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Abstract

Multimedia affection recognition from facial expressions
and body gestures in RGB-D video sequences is a new re-
search area. However, the large variance among differ-
ent subjects, especially in facial expression, has made the
problem more difficult. To address this issue, we propose
a novel multimedia subject adaptive affection recognition
framework via a 2-layer sparse representation. There are
two main contributions in our framework. In the subjec-
tive adaption stage, an iterative subject selection algorithm
is proposed to select most subject-related instances instead
of using the whole training set. In the inference stage, a
joint decision is made with confident reconstruction prior
to composite information from facial expressions and body
gestures. We also collect a new RGB-D dataset for affec-
tion recognition with large subjective variance. Experimen-
tal results demonstrate that the proposed affection recogni-
tion framework can increase the discriminative power es-
pecially for facial expressions. Joint recognition strategy is
also demonstrated that it can utilize complementary infor-
mation in both models so that to reach better recognition
rate.

1. Introduction
Human activity analysis is a significant component in

image and video understanding and the large visual vari-
ance as well as semantic ambiguity underlying this topic
makes it a difficult task. Applying advanced feature engi-
neering and machine learning models, researchers in com-
puter vision can build automatic software systems to rec-
ognize activity categories in controlled environments, such
as smart-home surveillance and video gaming interactions.
However, there are still numerous difficult problems in this
domain, especially for subtle actions or emotions, such as
affection recognition.

Affection is a disposition of mind or body, which is often
expressed by facial expressions and body gestures. Some
affection categories can be conveyed solely from facial ex-

Figure 1. For facial expression, subjective (intra-class) variance
is much larger than inter-class variances (expression). It brings
benefits for expressional invariant face recognition but difficulties
to subjective invariant expression recognition. This phenomenon
is less severe for body gestures in Depth channel.

pressions or solely from body gestures. But it is more nat-
ural and common that facial expressions and body gestures
jointly express an affection.

The success in facial expression recognition provides a
plentiful of approaches to solve the problem in one perspec-
tive. Action Units (AUs) for Facial Action Coding System
(FACS) [3] is a good modeling for facial expressions by de-
composing the facial expressions into smaller organ-based
movements, such as drawing brows and opening mouth. Fa-
cial expression recognition based on AUs is successful and
has attracted a lot of attentions [14] [15] [20]. In addition,
recognizing human emotions from body gestures is also a
growing research area in recent years [12]. Especially after
the debut of Kinect depth camera [7], the new type of sensor
together with its technologies provides powerful tools for
human activity analysis. The depth channel makes it easier
to segment human from clutter background and therefore
research based on this novel information channel has been
conducted on an unprecedented scale [16] [19] [13].

However, the difficulty in facial expression recognition is
always proportional to the degree of subjective variance. As
illustrated in Figure 1, subjective variance in image space is
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Figure 2. The workflow of our framework. After selecting representative frames from aligned frame sequence, we apply subject selection
for a given testing subject. Affection class is recognized for testing queries with selected training data using sparse representation based
classification. Then a joint decision from expression model and body gesture model is made based on confidences calculated from class-
wise reconstruction residuals.

much larger than expressional variances. In the domain of
Face Recognition (FR), the subjective variance is inter-class
variance and expressional variance is intra-class class vari-
ance. However in the domain of Expression Recognition
(ER), the roles of the two kinds of variances are reversed
and therefore this phenomenon brings benefits to FR but
harms to ER. Approaches are proposed to reduce the with-
in class variance and increase the between-class variance,
such as Linear Discriminant Analysis (LDA), or Fisher’s
Linear Discriminant [4]. Sparse Representation based Clas-
sification (SRC) [17] provides an informative way to im-
age classification. In SRC, a query image is coded using a
sparse dictionary whose bases (columns) are training sam-
ples with or without sparsity constraint; then the query im-
age is reconstructed by the bases with sparse coefficients as
well as sparse residuals. In [18], the authors combined SRC
and Fisher Discriminant criteria to propose an algorithm
to learn a structured dictionary and providing informative
reconstruction residual for class recognition. A low-rank
regularization constraint is added to FDDL is also demon-
strated to be useful in FR [6].

In this paper, we utilized the classification scheme pro-
posed in [18], which uses the residuals from class-wise re-
constructions as classification criteria. We argue that in-
stead of using all training samples for sparse reconstruction
with the huge subjective variance, it makes more senses
to select a subset of subjects using FR first and recognize

affection then. Then we propose a joint affection recog-
nition combining facial expressions (from RGB channels)
and body gestures (from the Depth channel) with subjective
adaption and joint decision making based on reconstruction
confidence in sparse representation. The contributions of
our work have two aspects:

1. First, we propose a subject adaptive sparse represen-
tation approach by combining the idea from [17] and
[18] and reconstruct the query image from subject re-
lated subgroups.

2. Second, we address the joint recognition problem us-
ing the confidence computed from the residuals of
sparse representation and experiment results demon-
strate that the combination can be effective without ad-
ditional computational cost.

Additionally, we also provide a combinatory dataset for
joint affection recognition with both facial expressions and
body gestures. Both color images and depth images are col-
lected for multi-modal recognition.

An overview of the proposed framework is illustrated in
Figure 2. Face patches and body gesture patches are ex-
tracted from RGB channels and depth channel of the in-
put video respectively. We firstly apply Robust Alignment
(RASL) [10] to align the frames in each video sequence.
Then representative frames (queries) are selected based on
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“apex” position, where expressional intensity is highest as
discussed in [1]. Subjective adaption is to select a group
of most similar subjects based on SRC based face recogni-
tion. The query image is then reconstructed from the se-
lected subjective dictionary. Fisher Discriminative Sparse
Representation Classification (SRC-FD) is used for class
inference. The final decision of affection class is made ac-
cording to the confidence score based on class wise recon-
struction residuals.

The organization of the rest of this paper is as following.
Section 2 introduce how we align frames and select the most
representative ones from them. Proposed subject adaptive
affection recognition and joint decision making framework
is introduced in Section 3. We also describe our new col-
lected affection recognition data set in Section 4 and pro-
posed framework on this data set is evaluated and discussed
in Section 5. We conclude in Section 6.

2. Pre-processing

Figure 3. Alignment and representative frame selection. The first
row with red boundary shows the original un-aligned face patches,
one can observe variances due to poses and minor changes. The
second row with blue boundary shows the aligned face patches via
RASL [10], one can observe that differences due to factors other
than expressions are eliminated. Expressional intensity curves are
shown in the bottom. Selected representative frame is indicated by
yellow dashed box.

Given a sequence of face patches, we firstly need to align
them and select the most representative frame out of them.
The misalignment in the sequence is introduced by both
human movement and noise in face detection. To align
them, we apply the RASL [10] algorithm which uses sparse
and low-rank matrix decomposition. Sparse learning based
frame alignment takes advantages of the inner structure of
the given sequence of similar frames (e.g. face patches of
the same subject) and reduces the noises with rare occur-
rence. For representative frame selection, we select the mid-

dle frame of the apex area [1] according to expressional in-
tensity.

As illustrated in Figure 3, RASL [10] smooths the ex-
pressional intensity curve by representing the “intermedi-
ate” frame with “apex” or “neutral” frame. The red curve
indicates the intensities of un-aligned sequence and blue for
aligned sequence. Yellow dashed box shows the final se-
lected representative frame. For body gestures, the pre pro-
cessing step is the same as facial expression.

3. Subject Adaptive Joint Affection Recogni-
tion via Fisher Discriminant Sparse Repre-
sentation

In this section, we firstly review sparse representation
based classification (SRC) [17] and Fisher Discriminant.
Then our proposed two layered subject adaption framework
for affection recognition is described. Finally, a joint recog-
nition framework is proposed based on the class-wise re-
construction residuals.

3.1. Sparse Representation Classification with
Fisher Discriminant

Sparse representation based classification (SRC) was
proposed in [17] by Wright et al.. Given C as the
set of class labels, we have A = [AC1 , AC2 , ..., ACc ]
as the dictionary of training samples. In our approach,
A is the matrix of vectored frames, i.e., ACi∈C =
[vec(xCi

1 ), vec(xCi
2 ), ..., vec(xCi

n )], where xCi
j is the jth

image (face path or gesture patch) of class i. Given a query
image q and its vectored instance y = vec(q), the SRC via
l1-minimization is given as:

α̂ = argmin
α
‖α‖1 s.t. ‖y −Aα‖2 ≤ λ (1)

Therefore, Classification rule is given as:

identity(y) = argmin
Ci

rCi
(y) (2)

where class-wise reconstruction residual rCi
(y) is given as:

rCi
(y) = ‖y −AδCi

(α̂)‖2 (3)

where δCi
is the characteristic function that selects the co-

efficients associated with that class.
According to FDDL [18], the SRC classification rule can

be re-written as an “SRC-FD” form:

α̂Ci
= argmin

α
‖α‖1 s.t. ‖y −ACi

α‖2 ≤ λ (4)

where ACi
is the sub-dictionary associated with class Ci.

Thus the class-wise residuals in Eq. 3 is re-written as:

rCi
(y) = ‖y −ACi

(α̂Ci
)‖2 (5)
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Noted that Eq. 5 corresponds to FDDL with global cost
weight as 0 (the global reconstruction residual weight is
used in FDDL [18] to force that the reconstruction should
not come from all the data points, for more details, please
refer to [18]). We called this classification method as Fisher
Discriminant SRC (SRC-FD). Comparing Eq. 3 and Eq. 5,

Figure 4. Timing and avg. reconstruction errors on Simulated data
with 10,000 training samples and 1 query instance. We can ob-
serve that time consumed decreased as the number of partitions
increases.

the latter one is more intuitive. The classification is actu-
ally to find the optimal space spanned by bases of a cer-
tain class which minimize the reconstruction error. In ad-
dition, the residual formula in SRC-FD makes the infer-
ence much efficient, which is critical in applying SRC to
real applications. To illustrate this argument, we test the l1-
minimization using Least Angle Regression [2] on a simu-
lated dataset which has 10,000 instances and each instance
is of dimension 1000; a query instance is given to recon-
struct. The simulated data is randomly generated and each
instance is normalize to unit l2 norm. We partition the
training set into n non-overlapping subsets and the query
is reconstructed on each subset. The overall computation
time and averaged reconstruction error for different n are
as illustrated in Figure 4. With the number of partition in-
creases, the computation time decreases. This is because l1
minimization is not linearly proportional to the number of
training instances. However, using a larger dictionary can
achieve better reconstruction error. In our work, since the
absolute reconstruction error is not a concern per se, so we
use the classification form as in Eq. 5.

3.2. Subject Adaptive Affection Recognition

Both SRC [17] and FDDL [18] achieve impressive
recognition rates in face recognition (FR) and have been
demonstrated to be robust to varying illuminations, occlu-
sion and expressions. However, subjective robust expres-
sion recognition (ER) is harder than expressional robust
face recognition. The reasons are two-folded: 1) in term
of pixel-wise variance, the distance between subjects of the
same expression is much larger than the distance between
expressions of the same subjects, as shown in Figure 1;

2) behavior habits of different subjects make the subjective
variance much larger and the expressions harder to model.
The two reasons jointly make ER a harder problem than FR.

The similar phenomenon also exists in gesture recogni-
tion. Instead of facial appearance, subjective appearance
variances in body gestures are due to subjective body sizes,
types and clothes. However, because 1) the body gestures
are always much more drastic than facial expressions and
2) we extract body gesture information from Depth channel
which ignore much of the appearance variances (e.g., dif-
ferent clothes), this phenomenon is actually not crucial at
all. Therefore, the effect of applying the subject adaptive
framework on gesture recognition is limited to overcome
subjective behavioral variance.

In this paper, we propose a two layer recognition struc-
ture to pursue subjective robust affection recognition. The
first layer is actually a face recognition problem. The moti-
vation of the first layer recognition is straightforward: given
a query image of an affection, it is more naturally to iden-
tify who is the subject and check if previous records exist
in our training data, if so, using the data of the same subject
is more efficient and accurate. However, in reality most of
the time the assumption of already seeing the same subject
is invalid. Therefore, we define the first layer recognition
step as to find a fixed number of most similar subjects such
that the identity information (appearance, behavioral habits,
etc.) can be approximated using the instances from the se-
lected subjects.

The first layer recognition is as illustrated in Algorithm
1. To reach better consensus subjects selection, we use a
batch of queries (from the same subject) each time, i.e.,
|Y | > 1. An upper bound limit on maximal available sub-
jects (N ) is also given. The propose algorithm selects a sub-
group (A∗) of training instances (A) for expression recogni-
tion using SRC-FD with l1-minimization. One may doubt
that it is not valid to know that the given batch of frames
are from the same subject. We concede that sometimes it is
the case but in reality, an affection recognition system can
always capture more than one frames from the same subject
and select similar subjects in training set as an off-line ini-
tialization. In the other hand, algorithm 1 is still functional
when |Y | = 1.

Based on the selection of A∗ (which can be represented
as A∗ = [A∗1, A

∗
2, ..., A

∗
c ], where A∗i is the class-wise subset

of A∗), we can determine the affection class of each query
y according to Eq. 4 and 5.

Figure 5 illustrates the proposed 2-layer recognition
framework. When a query image is given, the first layer
recognition process seeks at most N (N = 2 in this exam-
ple) subjects whose samples can best approximate the query
image. After we have selected the subset of subjects (col-
ored as green rows in the training data matrix), the selected
subset is further partitioned intoC classes, i.e., subsets with
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Algorithm 1: Subject Adaptive sub-dictionary selec-
tion.

Input: training instance matrix A, testing instance
matrix Y , subject number limit N , subject set
S

Output: subject adaptive sub-dictionary A∗

1 A∗ = empty;
2 for y ∈ Y do
3 for Si ∈ S do
4 α̂ = argminα ‖α‖1 s.t.‖y −ASi

α‖2 ≤ λ;
5 rSi

= ‖y −ASi
α‖2;

6 end
7 Ŝ = argminSi

rSi ;
8 vote(Ŝ) += 1;
9 end

10 n = 1;
11 while n ≤ N and !allzeros(vote) do
12 s = argmaxSi

vote(Si);
13 A∗ = [A∗, As];
14 vote(s) = 0;
15 end
16 return A∗

Figure 5. Illustration of our two-layer affection recognition frame-
work. The first layer is to select a subset of subjects which can best
approximate the query image(s). The selected rows (colored as
green) are used for second-layer affection recognition using SRC.
The action-wise approximations are colored as blue. The final de-
cision is to find which class can best approximate the query image.
The final decision are shown in red.

affection labels. The second layer recognition seeks the
“row” which can best approximate the query image (final
decision and selected subset are colored as red boxes).

Algorithm 2: Joint Decision Making from Face and
Gesture.

Input: Facial expression dictionary A∗,f and body
gesture dictionary A∗,g , a query y = [yf , yg]

Output: Affection label Ĉ of y
1 for Ci ∈ C do
2 α̂f = argminα ‖α‖1 s.t.‖y −A∗,fCi

α‖2 ≤ λ;
3 α̂g = argminα ‖α‖1 s.t.‖y −A∗,gCi

α‖2 ≤ λ;

4 rfCi
= ‖y −A∗,fCi

α̂f‖2;
5 rgCi

= ‖y −A∗,gCi
α̂g‖2;

6 end
7 conff = F (rf )/(F (rf ) + F (rg));
8 confg = F (rg)/(F (rf ) + F (rg));
9 Ĉ = argminCi

rfCi
∗ conff + rgCi

∗ confg;
10 return Ĉ

3.3. Joint Decision Making via Confident Recon-
struction Prior

When there are multiple models have the same set of
class labels, as in this paper, facial expression model and
body gesture model, how to effectively combine them to
make a joint decision is an issue. One can combine the
models in an early phase by feature concatenation or make
a joint decision only based on the decision scores given by
different models. In this paper, we apply the latter one since
the early fusion in feature representation level can be over-
whelmed by the dominant feature channel, if there exists
one.

In our work, we have two models: facial expression
model and body gesture model. Each model uses the same
classification rule based on Sparse Representation (SRC).
Since the decision in each model is made according to the
smallest residual in term of l2 norm. It is straightforward
to derive the confidence score of an decision, denoted as
F (.) by the margin between the smallest residual and the
second smallest residual. The assumption under the confi-
dence score formula is that a “confident” decision should
be made more easier with a more comparative significant
smallest reconstruction error. Then the confidence scores
of both models are used for weighing the reconstruction er-
ror and we make the joint decision by selecting the small-
est weighted sum of the class-wise reconstruction residuals.
The procedure is as shown in Algorithm 2.

4. Face and Gesture RGBD Dataset

In this section, we introduce a new Face and Ges-
ture RGBD dataset (FG-RGBD) we collected for affection
recognition with 1920 affection samples.

In [5], the authors presented a widely used bi-modal
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Figure 6. Example frames from proposed FG-RGBD dataset. Top, middle, and bottom rows are for “uncertain”, “angry”, and “happy
(cheering)” respectively. RGB frames and enlarged face patches are shown on the left and depth frames are shown on the right.

public dataset for combinatory recognize affective behav-
ior categories from both facial and gesture model. How-
ever, as recent success in Kinect and related research in the
depth channel, there is a trend that researchers are mining
more complementary information from this novel informa-
tion source instead. There are a lot of datasets have been
presented for using depth channel as a counterpart for re-
search topics and have proved their effectiveness, such as
MSR Gesture 3D, MSR Action 3D, and MSR Daily Ac-
tivity 3D [8]. However, to the best of our knowledge,
there is not such a dataset for affection recognition jointly
from face and gesture combining both RGB channel and
Depth channel. To fulfill this vacant slot, we thus present
a Face and Gesture RGBD dataset for affection recognition
(FG-RGBD) dataset which contains videos from both RGB
channels and depth channel from a Kinect camera. Basic
statistics will be introduced briefly in this section.

There are ten affection categories in our FG-RGBD
dataset, they are: “uncertain”, “angry”, “surprise”,
“fear”, “anxiety”, “happy (cheering)”, “happy (clap-
ping)”, “disgust”, “boredom” and “sad”. There are twelve
subjects are recruited to perform the ten categories of affec-
tions according to a simple instruction. The subjects were
asked to perform each affection in 4 different records (video
clips), each record (video clip) the subjects were asked to
repeat 4 times. The dataset contains a significant subject-
variance because of two reasons: 1) the instruction used to
direct the subjects has no more than two sentences for each
action, so the subjects have a big freedom to perform the ac-
tions spontaneously, which is more close to reality. 2) The
subjects are from different races and genders: there are 1
American-African, 2 Latinos, 4 Caucasians and 5 Asians;
there are 2 women and 10 men.

In our FG-RGBD dataset, both RGB frames and depth
frames are provided, skeleton joint estimations computed
from off-the-shelf software [11] are also provided yet not
used in this work. There are in total of 480 videos as well
as 1920 affection samples collected.

In this work, the 1920 samples are divided into training

set with 960 samples and testing set with 960 samples while
none of the subjects appears in both training and testing sets.
Resolutions for RGB frames and depth frames are 1280 ×
1024 and 640×480, respectively. Some sample frames from
the FG-RGBD dataset are shown in Figure 6.

5. Experimental Results
In this section, we use FG-RGBD dataset to evaluate

tasks for facial expression recognition and body gesture
recognition and joint affection recognition. Quantitative re-
sults in term of recognition rates are reported and compared
with several baselines and state-of-the-art methods. Quali-
tative results in terms of cross-subject facial expression and
gesture reconstruction are also illustrated for future discus-
sion.

5.1. Selection on subject limit N

In this part, we discuss the effect of subject limit N se-
lection in subject adaptive phase. As can be inferred from
Figure 4, if we select a small N , the reconstruction error
should be large but the time consumed in testing phase is
reduced. Although reconstruction error is not a concern per
se in this work, a over-relaxed reconstruction error can bring
bad recognition accuracy. Therefore, we need to find a good
tradeoff when selecting N .

As illustrated in Figure 7, with the increasing N , recog-
nition rate increases. But after N = 8, it becomes sta-
ble. Two examples of “happy” are shown for illustrating
the progress of reconstruction. With the increase of sub-
jects available, the reconstruction error can be reduced from
a “hybrid” reconstructed face.

5.2. Affection Recognition Performance Evaluation

In this part, we evaluation our affection recognition
framework and compare our system with state-of-the-art
methods [17] [18] in term of recognition rate. In our ex-
periments, we conduct “leave-one-out” cross-subject tests
for all methods and report the averaged recognition rates.
We use the face detector in [9] to localize face patches in
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Approach Recog. Rate for expression Recog. Rate for gestures Joint Recog. Rate
Logistic Regression 38.49% 46.35% 54.89%
FDDL [18] 43.39% 61.25% 64.84%
SRC[17]-FD 46.72% 62.34% 69.3%
Proposed Method 48.80% 62.66% 69.7%

Table 1. Performance comparison of different methods.

Figure 7. Recognition increases with N grows but after some cer-
tain value, it does not change. In this curve, the recognition rate
reaches maximum as 48.8% when N = 8. An example of orig-
inal query face y and reconstructed face using selected subjects
(A∗α̂y) are shown. We can observe that with the increase of N ,
the reconstructed face is de-personalized. Two samples of origi-
nal query faces and reconstruction sequences with varying N are
shown in red and green boxes (N = 1, 5, 8, 11, respectively). It
can be observed that the reconstructed faces “evolve” to be more
similar to the original queries.

RGB channels. The extracted face patches are normalized
to 150× 150 resolution and aligned by RASL [10]. We ex-
tract representative frame in the low-rank part of the aligned
face sequence (for details, please refer to [10]). The se-
lected face patch is down-sampled to 30× 30 and vectored
as feature vector. The subject limit we select for facial ex-
pression channel is 8, but in average there are only 5 to 6
subjects are selected. As for body gesture model, we apply
the same procedure as for face patches using [10], then the
body gesture patch is normalized to 38 × 38 and vectored
to be the feature vector for body gesture. For single model
evaluation, the subject limit is also set to 8. In all our l1
minimization process, we force the reconstruct coefficients
α ≤ 0.

Table 1 shows the comparative results among several
state-of-the-art methods with proposed framework. We also
compare with a baseline method, logistic regression, since
logistic regression can explicitly output classification prob-

abilities of each class label. In Joint recognition, we apply
the classification probability of facial expression model and
body gesture model to the joint decision. As for FDDL, we
directly use the published code for evaluation. Joint recog-
nition with FDDL is accomplished by early fusion of facial
expression frame and body gesture frame.

From Table 1, we observe that proposed method outper-
forms other methods, especially in facial expression recog-
nition part. We also observe that in joint recognition, if we
relax the subject limit constraint in body gesture channel,
the joint recognition result is better. We report our best per-
formance in Table 1.

Figure 8 illustrates the confusion matrices for affec-
tion recognition from facial expression, body gesture and
joint decision making. We observe that the gesture recog-
nition model solely perform superior than facial expres-
sion recognition model, especially between classes “happy
(cheering)” and “happy (clapping)” since the facial ex-
pressional attributes are very similar while gestures vary
drastically. Body gesture model performs much better in
classes “surprised”, “happy (cheering)”, and “sad” since
their gestures are much more distinct with others. However,
this model is a little ambiguous in distinguishing between
classes “anxiety and “happy (clapping)” because both ges-
tures have similar attributes; similarly, classes “happy (dis-
gust)” and “boredom”, because both gestures contain ac-
tion attribute like “raising hands in front of chest”. Al-
though facial expressional recognition rate is lower than
body gesture recognition rate in almost every class, we can
observe that the information contained in each model is
quite complementary to each other: thus jointly recogniz-
ing affection classes reaches much higher recognition rates,
such as in class “anxiety”, “happy (clapping)” and “dis-
gust”.

6. Conclusion

In this paper, we have investigated on affection recog-
nition from the perspective of facial expression and body
gesture combination in RGB-D videos. To address the is-
sue that subjective variance in affection recognition is al-
ways larger than inter-class variance, we have proposed a
novel subject adaptive algorithm to mining category-related
variance by using sparse representation with Fisher dis-
criminant. Instead of using all training data for each test-
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Figure 8. Confusion matrices for (a) facial expression model, (b) body gesture model, and (d) proposed joint recognition result. Ob-
vious improvement is achieved in joint recognition infers that facial expressions and body gesture model contains very complementary
discriminative information.

ing query, we firstly select a subject adaptive subset using
sparse representation based classification. Then affection
class is recognized in the selected subject adaptive subset
of training data. To jointly recognize affection class from
facial expressions and body gestures, we propose a con-
fident reconstruction based joint decision making strategy.
We also presented a novel dataset which contains 10 differ-
ent affection categories and 12 subjects, which is challeng-
ing due to large subjective variance. Our proposed recogni-
tion framework and joint recognition approach is evaluated
on the dataset. Experimental results demonstrate that joint
recognition results can be improved by combing two com-
plementary discriminative models.
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