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Abstract

Automotive systems provide a unique opportunity for
mobile vision technologies to improve road safety by un-
derstanding and monitoring the driver. In this work, we
propose a real-time framework for early detection of driver
maneuvers. The implications of this study would allow for
better behavior prediction, and therefore the development
of more efficient advanced driver assistance and warning
systems. Cues are extracted from an array of sensors ob-
serving the driver (head, hand, and foot), the environment
(lane and surrounding vehicles), and the ego-vehicle state
(speed, steering angle, etc.). Evaluation is performed on
a real-world dataset with overtaking maneuvers, showing
promising results. In order to gain better insight into the
processes that characterize driver behavior, temporally dis-
criminative cues are studied and visualized.

1. Introduction

Futuristic ‘smart’ cars as we envision will be equipped

with advanced sensors including GPS (for navigation), cam-

eras (for driver monitoring, lane detection), communica-

tions devices (vehicle-to-vehicle, vehicle-to-infrastructure),

etc. along with networked mobile computing devices with

ever increasing computational power. Automakers have

come a long way in improving both safety and comfort of

the car users. However, alarming crash statistics have kept

safer and intelligent vehicle design an active research area.

In 2012 alone, 33,561 people died in motor vehicle traffic

crashes in the United States [1]. A majority of such acci-

dents, over 90%, involved human error (i.e. inappropriate

maneuver or a distracted driver). Advanced Driver Assis-

tance Systems (ADAS) can mitigate such errors either by

alerting the driver or even making autonomous corrections

to safely maneuver the vehicle. Computer vision technolo-

gies, as non-intrusive means to monitor the driver, play an

important role in the design of such systems.

Figure 1. Timeline of an example overtake maneuver. We study

the dynamics of several key variables that play a role in holistic

understanding of overtake maneuvers. Driver monitoring could

allow for more effective warning systems.

In this work, we propose a holistic framework for real-

time, on-road analysis of driver behavior in naturalistic real-

world settings. Knowledge of the surround and vehicle dy-

namics, as well as the driver’s state will allow the develop-

ment of more efficient driver assistance systems. As a case

study, we look into overtaking maneuvers in order to evalu-

ate the proposed framework.

Lateral control maneuvers such as overtaking and lane

changing contribute to a significant portion of the total acci-

dents each year. Between 2004-2008, 336,000 such crashes

occurred in the US [13]. Most of these occurred on a

straight road at daylight, and most of the contributing fac-

tors were driver related (i.e. due to distraction or inappropri-

ate decision making). This motivates studying a predictive

system for such events, one that is capable of fully captur-

ing the dynamics of the scene through an array of sensors.

However, the unconstrained settings, the large number of

variables, and the need for a low rate of false alarms and

further distraction to the driver are challenging.
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Figure 2. A holistic representation of the scene allows for prediction of driver maneuvers and inferring driver intent. Even a few hundred

milliseconds of early identification of a dangerous maneuver could make roads safer and save lives. Best viewed in color.

2. Problem Statement and Motivation

Our goal is defined as follows: The early detection of

an intended maneuver using driver, vehicle, and surround

information.

As a case study, an on-road, naturalistic dataset of over-

take maneuvers was collected. Fig. 1 illustrates the tem-

poral evolution of different events in the course of a typi-

cal overtake maneuver, although the order and combination

of the shown events may differ among different overtake

maneuvers. First, the distance between the front and ego-

vehicle may decrease, causing the driver to scan the sur-

round (mirror and far glances). With the awareness that

an option for a maneuver is possible, the driver may per-

form preparatory hand and foot gestures. Steering starts

as the driver accelerates to the adjacent lane. The zero on

the time axis marks the time of the beginning of the lateral

motion. This temporal dissection of the overtake maneuver

suggests that a rich set of information lies in the 3 compo-

nents (i.e. driver, vehicle and surround) and their temporal

analysis will benefit towards achieving our goal. The chal-

lenges, however, lie in the development of vision algorithms

that work with high accuracy for detection of subtle move-

ments, as well as robust to large illumination changes and

occlusion.

A distributed camera network, see Fig. 2, is designed

for this purpose. The requirement for robustness and real-

time performance motivates us to study feature represen-
tation as well as techniques for recognition of key tempo-

ral events. The implications of this study are numerous.

First, early warning systems could address critical maneu-

vers better and earlier. Knowledge of the state of the driver

allows for customization of the system to the driver’s needs,

thereby avoiding further distraction caused by the system

and easing user acceptance [9, 8]. On the contrary, a sys-

tem which is not aware of the driver may cause annoyance.

Additionally, under a dangerous situation (e.g. overtaking

without turning on the blinker), a warning could be con-

veyed to other approaching vehicles (e.g. turning blinkers

on automatically). Finally, in the process of studying the

usability and the discriminative power of each of the cues

alone and combined, we gain further insight into the under-

lying processes of driver behavior.

3. Instrumented Mobile Testbed

A uniquely instrumented testbed vehicle was used in or-

der to holistically capture the dynamics of the scene: the ve-

hicle dynamics, a panoramic view of the surround, and the

driver. Built on a 2011 Audi A8, the automotive testbed has

been outfitted with extensive auxiliary sensing for the re-

search and development of advanced driver assistance tech-

nologies. Fig. 2 shows a visualization of the sensor ar-

ray, consisting of vision, radar, LIDAR, and vehicle (CAN)

data. The goal of the testbed buildup is to provide a near-

panoramic sensing field of view for experimental data cap-

ture. The experimental testbed employs a dedicated PC,

which taps all available data from the on-board vehicle sys-

tems excluding some of the camera systems which are syn-

chronized using UDP/TCP protocols. On our dataset, the

sensors are synchronized on average by 22ms or less.

For sensing inside the vehicle, two cameras for head pose

tracking, one camera for hand detection and tracking, and

one camera for foot motion analysis are used. For sensing
the surround of the vehicle, a forward looking camera for
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lane tracking is employed, as well as two LIDAR sensors

(one forward and one facing backwards) and two radar sen-

sors on either side of the vehicle. A Ladybug2 360◦ video

camera (composed of an array of 6 individual rectilinear

cameras) is mounted on top of the vehicle. Finally, infor-

mation is captured from the CAN bus providing 13 mea-

surements of the vehicle’s dynamic state and controls, such

as steering angle, throttle and brake, and vehicle’s yaw rate.

4. Feature Extraction

In this section we detail the vision and other modules

used in order to extract useful signals for analysis of activi-

ties.

4.1. Driver Signals

Head: Head dynamics are an important cue in predic-

tion, as head motion may precede a maneuver in visually

scanning for retrieving information about the environment.

Unfortunately, many head pose trackers do not provide a

large operational range, and may fail when the driver is not

looking forward [19]. Therefore, we follow the setup of

[19] where a two camera system provides a simple solution

to mitigate the problem.

Head pose is estimated independently on each cam-

era perspective from facial landmarks (i.e. eye corners,

nose tip), which are detected using the supervised descent

method [22], and their corresponding points on a 3D mean

face model [19]. The system runs at 50 frames per sec-

ond (fps). A one-time calibration is performed to transform

head pose estimation among the respective camera coordi-

nate system to a common coordinate system.

Hand: The hand signal may provide information on

preparatory motions before a maneuver is performed. Hand

detection is a difficult problem in computer vision, due to

the hand’s tendency to occlude itself, deform, and rotate,

producing a large variability in its appearance [14, 16].

We use integral channel features [7] which are fast to ex-

tract. Specifically, for each patch extracted from a color

image, gradient channels (normalized gradient channels at

six orientations and three gradient magnitude channels) and

color channels (CIE-LUV color channels were experimen-

tally validated to work best compared to RGB or HSV) are

extracted. 2438 instances of hands were annotated, and an

AdaBoost classifier with decision trees as the weak clas-

sifiers is used for learning [23]. The hand detector runs

at 30 fps on a CPU. For non-maximal suppression, a 0.2

threshold is used. In order to differentiate the left hand

from the right hand and prune false positives, we train a his-

togram of oriented gradients (HOG) with a support vector

machine (SVM) detector for post-processing of the hypoth-

esized hand bounding boxes provided by the hand detector.

A Kalman filter is used for tracking.

Foot: One camera is used to observe the driver’s foot

behavior near the brake and throttle pedal. Due to lack of

lighting, an illuminator is used. While embedded pedal sen-

sors already exist to indicate when the driver is engaging

any of the pedals, vision-based foot behavior analysis has

additional benefits of providing foot movements before and

after pedal press. Such analysis can be used to predict a

pedal press before it is registered by the pedal sensors.

An optical flow (iterative pyramidal Lucas-Kanade, run-

ning at 30 fps) based motion cue is employed to determine

the location and magnitude of relatively significant motions

in the pedal region. Optical flow is a natural choice for an-

alyzing foot behavior due to little illumination changes and

the lack of other moving objects in the region. First, op-

tical flow vectors are computed over sparse interest points,

detected using Harris corner detection. Second, a majority

vote over the computed flow vectors reveals an approximate

location and magnitude of the global flow vector. Optical

flow-based foot motion analysis have been used in [21] for

prediction of pedal presses.

4.2. Vehicle Signals

Commonly, analysis of maneuvers is made with trajec-

tory information of the ego-vehicle [4, 10, 11, 2, 3]. In this

work, the dynamic state of the vehicle is measured using

the CAN bus, which supplies 13 parameters ranging from

blinkers to the vehicle’s yaw rate. In understanding and

predicting the maneuvers in this work, we only use steering

wheel angle information (important for analysis of overtake

events), vehicle velocity, and brake and throttle paddle in-

formation.

4.3. Surround Signals

Lidar/Radar: Prediction of maneuvers can consider the

trajectory of other agents in the scene [17]. This is impor-

tant for our case study, as a driver may choose to overtake

a vehicle in its proximity. Such cues are studied using an

array of range sensors that track vehicles in terms of their

position and relative velocity. A commercial object tracking

module [20] tracks and re-identifies vehicles across LIDAR

and radar systems providing vehicle position and velocity

in a consistent global frame of reference. In this work, we

only consider trajectory information (longitudinal and lat-

eral position and velocity) of the forward vehicle.

Lane: Lane marker detection and tracking [18] is per-

formed on a front-observing gray-scale camera (see Fig. 2).

The system can detect up to four lane boundaries. This in-

cludes the ego-vehicle’s lanes and its two adjacent lanes.

The signals we consider are the vehicle’s lateral deviation

(position within the lane) and lane curvature.

A 360◦ panoramic image collects visual data of the sur-

round. It is the composed view of six cameras, and used for

annotation and offline analysis.
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Figure 3. Two features used in this work: raw trajectory features outputted by the detectors and trackers, and histograms of sub-segments

of the signal.

4.4. Time-Series Features

We compare two types of temporal features derived from

the aforementioned signals. For each of the signals at each

time, ft, we may simply use a concatenation of the signal

in a time window of size L,

Ft = (ft−L+1, . . . , ft) (1)

The time window in our experiments is fixed at three sec-

onds. In the second set of features, the windowed signal Ft

is split into k equal sub-signals first, followed by a construc-

tion of a histogram of each of these sub-signals separately

(depicted in Fig. 3). Such a partitioning aims to preserve

temporal information. We experimented with k = 1, 2, 4, 8
and found that using features of up to k = 4 (combined

splits used are at levels 1, 2, and 4) worked well with no ad-

vantage in increasing the number of sub-segments further.

Therefore, this partitioning is used in all the experiments.

5. Temporal Modeling
Given a sequence of observations from Eq. 1, x =

{F(1)
t , . . . ,F(c)

t }, where c is the total number of signals, the

goal is to learn a mapping to a sequence of labels.

One approach to capturing signal temporal structure in-

volves using a Conditional Random Field (CRF) [12]. CRF

has been shown to significantly outperform its generative

counterpart, the Hidden Markov Model [12]. Nonetheless,

CRF on its own may not capture sub-structure in the tem-

poral data well, which is essential for our purposes. By

employing latent variables, the Latent-Dynamic CRF (LD-

CRF) [12, 15] improves upon the CRF and also provides a

segmentation solution for a continuous data stream.

When considering the histogram features studied in this

work, we model each bin as a variable in the LDCRF frame-

work. In this case, temporal structure is measured by the

evolution of each bin over time (20 bins are used for each

histogram). Possibly due to the increase in dimensionality

and the already explicit modeling of temporal structure in

the model, using raw features was shown to work as good

or better than histogram features for the LDCRF model.

A second approach for temporal modeling is motivated

by the large number of incoming signals from a variety of

modalities. Fusion of the signals can be performed using

Multiple Kernel Learning (MKL) [5].

Given a set of training instances and signal channel cl, a

kernel function is calculated for each channel, κcl(xi, xj) :
R

d × R
d → R (d is the feature dimension and xi, xj are

two data points). Denote {Kcl ∈ R
n×R

n, l = 1, . . . , s} as

the collection of s kernel matrices for the data points in the

training set, so that Kcl
ij = κcl(xi, xj). In our implementa-

tion, Radial Basis Function (RBF) kernels are derived from

each signal, κ(xi, xj) = exp(−||xi − xj ||/γ). The cost

and spread parameters are found for each signal using grid

search.

For combining the kernels, the goal is to learn a prob-

ability distribution p = (p1, . . . , ps), with p ∈ R+ and

pT 1 = 1, for finding an optimal combination of kernel ma-

trices,

K(p) =
s∑

l=1

plKcl (2)

Stochastic approximation is used to learn the weights p
as in [5] with LIBSVM [6].

The histogram features were shown to work well with

the MKL features, performing better than simply using the

raw features.

6. Experimental Evaluation

Experimental settings: As a case study of the proposed

approach for maneuver analysis and prediction, 54 minutes

of video containing 78,018 video frames was used (at 25

frames per second). 1000 events of normal driving (each

defined in a three second window leading to about 75,000

frames total) were chosen randomly, and 13 with overtaking

instances were annotated (a total of 975 frames). Training

and testing is done using a 2-fold cross validation. Overtake

events were annotated when the lane crossing occurred.
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(a) LDCRF (b) MKL

Figure 4. Classification and prediction of overtake/no-overtake maneuvers using LDCRF (raw trajectory features) and MKL (histogram

features). He+Ha+F stands for the driver observing cues head, hand, and foot. Ve+Li+La is vehicle, LIDAR, and lane. ‘all’ comprises of

all of the individual cues.

Temporal Modeling: The comparison between the two

techniques studied in this paper is shown in Fig. 4. As

mentioned in Section 5, LDCRF benefits from the raw sig-

nal input, as opposed to treating each bin in the histogram

features as a variable. On the contrary, MKL significantly

benefits from the histogram features as it lacks a state model

and the histogram level pyramid provides distinct tempo-

ral structure patterns. In order to visualize the discrimina-

tive effect of each cue, a model is learned for each spe-

cific cues and then for different combinations. Generally,

we notice how the vehicle and surround cues tend to spike

later into the maneuver. This can be seen by comparing

the ‘Ve+Li+La’ (vehicle, LIDAR, and lane) curve with the

‘He+Ha+F’ (driver observing cues, head, hand, and foot).

An important observation is that although the trends appear

similar in the two temporal modeling techniques, the fusion

results differ significantly. For instance, using all the fea-

tures results in a significantly higher prediction at δ = −1
in MKL when compared to LDCRF. Nonetheless, LDCRF

appears to be better at capturing dynamics for individual

cues.

Features: Fig. 5 depicts the temporal evolution of cue

importance using the weight outputs from the MKL frame-

work. Successful cues will correspond to a heavier weight,

and cues with little discriminative value will be reduced in

weight. To produce this plot, we learn a model using the

specific set of cues (driver, vehicle, or surround cues) for

each δ time before the maneuver. This provides the kernel

weights which are plotted. We observe how driver-related

cues are strongest around the time that the lateral motion

begins (t=0). After the steering began, there is a shift to the

surround cues, such as lane deviation. The results affirm the

approach for describing a maneuver using a set of holistic

features.

7. Concluding Remarks
Modern automotive systems provide a novel platform

for mobile vision application with unique challenges and

constraints. In particular, driver assistance systems must

perform under time-critical constraints, where even a few

hundred milliseconds are essential. A holistic and com-

prehensive understanding of the driver’s intentions can help

in gaining crucial time and in saving lives. This shifts the

focus towards studying maneuver dynamics as they evolve

over longer periods of time. Prediction of overtake maneu-

vers was studied using information fusion from an array of

sensors, required to fully capture the development of com-

plex temporal inter-dependencies in the scene. Evaluation

was performed on naturalistic driving showing promising

results for prediction of overtaking maneuvers. Having an

accurate head pose signal with the combination of other sur-

round cues proved key to early detection.
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