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Abstract
We present our current work on a camera tracking algo-

rithm designed for a mobile device equipped with a stereo
camera. The tracker runs in real-time on a prototype mo-
bile platform and it can be used as the core engine of aug-
mented reality applications. In order to cope with the lim-
ited resources available, we design an algorithm that re-
lies on the stereo camera only for the 3D reconstruction of
points, while the point tracking is performed only on one of
the two images, thus reducing the computational effort. We
show some preliminary results in which the camera tracker
as been validated in a realistic scenario and it is proved to
have an adequate robustness for an augmented reality ap-
plication.

1. Introduction
In the last decade the wide diffusion of mobile devices

equipped with cameras, such as smart-phones and tablets,
contributed to the growth of computer vision applications
for these new devices. The most notable application is Aug-
mented Reality [18], which enhances the user experience by
rendering virtual objects over the images. This can find ap-
plication in a wide range of domains and contexts, from dis-
playing additional information about a given product during
shopping, gaming, up to urban navigation for pedestrians
[20].

In order to properly render the virtual objects inside the
image, the position, the orientation and the movement of the
device must be known at any time instant, so that the virtual
objects are perceived by the user as part of the surrounding
reality [6]. In the case of mobile phones with cameras, dif-
ferent solutions have been proposed to track the motion of
the device according to the required level of accuracy. Ac-
celerometers and magnetometers can be coupled in order to
provide the motion and the orientation of the device at any
time instant. Unfortunately the inertial sensors alone cannot
achieve high accuracy, since the measurements can be noisy
for slow motions and magnetic fields may interfere with the
magnetometer [7].

A common approach to retrieve the motion and orien-
tation of the device is to use the visual information of the
on-board camera to track fixed points in the scene and ex-

ploit their apparent motion to estimate the motion [10]. This
technique is known as Camera Tracking and it’s mainly
composed of four main steps: (i) detection of interest points
(features) in different images, (ii) finding of corresponding
points among the images and 3D reconstruction, (iii) track-
ing of the points in new images, and (iv) estimation of the
motion and orientation of the camera. Eventually, a Bundle
Adjustment (BA) process [30] is run to maintain a global
consistency between the 3D points and the camera posi-
tions.

Visual tracking can provide a more accurate and stable
estimate of the camera motion, especially for smooth move-
ments of the camera. On the other hand, other factors such
as change of light conditions, object occlusions, motion blur
due to abrupt movements of the camera and texture-less en-
vironments can affect the robustness of the tracking. Of-
ten visual tracking and motion sensors are coupled together
[15, 33] to combine the benefits of the two approaches and
limit their drawbacks. In this case the camera and the mo-
tion sensors must be mutually calibrated [14].

In a pure visual tracking approach, the detection of inter-
esting features in the scene is often eased by using special
markers that are highly recognizable in the image [5, 8].
Camera tracking with markers is very robust and it is a
common approach for many augmented reality applications.
Optimized methods [32] allow mobile devices to easily de-
tect markers in real-time. The major drawback of this solu-
tion, though, is that the scene must be set up with markers,
not always a practical solution for some particular applica-
tions, e.g. tracking in wide spaces or outdoor navigation.

Some marker-less approaches for hand-held devices
have been proposed. Klein and Murray adapted and ported
their previous work based on a SLAM framework [16] to
an iPhone device [17]: they showed that the computational
burden of the BA can be optimized and limited by using
a dedicated background thread and by reducing the dimen-
sionality of the optimization problem (less tracked points).
The method proposed by Wagner et al. [31] tracked natu-
ral features (based on optimized versions of SIFT [21] and
FERN [26]) on known textured planar targets. Lately, Kurz
and Benhimane [19] proposed to enrich the feature descrip-
tors with the gravity direction, thus improving the feature
matching in marker-less tracking algorithms.
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In this paper we present the first results of our on-going
work on a camera tracker for a mobile device equipped
with a stereo camera. In the last years 3D vision has be-
come popular and some mobile phones have been intro-
duced in the market sporting a stereo camera coupled with
auto-stereoscopic screens. This opens the way to a new in-
teresting and challenging range of applications that can fur-
ther improve the user experience and interaction with the
real world. In particular we are working on a mobile plat-
form prototype which is being developed by ST-Ericsson
and we are developing a camera tracker method that exploits
the stereo configuration and that can be used for stereo aug-
mented reality applications.

Stereo cameras are interesting in the context of camera
tracking as they can provide at any time instant the 3D
depth of the scene. On the other hand, they require more
computational power since two images must be processed
at the same time. There are some works in the literature
that adapted the VisualSLAM techniques to the stereo case
[25, 22]. These works are mainly focused on robotic ap-
plications and deal with camera tracking in large environ-
ments. The methods proposed by Nister et al. [25] uses
a tracking by matching approach: the features extracted in
the stereo pair are used to perform a first reconstruction of
the points, and then, for each new (stereo) frame new fea-
tures are extracted and matched with the previous ones to
estimate the motion of the camera. They also fuse the data
coming from the inertial sensors and the GPS with the vi-
sual estimation, in a bundle adjustment process. Overall the
system runs at ∼13fps on a standard PC and it is not suit-
able for a mobile device. The method proposed by Mei et
al. [22], instead, uses the reprojection of the 3D points re-
constructed at the previous step to estimate the position of
the stereo camera and, for each frame, it also reconstructs
new 3D points that are added to the set of the tracked points.
The image features are represented with SIFT descriptors in
order to guarantee the relocalization of the robot whenever
the track is lost (“kidnapped robot”). The method requires
a Quad Core PC to run in real-time.

Developing a camera tracker for a mobile device requires
to design the algorithm in order to meet the computational
constraints, yet maintaining a level of robustness adequate
for the application. The main contribution of our work is
then a novel algorithm that is able to estimate the motion of
the stereo camera in real-time and in a robust way. To the
best of our knowledge this is the first attempt to develop a
stereo camera tracking algorithm for a mobile device.

The paper is organized as follows: §2 presents the main
aspects of our approach to stereo camera tracking and some
details of the proposed algorithm. §3 presents some pre-
liminary experiments and validation of our method running
on the prototype device. §4 concludes the paper with some
discussions and future works.

2. Stereo Camera Tracking
The tracking algorithm is composed of two main steps,

the initialization step and the tracking step. The initializa-
tion step is performed only once for the first frame and it

mainly consists in the first 3D stereo reconstruction of the
points that will be tracked in the next frames. It is important
to note that, in order to limit the computational effort, we
process the stereo pair only when necessary, namely when
features are lost during the tracking and new 3D points need
to be reconstructed, while we process only one of the two
images to track the points (in our case we arbitrarily chose
the left one).

Stereo calibration (intrinsics, extrinsics and lens distor-
tion) is performed off-line by our Android stand-alone ap-
plication implementing the method proposed by [29].

2.1. Initilization
The initialization step occurs only at the beginning of

the tracking and allows to detect the features with the stereo
camera and reconstruct them, so that they can be tracked in
the subsequent frames and used to estimate the motion and
the pose of the camera.

In the monocular case the initialization step normally re-
quires the user to move the camera in order to have at least
a pair of images with a significant displacement between
them, which guarantees a better and more reliable first 3D
reconstruction [23, 16, 17]. Using a stereo camera, instead,
the initialization step does not require any user interaction,
since the features can be reconstructed by the stereo cam-
era. We extract the features from both images and we match
them in order to obtain a set of corresponding points in both
images. These points can be reconstructed by triangulation,
thus giving a set of 2D-3D points association.

Feature extraction Recently, a new range of feature de-
scriptors and feature extractors have been proposed in order
to overcome the computational limitation of SIFT [21] and
SURF [1], yet maintaining a good and comparable recogni-
tion performance. A detailed review and a comparison of
such feature descriptors for camera tracking applications is
proposed in [11]. In our algorithm we chose a combination
of FAST [28] features and BRIEF [4] descriptors, since in
our experiments it was the combination that guarantees the
best trade-off between speed and recognition rate. FAST is
well known to be a very fast corner extractor with a good
repeatability and robustness to light changes. BRIEF de-
scriptors have been introduced recently and they to describe
the feature patch with binary descriptors, as results of a se-
ries of random (binary) tests on the pixels of the patch. The
resulting descriptors are compact strings composed of few
bits (128) that can be matched using the Hamming distance,
which is quite fast to compute.

Finally, in order to have an uniform distribution of fea-
tures covering the whole image, we divide the images in
cells (in our case with a 4 × 4 grid) and for each cell we
consider at most the first MaxFeat detected features.

Feature Matching Once the features are extracted and
their descriptors are computed on both images, the descrip-
tors are matched to find corresponding points in the stereo
pair. For each feature on one image, the BRIEF descrip-
tors is compared with the descriptors of the other image and
the descriptor with the smallest distance is considered as
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a candidate match1. In order to improve the robustness of
the matching process we consider only those candidate pairs
that are mutually a good match. For each feature in both im-
ages, we compute the k nearest neighbors using the FLANN
algorithm [24]. Then, for each feature descriptor on the left
image dl

i, we consider its k neighbors dr
j on the right image

and we select as the matching candidate the descriptor dr
j

that has dl
i among its k neighbors. In our experiments we

use k = 4.

3D Reconstruction The corresponding points found at
the previous step are triangulated to geometrically recon-
struct the 3D point in the scene[13]. Since the set of cor-
responding points may still contains some incorrect corre-
spondences and outliers, we further filter out the pairs hav-
ing a reprojection error on the two images larger than a
given threshold repThreshold = 2pix, and those whose
3D point does not lie in front of both cameras, i.e. it is not a
physically feasible solution (cheirality test).

2.2. Tracking
In order to reduce the computational cost only the left

images are used to track the features; the tracking is per-
formed with Lucas-Kanade (LK) tracker based on the opti-
cal flow only. The new position of the feature in the image is
used to solve the resection problem and estimate the camera
position and orientation.

During the tracking process, features may be lost due to
occlusions, large movements of the camera or lost by the
LK tracker. In order to maintain a sufficient number of
tracked features, thus preserving the reliability of the mo-
tion estimation, whenever the number of tracked features
decreases below a given threshold minFeat = 20, we refill
the set of tracked features with new ones. As in the ini-
tialization step, we rely on the stereo pair to extract new
features, find new stereo correspondences and reconstruct
new 3D points. Unlike the initialization step, though, in
this step we also implemented a re-association algorithm in
order to re-associate the new features with already known
3D points that are visible from the camera but that were no
longer tracked in the image.

Feature Tracking Since the optical flow tracking is usu-
ally a computationally intensive algorithm, we used a sparse
version of the Lucas-Kanade tracker using pyramids [2],
which computes the optical flow only in a patch surround-
ing the locations of the features to be tracked. Moreover,
using pyramids, different scale factors can be used in order
to take into account changes in scale due, e.g., to the zoom-
ing movement of the camera. In our experience we found
that a good trade-off between speed and robustness can be
achieved when the optical flow is computed in a 11 × 11
patch around the locations of the features using a 2-level
pyramid.

1At the moment the prototype device can only provide raw images for

each camera; upcoming hardware upgrades will allow to work directly

with rectified images, thus simplifying and speeding-up the search for cor-

respondences. In our early experiments, software rectification introduced

a significant overhead in our pipeline.

(a) The mobile platform (b) The stereo camera

Figure 1. The mobile prototype (a) used to run the camera tracker

is equipped with a stereo rig (b) having a baseline of 6.5cm.

Pose Estimation Once the new positions of the features
are computed, the camera motion and orientation can be
estimated by solving the resection problem using the 2D-
3D points association. In our implementation we use the
method proposed by Grunert [12] to compute an initial esti-
mate of the pose with a minimal set of 3 points. A RANSAC
[9] process is used in order to filter out possible outliers and
refine the initial solution.

Feature Re-association If the number of tracked features
is below the threshold minFeat the stereo pair is used to de-
tect new features and reconstruct new 3D points. We follow
a similar procedure as in the initialization step (see §2.1).
We extract the FAST corners and compute their BRIEF de-
scriptors, and we keep only those features that are at a dis-
tance of at least minDist = 15pix from the current tracked
features. This prevents “redundant” points and it guarantees
a more uniform distribution of the features in the image.

Then we consider the set of all the 3D points that have
been reconstructed so far and that are visible from the cam-
era but not anymore associated to any tracked feature. The
3D point visibility is computed by considering the actual
position and orientation of the camera and its field of view,
according to the calibration data. We project these 3D
points on the left image: if the projected image point is
within a distance repThreshold from a new detected fea-
ture we then assign that feature to that 3D point and we
add it to the set of tracked features. In order to speed-up the
search process we use the new left detected features to build
a KD-Tree and then we use the FLANN algorithm to query
the tree with a projected point in order to find its closest
point among the new left detected features.

It is worth to note that this re-association algorithm may
generate false associations, since, e.g., occlusions among
3D points are not taken into account. However the sys-
tem is overall robust to false re-associations: when false
re-associated points are tracked in the next frame, the points
are discarded by the RANSAC process of the pose estima-
tion algorithm, which is robust to outliers.

The remaining new features are then matched with those
of the right image, triangulated and added to the set of
tracked features as described in §2.1.
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Figure 2. To visually assess the quality of the tracking we render

a 3D object over the dominant plane of the scene, which is de-

termined during the initialization step by robustly fitting the 3D

points to a plane in a RANSAC process.

3. Experimental Results
The camera tracker has been implemented on a mo-

bile platform prototype developed by ST-Ericsson (see
Figure 1). The platform is powered by U8500 application
processor, containing a dual-core ARM R© CORTEXTM-A9
CPU with NEON running at 800MHz, and a ARM MALI-
400 GPU running at 400MHz. The platform is running An-
droid OS 2.4.3 and is equipped with two 5.3Mpix cameras
that form a stereo rig with a baseline of 6.5cm. The plat-
form is able to provide a stereo video stream composed of
two images of 640 × 480 pixels at a frame rate of 30fps in
a top-down layout.

We implemented the camera tracker in C++ relying on
some functions of the OpenCV libraries [3] (feature detec-
tion, descriptor computation, and LK tracking), while the
main JAVA application on the mobile device processes the
stereo image calling a native JNI function of the C++ cam-
era tracker library. It must be noted that at the moment no
GPU and multi-threading optimization have been done, we
only took advantage of the TBB [27] parallelization of the
OpenCV function computing the sparse optical flow.

In order to visually assess the quality and the stability of
the camera tracking, we run some preliminary tests drawing
a 3D object in the stereo image as depicted in Figure 2. The
videos with some preliminary results can be found at the
following url http://goo.gl/YuNRw.

In our preliminary experiments the camera tracker ran
in real-time up to 15 frames per seconds. Table 1 shows a
break down of the algorithm into the most relevant functions
and for each of them the average execution time. The exe-
cution times have been computed by taking the clock time
before and after the function call. It can be noted that during
a typical execution of the algorithm the LK tracking process

Function Mean Max Min

Feature extraction 30.19 77.53 13.11
Descriptor computation 24.96 33.32 21.19
Matching 17.49 21.8 10
LK tracking 58.36 126.89 37.01
Pose estimation 16.03 83.87 0.43
Re-association 147.43 188.81 115.06

Table 1. Statistics of the execution time of some functions of our

algorithm. Times expressed in [ms].

is the most demanding one with an average execution time
of ∼60ms. This is not surprising as the optical flow com-
putation is computationally intensive. The execution time
also depends on the number of features that are currently
tracked, as it can be noted in Figure 3: the LK tracking time
decreases as features are lost and it reaches its maximum af-
ter new features are added by the re-association procedure
(which corresponds to the spikes in the graph). In our set-
tings we normally use up to 300 features. An alternative
approach to feature tracking is to extract the features for
each frame, compute the descriptors and match them with
the ones of the last frame. As shown in Table 1 these three
operations can be as expensive as the optical flow approach.
However when we tried this approach we found out that
the tracking by matching approach is less robust than the
optical flow as it generates more outliers and false stereo
correspondences.

The re-association process is the most computationally
expensive operation, as it requires to process the two stereo
images in order to extract the features and compute their
descriptors: as reported in Table 1, these two operations
require ∼50ms for each image and up to ∼20ms to com-
pute the correspondences by matching the descriptors. On
the other hand the re-association is not performed at every
frame but only when enough features are lost during the
tracking. This is related to the movement of the camera,
hence for smooth movements of the camera higher frame-
rates can be achieved. In our experiments we noted that
typically the re-association procedure is called on average
every 50− 60 frames depending on the camera motion (see
the spikes in Figure 3).

In order to numerically assess the quality of the cam-
era tracker we tried to evaluate the error between the esti-
mated starting position and the estimated ending position of
the camera when it moves in a loop. Since no device that
could guarantee a repeatable and controlled movement (e.g.
a robotic arm) was available, we manually moved the cam-
era in a loop path, trying to bring the camera back to the
initial position over a reference landmark. In our experi-
ments the error between the starting and the ending position
typically ranges between 20mm and 80mm with an average
path of 4m (see Table 2). Figure 4 shows some samples of
the reconstructed trajectories.

4. Conclusion and future work
In this paper we presented our on going work on devel-

oping a camera tracker for a mobile device equipped with
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Figure 3. An example of the execution times of our algorithm, with the partial execution time of the main functions
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(b) Sequence 2 3D view
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(c) Sequence 4 top view
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(d) Sequence 4 3D view

Figure 4. The top view of the XY plane ((a) and (c)) and a 3D view ((b) and (d)) of the trajectories of the Sequence 2 and Sequence 4, with

the starting point (in red) and the end point (in green).

Sequence # Frames Distance Error

Sequence 1 412 4.62m 50.74mm

Sequence 2 454 5.37m 73.09mm

Sequence 3 328 3.54m 29.11mm

Sequence 4 409 3.61m 18.56mm
Table 2. Errors in closing a loop path with different video se-

quences.

a set of stereo cameras. The proposed algorithm is tailored
for the limited computational power of the mobile environ-
ment. After an initialization step where the stereo images
are used to reconstruct a first set of 3D points, the track-
ing of the frame is then limited to the left image, in order to
limit the processing time. The stereo pairs are used to detect
and reconstruct new feature points, whenever the number of
features decreases below a given threshold. We showed that
the proposed camera tracker can run on in real-time on a
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prototype of a mobile device equipped with a stereo camera
showing a good level of stability and robustness, adequate
for a real augmented reality application.

There are several research directions that we are address-
ing to improve and further develop our algorithm. We are
planning to add a re-localization module that allows the
tracker to recognize a location that has been already vis-
ited in other session. Re-localization is also important to
recover the position of the device whenever the tracking is
lost due to occlusions or large and sudden motions of the de-
vice. A related direction is the optimization module, based
on the bundle adjustment, which will contribute to improve
the loop closure problem by optimizing the 3D structure and
generate a more accurate map of the scene. We are investi-
gating a solution inspired by [17], with a background thread
performing the optimization.

The integration and the fusion of the data from the iner-
tial sensors is another interesting direction of investigation,
as they can improve the quality of tracking, especially when
irregular and large motions are involved, which typically are
not properly handled by the visual sensors.
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