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Abstract

This paper presents two novel algorithms for estimating
the (local and global) motion in a series of range images
based on a polynomial expansion. The use of polynomial
expansion has been quite successful in estimating optical
flow in 2D imagery, but has not been used extensively in 3D
or range imagery. In both methods, each range image is
approximated by applying a high-order polynomial expan-
sion to local neighborhoods within the range image. In the
local motion algorithm, these approximations are then used
to derive the translation or displacement estimation within
the local neighborhoods from frame to frame within the se-
ries of range images (also known as range image flow). An
iterative method for computing the local translations is pre-
sented. In the global motion algorithm, a global motion
model framework is utilized to compute a global motion es-
timation based on the polynomial expansion of the range
images. We evaluate the algorithms on several real-world
range image sequences with promising results.

1. Introduction

Estimating motion in a video or series of images is an
extremely important and difficult task in computer vision
and has numerous applications, such as autonomous vehi-
cle navigation [11]. Not much attention has been given to
the estimation of motion between range images, however,
estimating motion in video or image sequences, most com-
monly referred to as optical flow, has a long history of re-
search. The two most common and prominent approaches
to optical flow are known as local (or sparse) and global
(or dense) methods. Local methods, such as the Lucas–
Kanade method [14], estimate the motion of regions of in-
terest between images using image registration and warping
techniques. In contrast, global methods, such as Horn and
Schunck’s method [13], compute a dense motion field by
estimating the motion of each pixel between images. In this

work, we are concerned mostly with the latter method, par-
ticularly the work by Farnebäck [8], which approximates
the image using a polynomial expansion of local patches
and then uses the polynomial expansion to estimate the
global displacements between images for each pixel.

Estimating optical flow for range images, also known
as range flow, is the main topic of this paper. Very little
current research exists on this topic, however, it is an ex-
tremely important problem in a growing field. One of the
few examples is the work of Spies, Jahne and Barron [18].
The problem of range flow is unique from optical flow for
electro-optical images in the sense that every pixel value is
a measure of distance instead of color or brightness. This
difference makes it very difficult to apply existing and tradi-
tional two-dimensional (2D) optical flow methods to range
flow. For instance, the brightness constancy constraint used
by many optical flow methods is not valid for range im-
ages. Therefore, our approach in this work is to extend a
well-known global optical flow method of motion estima-
tion based on polynomial expansion [8] to range images.
We extend the method by using a high-order polynomial ex-
pansion to include terms in the z direction (range distance
to the sensor). We then formulate an iterative method to
solve for displacement in the x, y and z directions between
range imagery. In addition, we perform the calculation at
multiple scales for robustness and include displacement es-
timates from previous frames to improve the overall mo-
tion estimation. We also introduce a method to estimate the
global motion based on motion model derivations simlar to
that presented by Dufaux and Moscheni [4] and Farnebäck
and Westin [10]. Promising results are presented on several
real-world range images.

2. Related Work

As previously mentioned, there is a vast amount of re-
search in optical flow between color images, usually cate-
gorized into local and global methods. Many assumptions
and constraints have been introduced in both approaches to
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deal with noise and smoothness of the solutions, such as
the brightness constancy assumption, gradient constancy as-
sumption and spatio-temporal smoothness constraints. This
has led to a breeding ground of methods, such as Bruhn
et al. [3], which attempt to combine the local and global
methods to address the drawbacks and assumptions of each
individual method. The most popular and successful meth-
ods are covered in more detail in two benchmarking pa-
pers on the subject by McCane et al. [15] and Baker et
al. [1]. The two papers describe common databases, proce-
dures and results on comparing more than 20 optical flow
methods, with the Baker et al. paper being the most re-
cent and complete. Of particular interest to our research is
the method introduced by Farnebäck in several papers that
introduces the estimation of motion using the polynomial
expansion [8, 9, 5, 7, 6, 19, 10, 17, 16]. In Farnebäck’s
work, the local neighborhoods of each image are approxi-
mated by a polynomial expansion and an analytical solution
for the displacement between images is derived. From this
derivation, a robust algorithm is designed to compute the
displacement, and thus motion field, between two or more
images in a sequence. The method has proven to be very
accurate and robust for 2D images and has been included as
a default algorithm in the OpenCV library [2].

The research of estimating the motion between range
images, or range flow, is much more sparse. The term
“range image flow” first appears in the work of Gonzalez
[12], where he formulates a physics-based approach to es-
timate the motion of the range sensor relative to its envi-
ronment. Our method uses the same basic physical model
of the range sensor as that used by Gonzalez. One of the
most popular and earliest papers on this topic, by Spies et
al. [18], notes the unique challenges of this problem and
proposes a basic motion constraint equation on deformable
surfaces. The constraint solutions are obtained in a total
least squares framework and compute a dense range flow
field from sparse solutions. While the results are promising
for the range images presented in their paper, the method
is not directly transferable to other domains, such as dense
range flow in a moving scene due to the large displace-
ments present. Therefore, the focus of our work is to ex-
tend the polynomial expansion method to range imagery to
compute local and global dense range flow on sequences of
real-world range images.

3. Range Image Polynomial Expansion
In our formulation, range image flow uses a polynomial

expansion based approximation of the range image. This
approximation is done using a set of quadratic basis func-
tions, applied to the range data. The basis equation set
is {1, x, y, x2, y2, xy}, which describe the variation of z,
range from the sensor, as you vary x and y, azimuth and
elevation with respect to the sensor. In addition to the ba-

(a) Original Range Image

(b) 1 Coefficient Image

(c) y Coefficient Image

(d) x Coefficient Image

(e) y2 Coefficient Image

(f) x2 Coefficient Image

(g) xy Coefficient Image

Figure 1: Velodyne R© polynomial expansion.

sis functions, we incorporate a notion of the accuracy or
importance of this data though a certainty matrix, as well
as a proximity-based weight over the neighborhood in the
form of an applicability matrix, as is done in Farnebäck’s
Ph.D. dissertation [8]. For the certainty matrix, a value of
1 was given to all pixels populated with valid data and 0
for any pixel with error or no data. A Gaussian kernel was
used as the applicability measure. The weights of the basis,
{r1, rx, ry, rx2 , ry2 , rxy}, were calculated for Equation (1)
described by Farnebäck [8] and the values of these weights
for a Velodyne R© lidar range image can be seen in Figure 1.

f(x) = xTAx + bTx + c (1)

Using this formulation, the range, f(x), is described as

a function of pixel location, with A =

[
rx2

rxy

2rxy

2 ry2

]
, b =[

rxry
]T

and c = r1.

4. Local Flow Displacement Calculation

The polynomial expansion in 2D images allows displace-
ment to be calculated analytically, by looking at the effects
of a displacement on the polynomial expansion coefficients.
The effects of this displacement on the quadratic polyno-
mial are derived in Equation (2).
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f1(x) = xTA1x + b1
Tx + c1

f2(x) = f1(x− d)

= xTA1x + (b1 − 2A1d)Tx + dTA1d

+ b1
Td + c1

= xTA2x + b2
Tx + c2,

(2)

leaving you with a new quadratic polynomial with different
coefficients,

A2 = A1 (3)
b2 = b1 − 2A1d (4)

c2 = dTA1d + b1
Td + c1. (5)

With these new coefficients, d can be computed from
Equation (4).

d = −1

2
A1
−1(b2 − b1) (6)

This method of displacement calculation was developed
and tested by Farnebäck and is used as the starting point of
the three-dimensional (3D) displacement calculation.

A third dimension cannot simply be added to d because
with the current model, it has no meaning as an input term.
The function space is not defined for any value of z under
this model so the model must be modified to explain behav-
ior while displacing this third dimension.

To properly capture this higher-dimensional behavior, a
higher-order equation is used to approximate this space. A
linear spreading of the x and y data, Equation (7), as well as
a constant increase, Equation (8), was used to approximate
the behavior of the data as you move along the z dimension.
This leads to a quartic polynomial, Equation (9), with the
higher-order terms being very sparse tensors.

x′ = (ζxz + 1)x

y′ = (ζyz + 1)y

ζx = αx/z

ζy = αy/z

αx =
angular range of x

pixel range of x
=

2π radians
image width

αy =
angular range of y

pixel range of y
=

26.8◦

image height

x′2 =

[
x′

y′

]
(7)

f(x) = fquad(x
′
2) + z; (8)

f(x) = ζ2
xrx2x2z2 + ζxζyrxyxyz

2 + ζ2
yry2y

2z2

+ 2ζxrx2x2z + (ζx + ζy)rxyxyz + 2ζyry2y
2z

+ rx2x2 + rxyxy + ζxrxxz + ry2y
2 + ζyryyz

+ rxx+ ryy + z + c

(9)

where ζx and ζy were derived from the planar projection
model to account for the spreading of the points in the
spherical coordinate system of the sensor.

This can be combined into a tensor form:

f(x) = gijklxixjxkxl +hijkxixjxk + aijxixj + bixi + c,
(10)

where the high-order tensors, G and H, are sparse and the
quadratic tensors are dense. For G and H, the nonzero
terms are

g0022 = g0202 = g2002 = ... =
ζ2
xrx2

6

g0122 = g0212 = g2012 = ... =
ζxζyrxy

12
(11)

g1122 = g1212 = g2112 = ... =
ζ2
yry2

6

h002 = h020 = ... =
2ζxrx2

3

h012 = h120 = ... =
(ζx + ζy)rxy

6
(12)

h112 = h121 = ... =
2ζyry2

3
,

while A and b are

A =

 rx2
rxy

2
ζxrx

2
rxy

2 ry2
ζyry

2
ζxrx

2
ζyry

2 0

 (13)

b =
[
rx ry 1

]T
. (14)

We now explore the effects of displacement as Farnebäck
did in Equation (2):
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f(x) = gijklxixjxkxl + hijkxixjxk + aijxixj + bixi + c

f̃(x) = f(x− d)

= gijklxixjxkxl

− (4gijkldl − hijk)xixjxk

+ (6gijkl − 3hijkdk + aij)xixj

− (4gijkldjdkdl − 3hijkdjdk + 2aijdj − bi)xi
+ (gijkldidjdkdl − hijkdidjdk + aijdidj − bidi + c

= g̃ijklxixjxkxl + h̃ijkxixjxk + ãijxixj + b̃ixi + c̃,

(15)

leaving us with a new quartic polynomial with the following
coefficients:

g̃ijkl = gijkl

h̃ijk = hijk − 4gijkldl

ãij = aij − 3hijkdk + 6gijkldkdl

b̃i = bi − 2aijdj + 3hijkdjdk − 4gijkldjdkdl

c̃ = c− bidi + aijdidj − hijkdidjdk + gijkldidjdkdl.

(16)

Now we have a linear equation with H that could be used
as an analytical solution to d but with our higher-order ten-
sors being mostly sparse and mainly composed of the model
coefficients as opposed to the expansion coefficients, we
look to our lower order dense tensors to solve for d through
numerical optimization. Using the symmetries and sparsi-
ties of the matrices, we are left with the following coeffi-
cients in our dense tensors.

b̃0 = b0 − 2(a00dx + a01dy + a02dz)

+ 6(h002dxdz + h012dydz)

− 12(g0022dxd
2
z + g0122dyd

2
z)

b̃1 = b1 − 2(a01dx + a11dy + a12dz)

+ 6(h012dxdz + h112dydz))

− 12(g0122dxd
2
z + g1122dyd

2
z)

b̃2 = b2 − 2(a02dx + a12dy)

+ 3(h002d
2
x + h112d

2
y + 2h012dxdy)

− 12(g0022d
2
xdz + g1122d

2
ydz + 2g0122dxdydz)

(17)

c̃ = c− b0dx + b1dy + b2dz

+ (a00d
2
x + a11d

2
y + 2a01dxdy + 2a02dxdz + 2a12dydz)

− 3(h002d
2
xdz + h112d

2
ydz + 2h012dxdydz)

+ 6(g0022d
2
xd

2
z + g1122d

2
yd

2
z + 2g0122dxdyd

2
z).

(18)

To calculate d, we optimize the difference between the
observed polynomial coefficients of the next image and the
coefficients derived through displacing the coefficients of
the first image using Equations (17) and (18). This op-
timization is done using the non-linear least squares ver-
sion of Newton’s method, the Gauss-Newton algorithm, on
Equations (19) and (20). This optimization technique re-
quires the Jacobian matrices of each coefficient with respect
to d.

min
d

∑
(∆bi)

2, ∆b = b̃(1)(d)− b(2) (19)

min
d

∑
(∆c)2, ∆c = b̃(1)(d)− c(2) (20)

This leaves two remaining routes to solving for d,
through the changes in b or the changes in c, shown in
Equations (21) and (22), respectively, each with its own ad-
vantage. The solution based on b tends to produce more
accurate results for dx and dy because it captures the mo-
tion of the quadratic components seen mostly in edges. This
solution does not tend to be as accurate for the dz compo-
nent because dz is detected through the spreading of the
quadratic x and y components. This effect can be small at
long distances, where as dz has a large effect on c. How-
ever, the effects on c do not track the quadratic components
of dx and dy as directly as b.

∆db = (Jb(x)
TJb(x))

−1Jb(x)
T∆b (21)

∆dc = (Jc(x)
TJc(x))

−1Jc(x)
T∆c (22)

Similar to Farnebäck, this algorithm estimates the dis-
placement over a neighborhood I around x as opposed to a
single point, minimizing the following equations:

∑
x∈I

wx‖(b̃(1)
i (x + ∆x− d)− b(2)

i (x + ∆x))‖2 (23)∑
x∈I

wx‖(c̃(1)(x + ∆x− d)− c(2)(x + ∆x))‖2, (24)

where wx is the neighborhood weighting function and the
minimum steps are

∆db =

(∑
x∈I

wxJb(x)
TJb(x)

)−1 ∑
∆x∈I

wxJb(x)
T∆b

(25)

∆dc =

(∑
x∈I

wxJc(x)
TJc(x)

)−1 ∑
∆x∈I

wxJc(x)
T∆c.

(26)
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5. Global Flow Displacement Calculation
To compute the global motion estimation, we utilize the

material covered in Sections 3 and 4 to compute the polyno-
mial expansion of the range images which are utilized in a
global motion model. We follow the derivation and notation
of Farnebäck and Westin [10] and derive the global motion
estimation in the following section.

We model the displacement as d(x) = S(x)p, where
d(x) is the displacement estimation, S(x) is the motion
model, and p are the translation and rotation parameters,
p =

[
Tx Ty Tz ωx ωy ωz

]T
, which are optimized

to produce the global motion estimation. Using the work
of Dufaux and Moscheni [4] and the spherical coordinate
system inherent to our sensor, we construct a motion model
S(x) for our Velodyne R© sensor.

The final motion model for our sensor is

S(x) =
[
SsizeST SsizeSR

]
(27)

where

Ssize =


1
αx

0 0

0 1
αy

0

0 0 1

 , (28)

ST =


sin(θ)
rsin(φ)

−cos(θ
rsin(φ) 0

−cos(θ)cos(φ)
r

−sin(θ)cos(φ)
r

−sin(φ)
r

−cos(θ)sin(φ) −sin(θ)sin(φ) cos(φ)

 ,
(29)

SR =

−cos(θ)cos(θ)sin(θ)
−sin(θ)cos(φ)

sin(φ) −1

−sin(θ) cos(θ) 0
0 0 0

 . (30)

The matrix Ssize accounts for the scaling of each pixel
where αx and αy are defined as in Equation 7. The matri-
ces ST and SR account for the translational and rotational
components for each pixel [xi, yi] of the motion model, re-
spectively, where

θ = αxxi + minimum azimuth

φ = αyyi +
(

minimum elevation +
π

2

)
.

(31)

We set up a (nonlinear) least squares problem using the
steps outlined in [10] where the Gauss-Newton solution for
p is found to be (iterating over p = p−∆p)

∆p =
(∑

β1S
TJcJc

T + S + β2S
TJbJb

TS
)−1

×(∑
β1S

TJc
T∆c+ β2S

TJb
T∆b

) (32)

where Jc and Jb are the Jacobians of c (linear components)
and b (non-linear components) with respect to d, respec-
tively. The variables ∆c and ∆b are the residuals from
(c1 − c̃2) and (b1 − b̃2), respectively.

6. Range Image Flow Experiments

The local and global algorithms have been tested using
data from a Velodyne R© HDL-64E. This sensor is a 360◦

field of view 3D lidar with 64 vertically mounted lasers on
a spinning head. The lasers have a maximum range of 50 m
and an accuracy of 2 cm. It is capable of spinning at 5 to
15 Hz, generating over 1.333 million points per second. For
our tests, the sensor was set to 10 Hz, generating a horizon-
tal resolution of 1800 returns per rotation. The lidar returns
are assembled into a 64 x 1800 range image. The tests were
done using a Ford F-150 with the Velodyne R© mounted to
the roof. The vehicle and mounting hardware are visible in
the lidar scans, so all pixels within a threshold have been
marked with a certainty value of 0, causing these values to
have no effect on the polynomial expansion or the flow cal-
culations.

While we don’t yet have ground truth for this data, we
did compute the Normal Distributions Transform (NDT) for
the original point clouds to use for comparison. The data
set shown in Figures 2a, 3a, 4a and 5a was collected around
our facilities on a foggy day. The images contain mostly
data from the bushes and other vegetation surrounding the
road, but do eventually show a parking lot, seen in Figure
5a. The NDT results are overlaid on these images for use as
comparison to our presented algorithms.

6.1. Local Motion Estimation

The results of the local motion estimation algorithm are
shown in Figures 2b, 3b, 4b and 5b. Most of the flow field
appears accurate, though some regions still contain peculiar
behavior. Certain regions of the flow image act as sources
or sinks to the flow fields, such as in Figure 3b, where in the
middle right portion of the image the flow field moves away
from a central point. The boundary of the scan also seems
to be less accurate than the central areas. Areas such as
that shown in Figure 4b are relatively uniform, making flow
calculations more difficult. Despite this, the algorithm per-
formed reasonably well, though it does have regions with
sporadic flow behavior. Perhaps by combining the results
of the global motion estimation with the local motion esti-
mation, areas within the image that exhibit unique motion
with respect to the platform may be identified as obstacles
to aide in navigation.

6.2. Global Motion Estimation

To test the efficacy of the global motion estimation al-
gorithm, we first test on a known z rotation, since we can
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create an exact rotation with the data synthetically by sim-
ply shifting the pixels in the range image to the left or right.
The global range flow from this shift is shown in Figure 6
and the value of the translation and rotation parameters per
iteration is shown in Figure 7. As seen in both figures, the
correct solution is found and all of the motion is estimated
to be in the z rotation.

The results of the global motion estimation algorithm on
the real-world data are shown in Figures 2c, 3c, 4c and 5c.
As shown in the figures, the global motion estimation gives
a consistent picture of the ego-motion of the platform be-
tween two successive range images. For instance, in Figure
2c, the flow is in the forward direction only, which corre-
sponds to the correct action of the platform of a transla-

(a) NDT Flow Estimation

(b) Local Motion Estimation

(c) Global Motion Estimation

Figure 2: Range image flow on Velodyne R© scan 100.

tion perpendicular to the image plane, as is confirmed by
the results from the NDT algorithm in Figure 2a. How-
ever, in Figure 4, the results of the global motion estimation
show little or no motion, which does not match up with the
motion estimate of the NDT algorithm. Upon further in-
spection of the range images around frame 400, we found
a lack of texture in the images which could explain this re-
sult. Also, we found it difficult even for a human to discern
the motion present in those sequences of frames. There-
fore, further testing on low texture range images is needed.
While the global motion estimations may give more useful
information for finding the ego-motion of the platform, es-
timating the local motion remains an important task for true
autonomous navigation.

(a) NDT Flow Estimation

(b) Local Motion Estimation

(c) Global Motion Estimation

Figure 3: Range image flow on Velodyne R© scan 204.
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(a) NDT Flow Estimation

(b) Local Motion Estimation

(c) Global Motion Estimation

Figure 4: Range image flow on Velodyne R© scan 400.

7. Conclusion

The Polynomial Expansion-based method is effective in
calculating the flow of range data, as our results have shown.
The local motion estimation algorithm runs into some is-
sues where regions of the range image appear as sources
or sinks of motion, however, the overall results agree with
the correct motion. The global motion estimation algorithm
does not have these issues and appears to estimate the global
motion accurately. For navigation applications, both local
and global motion estimations will be useful to both esti-
mate the ego-motion of the platform as well as estimate the
movements of objects around the platform for avoidance
and tracking. There may also be some improvements to
overall motion estimation by combining the local and global
estimations in a meaningful way. In future work, quantita-
tive testing will be done to validate the qualitative results,

(a) NDT Flow Estimation

(b) Local Motion Estimation

(c) Global Motion Estimation

Figure 5: Range image flow on Velodyne R© scan 1000.

using ground truth data to run large scale tests. Once com-
plete, we are hoping to release this dataset to the wider re-
search community. Additionally, the polynomial expansion
may be used to segment the range image and classify pla-
nar and non-planar regions, which may then be incorporated
into the flow calculation. Certain features have more sta-
ble information about their motion and as such should take
on greater weights in the flow calculations. Planer regions,
for example, contain very little information about the data’s
motion, but the edge and corner features contribute a large
amount of flow information. Using the planar segmentation,
the flows calculated at the corners and edges of planar re-
gions could be interpolated across the region. In addition to
the range image work, future work will focus on calculating
the rotational components of the flow vectors with respect
to a single image location, useful in image stabilization and
unmanned aerial vehicle orientation determination.
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Figure 6: Global motion estimation of z rotation

Figure 7: Plot of z rotation estimation per iteration
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