novel method named Kernel Random Forest (KRF), which
incorporates KPA into standard RF. Note that the input data
for our KRF are trajectories, each of which is a set of fea-
ture vectors rather than a single vector (which is a typical
input to the standard RF).

All trajectories in model videos are used as input of KRF
to construct the codebook of manifolds. In each split node
of KRF, a reference trajectory is chosen and compared with
every input trajectory by KPA to split the node. For this
process, all input trajectories are given as manifolds, so we
refer to a trajectory as a manifold here (see Figure 4). At
every split node, a certain amount of manifolds (10 in the
experiments) are randomly selected, from which we choose
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Figure 4. Kernel Random Forest Codebook.

the one (Mref ) that gives us the best split in terms of infor-
mation gain. Each tree projects the manifolds to a higher-
dimension feature space by using the kernel trick. The fea-
ture space is split into two regions by a split function f :

f(M,Mref ) = KPA(M,Mref )− t = cos θ − t (3)

where M is an input manifold. Mref (the reference man-
ifold) and t (the threshold) are chosen to maximise the in-
formation gain [30]. We use the RBF kernel for KPA, the
maximum cosine value of the kernel principal angle to mea-
sure the similarity.

When the tree-growth is done, the leaf nodes of KRF
serve as codewords of manifold codebook. The manifolds
of trajectories in a video are quantised into codewords by
passing them down the KRF to the leaf nodes. The his-
togram of the codewords then forms the Bag of Manifolds
BM for the video. Given a query video vq and a model
video vm, the similarity between the two videos is measured
by

K(vq, vm) = K({t}q, {t}m)

= K({{p|p ∈ t}}q, {{p|p ∈ t}}m)

= K({M}q, {M}m)

= K(BMq , B
M
m ) (4)

where the kernel function is obtained by Euclidean distance
or cross correlation of the two histogram vectors BMq and
BMm (which provides a valid kernel).

4. Experimental Results
4.1. New datasets for video-based object recognition

For evaluating the proposed method, our own video-
based object dataset is presented. The dataset comprises
challenging objects (less-textured, fully 3D-shaped and
very similar appearance), including candybox, headset,

(a)

(b)

Figure 5. Dataset examples: (a) representative images for 10 object
classes; (b) first row shows the 3D rotations, second row the clut-
tering, third row the scale changes, and last row the illumination
changes.

book, throat spray, stapler, computer mouse, box1, box2,
model1-flag and model2-shield (see Figure 5(a)). The last
two objects were deliberatively chosen as similar objects.
The dataset contains 230 videos acquired from the 10 ob-
jects. Each object has 23 videos including 3 training videos
and 20 testing videos. The video is in the resolution of
640×480, 24-bit color coded, and 25 frames per sec are
extracted.

Three turntable sequences (10-20 seconds) of an ob-
ject captured in different illumination conditions are used
as training videos. The testing videos (4-10 seconds) are
recorded under challenging environments with four differ-
ent kinds of variations: 3D rotations, clutters, severe scale
changes and spot lighting movements, as shown in Fig-
ure 5(b). Each consists of 5 videos. In the case of 3D
rotations, we randomly moved a camera around an object
without any other effects. In the case of cluttering, the target
object is in the center and the closest distance, while other
registered objects serve as background. For the scale vari-
ations, significant scale changes are included, varying from
taking up one tenth of view space to only one third of target
objects appearing in view. For the illumination changes, we
used a randomly moving spot illuminator around an object.
All test videos include arbitrary 3D rotations.

We have collected the second dataset, an enlarged one,
in order to train a classifier for the proposed video-based
method. It contains 60 videos per object. We use 15 videos
(of random 3D rotations) for training and 45 videos (15
videos per each of clutter, scale and illumination changes)
for testing. Each video lasts for 4-10 seconds.
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(a) (b)

Figure 6. Comparisons on DBv1 for: (a) different objects, (b) data variations (best viewed in colour).

4.2. Implementations

We use FAST corner detector [34] and SURF descrip-
tors [2] for real-time implementations. For discriminative
and fast descriptor quantisation, we use Random Decision
Forest as a codebook, which has been very successful in
the relevant fields [26, 30]. Important parameters such as
the Gaussian kernel parameters in SVM, maximum depth
of tree and tree numbers in RFs, are set to report the best
accuracy. In the experiments, e.g. the dimension of SURF
descriptors is 64, maximum depth of a tree and tree num-
bers for the RF codebook are fixed to 4 and 16 in all exper-
iments. In order to better consider the quantisation errors
of unseen data, odd-numbered frames of the training videos
are exploited to build the RF codebook and even-numbered
frames to make model histogram vectors.

Feature tracking is performed by KLT [25] to obtain tra-
jectories. Since we consider a moving camera, some tracked
feature points disappear when the tracked area is occluded
or out of camera views. We add more feature points in
newly appeared parts so that a video maintains an adequate
number of the tracked feature points. The number of tracked
feature points dynamically change according to the fea-
ture points detected by FAST corners in the present frame,
which also reflects characteristics of an object of interest.
Using the tracked feature points, we form SURF descrip-
tors [2], to support scale and rotation-invariant recognition
to a certain degree. Please note that the main contributions
of this work do not lie in the descriptors and trackers, but
in the novel representations of a video for object recogni-
tion. Our expectation is that the proposed solution would
achieve better recognition accuracies with better detectors,
descriptors and trackers used: refer to [10] for comparative
studies.

4.3. Evaluation results and discussion

We have compared our proposed method (two represen-
tations individually and their combined) with the frame-
based object recogniser (FbOR) where the average frame

.. .. .. .. .. .. .. .. .. 
Images in a video SURF feature points in a trajectory 

BoWs	  histogram	  
vector	  

SURF	  feature	  
vector	  	  

(a) (b)
Figure 7. Data smoothness: (a) smooth manifold of BoWs, (b)
smooth trajectory manifold.

recognition accuracy is reported, and the accumulating-
frames recogniser (Acc) which takes results of all frames
to vote for video class. Every image is represented as a
BoWs histogram vector using the techniques described in
Section 4.2, and is classified into one of object classes us-
ing NN, SVM in the one-vs-one setting, or RF classifier.

Figure 7 shows an example of manifold in each represen-
tation (thus the manifold of BoWs histogram vectors and the
trajectory manifold) using the first three principal compo-
nents obtained by PCA (for the visualization purpose only).
Both draw a smooth data manifold in a low-dimensional
space. Combining two proposed representations and match-
ing methods is considered. As will be shown below, the ten-
dency is that the two methods deliver quite different recog-
nition results on different objects and data variations in the
datasets, i.e. they exhibit not strongly correlated error mod-
els. Here we consider the simple SUM rule [17] at the score
level, a better combining method remains as a future work.

Figure 6 shows the comparison results for different ob-
jects and data variations using the NN classifier. FbOR ex-
hibits poor recognition accuracies on the less-textured ob-
jects (headset, throat spray and stapler) and similar-shaped
objects (model1-flag and model2-shield), with the worst
4.4% on the throat spray, as shown in Figure 6(a), while
the video-based methods show much higher recognition ac-
curacies. Especially, the proposed combined method ob-
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Table 1. Video-based object recognition accuracies. *:[26], **:[30], ***:Best template descriptor method [20].
The average frame recognition accuracies are reported for FbOR and BTD methods.

Method DB v1 DB v2
(23 videos/obj.) (%) (60 videos/obj.) (%)

NN SVM RF NN SVM RF
FbOR 54.88 59.89∗ 56.27∗∗ 62.18 68.72∗ 67.94∗∗

NN NN SVM
BTD∗∗∗ 56.5 63.1 66.44

Accumu. Frames 65 64.67 71.55
Manifold of BoWsI 67 69.56 70.44
Bag of ManifoldsII 64 63.78 69.11
Comb. set of setsI,II 74.5 71.3 77.11

tains a significant accuracy gain. Figure 6(a) shows that the
bag of manifolds (BoM) delivers better accuracies on the
less-textured and similar objects, while the accumulating
frames and manifold of BoWs (MoB) exhibit quite simi-
lar performance tendency i.e. correlated. The bag of mani-
fold method plays a role to boost the combined accuracy by
compensating the other method. In Figure 6(b), the mani-
fold of BoWs shows the best individual accuracies on the
clutter, scale, and illumination variations, while the bag of
manifolds shows the best accuracy on the 3D rotations. The
combined method again outperforms the best individual ac-
curacies.

Table 1 summarises the results of the proposed solu-
tions and their combined, the frame-based object recogni-
tion (FbOR) methods, the accumulating frame recognition
and BTD [20], on the two of our datasets. The RF codebook
and SVM classifier were exploited in the FbOR-SVM [26],
and the RF codebook and RF classifier were exploited in the
FbOR-RF [30]. In [20], the descriptors called BTD (best
template descriptor) were learnt from training videos, and
integrated into the vocabulary tree, which was replaced with
RF in our experiment. The best accuracy obtained by FbOR
on the primary dataset DB v1 is 59.89% using SVM. As ex-
pected, using SVM or RF as a classifier improves the accu-
racy of Nearest Neighbor (NN) classifier in the FbOR. The
accuracies of [20] appear similar to those of FbOR. Note
that their aim is to improve the run-time speed. Using a
better feature tracker might further improve the accuracy
of [20]. The proposed video-based methods (the best accu-
racy 67% obtained by the manifold of BoWs and NN) de-
liver a more than 10% accuracy gain over the frame-based
methods (54.88% by FbOR-NN). The combined method
(74.5%), which is about 10% better than the accumulating
frames (65%), significantly improves the accuracies of the
best individual. As shown in Figure 6, the proposed meth-
ods exhibit quite uncorrelated errors, while compensating
each other to boost the combined accuracy.

In the results on the DB v2, the accuracies of NNs are
improved by SVMs. The overall tendency on the DB v2

is similar to the DB v1. The frame-based recognition ac-
curacy (68.72% using SVM) is improved to 77.11% by
the method combining the manifold of BoWs and bag of
manifolds, which yet leads the accumulating frame method
(71.55%). Due to the shorter and random camera moving
videos (instead of the turn-table sequences in the DB v1)
used for training, the accuracy gains of the proposed meth-
ods over the baselines drop a bit, however, the combined
method still delivers the significant improvement.

Using a better feature detector and tracker might further
improve the accuracies of the bag of manifold method and
then the combined. At present, there are tracking errors in-
volved in the trajectories, which degrade the performance.

The proposed methods and their combined were imple-
mented in a machine of Intel Core i7 2.2 GHz processor
with 8GB DRAM. The accumulating frame method (Acc)
runs in real-time on every frame, and the manifold of BoWs
(MoB) and bag of manifolds (BoM) are executed in a short
time interval to correct recognition errors and improve the
recognition confidence of the Acc.

5. Conclusions
We have tackled video-based object recognition and

presented novel set-of-sets representations and respective
matching methods. In the experiments using the new video
datasets consisting of 830 videos, we showed that 1) tak-
ing a video input rather than a single image provides better
object recognition accuracies, and 2) the proposed method
outperforms the frame-based recognition methods and their
accumulation. Additionally, the proposed method runs in
real-time.

In future, we will consider an extension of our present
framework to object categorisation rather than object in-
stance recognition. To further improve the recognition ac-
curacies, using 3D depth videos as input, better feature
trackers and combining methods are to be explored. Active
learning in the manner that user cooperation is maximised
to recognise objects in videos is an interesting direction for
future study.
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