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Abstract

Automatic affect analysis and understanding has become

a well established research area in the last two decades.

However, little attention has been paid to the analysis of

the affect expressed in group settings, either in the form of

affect expressed by the whole group collectively or affect

expressed by each individual member of the group. This pa-

per presents a framework which, in group settings automati-

cally classifies the affect expressed by each individual group

member along both arousal and valence dimensions. We

first introduce a novel Volume Quantised Local Zernike Mo-

ments Fisher Vectors (vQLZM-FV) descriptor to represent

the facial behaviours of individuals in the spatio-temporal

domain and then propose a method to recognize the group

membership of each individual (i.e., which group the indi-

vidual in question is part of) by using their face and body

behavioural cues. We conduct a set of experiments on a

newly collected dataset that contains fourteen recordings of

four groups, each consisting of four people watching affec-

tive movie stimuli. Our experimental results show that (1)

the proposed vQLZM-FV outperforms the other feature rep-

resentations in affect recognition, and (2) group member-

ship can be recognized using the non-verbal face and body

features, indicating that individuals influence each other’s

behaviours within a group setting.

1. Introduction

Automatic affect analysis has attracted increasing atten-

tion and has seen much progress in recent years [34]. How-

ever, little attention has been paid to the analysis of the af-

fect expressed by a group of people in a scene or in an in-

teraction setting. From psychological perspective, the af-

fect of each individuals is influenced by the overall group

[3]. From the automatic analysis perspective, Leite et al.

[20] reported that individual disengagement could be mod-

elled differently in individual and group settings; and their

results indicated that more diverse types of disengagement

behaviours were shown in group settings than in individual

settings. Therefore, it would be also interesting to study

the individual affect expressed in a group setting. However,

to the best of our knowledge, most of the existing works

on affect analysis in group settings focus on the automatic

recognition of collective group-level emotions in static im-

ages [10, 22]; and little attention has been paid to the auto-

matic affect analysis of each individual member in a group

setting.

In this paper, we introduce a framework for automatic

affect analysis of individual members in group videos. To

this end, we extract spatio-temporal face and body informa-

tion to analyse the affective states along both valence and

arousal dimensions. For facial representation, we extend

the static Quantised Local Zernike Moments (QLZM) to the

temporal domain and extract Fisher Vectors to investigate

on their performance in the domain of affect recognition.

Our analysis shows that (1) different modalities (i.e., face or

body) and different types of information (local appearance

deformations or motion) contribute to the different recogni-

tion tasks in different ways, and (2) that fusion of informa-

tion from the different modalities, in our case by an SVM

trained on the soft outputs of the individual modality clas-

sifiers, almost always leads to performance improvements.

Finally, we show that face and body features are informa-

tive in predicting contextual information, namely the group

each individual belongs to (i.e., group membership).

The rest of paper is organized as follows: the related

works are reviewed in Section 2; the proposed framework

is illustrated in Section 3; the experiments and results are

presented and discussed in Section 4; and conclusions and

future work are described in Section 5.

2. Related Work

Affect analysis in group settings. Recent works in af-

fect recognition fields have started focusing on the analy-

sis of spontaneous affect displayed by multiple people in

more naturalistic settings. Pioneering works in this area fo-

cused on analysing the overall group-level emotions. Dhall

et al. introduced a database named HAPPEI and inferred

the overall happiness mood intensities conveyed by a group
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of people in static images in [9] and predicted the collective

valence level (i.e., positive, neutral and negative) in [10].

An extended framework was introduced in [22] for recog-

nizing both the arousal (i.e., high, medium and low) and

valence (i.e., positive, neutral and negative) expressed by a

group of people in static images. Although the individual

information was used in the aforementioned works to pre-

dict the group-level affect, all of these works focus on the

collective affect expressed by the whole group rather than

analysing the affect displayed by each individual. In ad-

dition, all of the works focus on static images rather than

dynamic videos. Videos instead naturally enable the use of

temporal as well as spatial information which are very in-

formative for recognizing human affect. Therefore, in this

paper we focus on affect analysis of the individuals in group

videos from spatio-temporal face and body features.

Multimedia content evoked affect database and anal-

ysis. As one of the primary functions of multimedia content

(e.g., music and movies) is to regulate the users’ affect, how

to represent and predict the users’ affective states while they

are exposed to multimedia content is becoming an increas-

ingly popular topic. In the literature, a number of databases

for decoding the users’ affective responses to multimedia

content have been introduced already [29, 17, 1, 30]. In

these databases, both videos and physiological signals (e.g.,

EEG and GSR) are provided, but all of them are limited

to having only one subject in each session. Instead of us-

ing these databases, we have collected and annotated a new

database because we are interested in exploring how an in-

dividual displays affect when exposed to multimedia con-

tent in a group setting.

Face and body features. Face and body expressions are

widely used non-verbal information for automatic emotion

recognition [13]. The most frequently used face features in-

clude geometric features and appearance features. Specifi-

cally, geometric features can represent the shape of the fa-

cial components (e.g., eyes and mouth) and the location of

facial salient points (e.g., corners of the eyes and mouth)

[23]; and appearance features represent the facial texture in-

cluding wrinkles, bulges and furrows [27]. Recently affec-

tive computing field has started paying an increasing atten-

tion to body expressions, in the form of body movement and

postures [12]. Body expressions have shown to be particu-

larly useful for predicting the level of arousal [16]. There-

fore, in this paper we extract both face and body features

for arousal and valence recognition. However, differently

from previous work [28], we (1) extend the static Quantised

Local Zernike Moments (QLZM) to volume representation

and (2) encode all body and face descriptors to Fisher Vec-

tor representations to embed spatio-temporal information.

Context in affect analysis. Studies have shown that the

displayed affect heavily depends on context, such as where

the person is and what the person is doing at that time [31].

Therefore, in addition to the face and body information,

using context information is becoming increasingly popu-

lar for automatic affect recognition [21]. Especially group

settings with multiple people inherently involve complex

contextual situations, not only in terms of each individual’s

identity, location and task but also in terms of interpersonal

dynamics, e.g., who the person is with and what others are

doing at that time. The contextual information based on

the group structure was used to infer group-level affect in

[22] and individual gender and age in [11]; and scene con-

textual features were utilized to predict group-level affect

information in [9]. Contextual information can be directly

used as a cue for affect analysis or it can be fused with

other attributes, e.g., facial expressions and body motion.

In this paper, group membership is referred to as context

and is recognized by using dynamic non-verbal behaviours.

Specifically, we automatically recognize which group each

individual is part of using their face and body features. .

3. The Proposed Framework

We propose a framework for the prediction of individual

emotions and group membership in group videos by mul-

timodal analysis of face and body features. The proposed

framework is illustrated in Fig. 1. We are interested in in-

vestigating (1) the individual affect responses when the par-

ticipants are watching long-term videos (i.e., 14-24 mins)

in group settings; and (2) group membership recognition by

using visual cues. To this end, both face and body features

are extracted. For representing faces, both geometric and

appearance features are utilised. Facial landmark trajecto-

ries are used as geometric features and the extended volume

QLZM extracted along facial landmark trajectories are used

as appearance features. For representing bodies, dense tra-

jectories are first extracted and then Histogram of Oriented

Gradients (HOG) and Histograms of Optical Flow (HOF)

descriptors are extracted along the trajectories. Prior to be-

ing fed to the classifier and regressor, all of the descriptors

are encoded into Fisher Vector (FV) representations. Mul-

tiple experiments are carried out to investigate the subject-

dependent and subject-independent affect classification and

regression using unimodal and multimodal visual signals.

A set of experiments is also conducted to recognize group

membership (i.e., which group each individual is part of)

using face and body behavioural cues.

3.1. Low Level Feature Extraction

Face features. Prior to facial feature extraction, In-

traface [33] is first used to detect all faces in the videos and

49 facial points are obtained for each face. Due to illumina-

tion and head pose variations in such a naturalistic scenario,

it is difficult to detect all faces. As a result, in 96% of the

frames the faces of four subjects are detected. To make the

feature extraction consistent, in the case that the face is lost
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Figure 1. Illustration of the proposed framework.

in a frame, the last position in which the face has been de-

tected is used.

For geometric features, let Xt =
[ (x1

t , y1t ), (x2
t , y2t ) ... (xn

t , ynt ) ] denotes the lo-

cation of the n facial landmark points at the current frame

t, where n = 49 is the total number of facial landmark

points. xk
t and ykt are the coordinates of the k-th facial

landmark point at frame t. Facial landmark points of the

subsequent frames are concatenated to form the facial

landmark trajectories. The shape of the trajectory of each

facial landmark point encodes the motion patterns [32]. For

the k-th facial landmark point, it is described by a sequence

(∆Xk
t , ∆Xk

t+1 ... ∆Xk
t+L−1

) of displacement vectors,

where ∆Xk
t = (Xk

t+1 − Xk
t ) = (xk

t+1 − xk
t , y

k
t+1 − ykt )

and L is the length of the facial landmark trajectories.

The resulting vector is then normalized by the sum of the

displacement vector magnitudes:

Y k =
(∆Xk

t ,∆Xk
t+1...∆Xk

t+L−1
)

t+L−1∑

j=t

||∆Xk
j ||

(1)

We refer to Y k as Facial Landmarks in the rest of the paper.

The fixed length of the facial landmark trajectories is L =
15 frames based on [32], therefore, a 30 (2×L) dimensional

descriptor is obtained around each facial landmark point.

For appearance features, after geometric features are ex-

tracted, Quantised Local Zernike Moments (QLZM) [28]

are obtained from the local patch around each facial land-

mark point as the appearance representation. QLZM is as

a low-level representation that is extracted by first calculat-

ing local Zernike Moments (ZMs) in the neighbourhood of

each pixel of the input image. Then the accumulated local

features are converted into position dependent histograms.

Each ZM coefficient describes the texture variation at a

unique scale and orientation. Once the ZMs are computed

for all pixels, the QLZM descriptors are obtained by quan-

tising all ZM coefficients around a pixel into a single inte-

ger. The QLZM [28], by design, takes into account only

static spatial information, that is it is designed for static im-

ages/frames [28, 5]. In this paper, we extend it to the spatio-

temporal domain to embed both appearance and temporal

information, as illustrated in Fig. 2. This feature is referred

as vQLZM in the rest of the paper. The size of the volume is

N ×N pixels and L frames long. To keep the same volume

size with the Facial Landmarks, the same length L = 15 is

used. To embed structure information, the volume is subdi-

vided into a spatio-temporal grid of size nτ ×nτ × nσ . The

QLZM descriptor is computed in each cell of the spatio-

temporal grid. The final descriptor is obtained by concate-

nating these descriptors. In the experiments, N is set to

N = 24, i.e., the average of the distances between the cen-

troids of two eyes from all of the detected faces.

Body features. In order to extract person-based repre-

sentations we first need to apply a person detector - in our

simplified settings with a fixed number of individuals and

a static camera, we use an ad-hoc scheme that divides the

frame in equally sized parts. Then, dense trajectories [32]

are extracted and, subsequently, HOG and HOF descriptors

are extracted around each trajectory. The latter are com-

puted in the spatio-temporal volume aligned with the tra-

jectories similarly to vQLZM features. For both HOG and

HOF, orientations are quantized into eight bins with full ori-

entations. An additional zero bin is added for HOF for pix-

els with optical flow magnitudes lower than the threshold

(i.e., nine bins in total). Thus, the final descriptor size is

96 for HOG and 108 for HOF with the trajectory length

L = 15 frames. More details can be found in [32]. These

two features are referred to as body HOG and body HOF in

the remaining of the paper.

3.2. Fisher Vector Encoding

Fisher vector (FV) encoding [26] has been widely used

in computer vision problems such as action recognition [32]

and depression analysis [15, 8]. It encodes both the first

and the second order statistics between the low-level (lo-

cal) video/image descriptors and a Gaussian Mixture Model

(GMM). To reduce the dimensionality, Principal Compo-

nent Analysis (PCA) is first applied to the descriptors. A
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Figure 2. Illustration of our approach to extract the vQLZM feature. Left: Facial landmark points are detected. Right: Facial landmark

point tracking is in the spatial scale over L frames. Appearance and motion information over a local neighbourhood of N × N pixels

along the each facial landmark point are extracted. In order to embed the structure information, the local volume is subdivided into a

spatio-temporal grid of size nτ × nσ . Based on [32], nτ = 3, nσ = 2 and L = 15.

Video Duration/min

Descend (N1) 23:35

Mr. Bean (P1) 18:43

Batman the Dark Knight (B1) 23:30

Up (U1) 14:06

Table 1. The stimuli videos listed with their sources (video IDs are

stated in parentheses and used to refer to videos in the rest of the

paper) and the video durations.

GMM is then fitted to all of the face and body descriptors.

The number of Gaussians is set to K = 256 and a subset of

256000 descriptors is randomly sampled to fit a GMM. Sub-

sequently, each clip is represented by a (2D + 1)K dimen-

sional Fisher Vector, where D is the dimensionality of the

descriptor after performing PCA. We obtained four types

of Fisher Vectors (FVs) from Facial Landmarks, vQLZM,

body HOG and body HOF separately.

4. Experiments and Analysis

Experiments are conducted using a database collected to

study affect analysis from multimodal cues in group settings

while each group (i.e., four participants) were watching a

number of long movie segments.

4.1. Data and Annotation

Four long movie segments (duration of each longer than

14 mins and smaller than 24 mins) were used as stimuli,

details of which are provided in Table 1. Sixteen partic-

ipants (8 females and 8 males), aged between 25 and 38

were recorded while watching these movies. They were ar-

ranged into four groups with four participants in each group

watching all of the four videos listed in Table 1 together.

Videos were recorded at 1280×720 resolution, 25fps. A

representative frame from the database is shown in Fig. 3.

Annotation. Independent observer annotations were ob-

tained from three human labellers who are all researchers

working on affect analysis. An internal emotion annotation

Figure 3. A representative frame from the database.

tool that requires the labellers to scroll a bar between a range

of values (0 and 1) was used. The labellers were asked to

annotate 10-second recordings for every 2 minutes starting

from the first minute, e.g., the interval for 00:50∼1:00 min,

2:50∼3:00 min etc. Each labeller was presented with the

10-second recordings of each subject and was asked to ob-

serve the non-verbal behaviours without hearing any audio.

A single annotation was given by each labeller after watch-

ing one 10-second recording. In order to avoid confusion,

arousal and valence annotations were obtained separately.

Analysis of Annotations. To assess the inter-labeller

agreement, Cronbach’s α [6] and Fleiss’ Kappa [4] statis-

tic, widely used in literature, were computed. The Cron-

bach’s α was calculated directly from the continuous an-

notations. As Fleiss’ Kappa can only be used for the cate-

gorical ratings, prior to computing the Fleiss’ Kappa, both

arousal and valence annotations were first quantised into

two classes using the average of all of the annotations as

thresholds (i.e., 0.4 for arousal and 0.5 for valence). In

this way, arousal is quantised into high and low and va-

lence is quantised into positive and negative. After the

first annotation round, the Cronbach’s α was computed for

each subject and the average of all subjects. The displays

of subjects with Cronbach’s α below the average were re-

annotated through discussions, and each labeller’s annota-

tion was subsequently normalised using Equation 2, where
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Dimension Arousal Valence

Methods Cronbach Kappa Cronbach Kappa

Raw 0.85 0.48 0.85 0.56

Reannotated 0.95 0.74 0.85 0.61

Normalized 0.95 0.73 0.85 0.75

Table 2. The measurement of inter-labeller agreement on both

arousal and valence dimensions among 3 labellers in terms of

Cronbach’s α and Fleiss’ Kappa for the raw, re-annotated and nor-

malized ratings.

X = [x1, x2, x3 ... xn] refers to all annotations from one

labeller, and n is the number of the 10-second recordings.

zi =
xi −min(X)

max(X)−min(X)
(2)

From the Table 2, it can be seen that the results after the re-

annotation and normalization indicate a very strong inter-

labeller reliability for both arousal and valence dimensions.

The average of annotations from three labellers are used as

the ground truth.

4.2. Experiments

Experimental setup. Data from 4 groups were used in

our experiments, namely 3 groups (12 subjects) with record-

ings from 4 movies (N1, P1, B1 and U1) and 1 group (4

subjects) with recordings from 2 movies (N1 and P1). As a

result, there were data from 16 subjects and 14 sessions in

total. During each session, each group watched one movie.

From each session, we used 10-seconds clips extracted ev-

ery 2 minutes in line with the annotations obtained. The

number of short clips from each session varies with the

length of the movies, i.e., 12 clips for N1 and B1, 9 clips

for P1 and 7 clips for U1. Therefore, the total number of

clips we used in the experiments is (12 × 4 × 4) + (12 ×
4× 4) + (9× 4× 3) + (7× 4× 3) = 576.

Different classification and regression models were

trained by applying leave-one-sample-out and leave-one-

subject-out cross-validation. Each time the parameters

of the model were optimized over the training-validation

samples. Leave-one-sample-out means, in each fold, 575

out of 576 clips were used for training-validation and

the remaining one clip was used for testing. Leave-one-

subject-out refers to, in each fold, using 15 subjects for

training-validation and the remaining one subject for test-

ing. Subject-specific model was built by applying leave-

one-sample-out cross-validation for each subject separately.

The experimental results of affect classification were

evaluated by the average of F1 score (average of F1 score

for both classes). For affect regression, in addition to the

Mean Absolute Error (MAE) and the Mean Squared Error

(MSE), we also used the Pearson’s Correlation Coefficient

(CC) and Concordance Correlation Coefficient (CCC) [24].

CCC combines the CC with the square difference between

the means:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(3)

where ρ is the CC between the ground truth and prediction,

σ2
x and σ2

y are the variance, and µx and µy are the mean

of ground truth and prediction respectively. In this way, the

predictions that are correlated well with the ground truth but

are shifted, are penalised by the deviation.

The experiments were divided into two parts, affect

recognition and group membership recognition. Affect

recognition includes both classification and regression

along arousal and valence dimensions. The experiments

for affect recognition were conducted with both unimodal

feature vectors and using decision-level fusion. An SVM

classifier, applied on the soft outputs of the single-modality

classifiers, was used for decision-level fusion. Group mem-

bership recognition aimed to recognize the group that each

individual belongs to, and was conducted by using face

and body behavioural cues. Leave-one-subject-out cross-

validation was used for group membership recognition. In

both cases, the publicly available LibSVM library [7] was

used. Prior to feeding face and body features to any classi-

fier or regressor, PCA was first applied to reduce the dimen-

sionality by preserving 99% of the variance.

Affect recognition. Linear Support Vector Machine

(SVM) was used to do classification with respect to the

dimensions of arousal (i.e., high and low) and valence

(i.e., positive and negative). The classification results

with unimodal features and decision-level fusion are illus-

trated in Table 3. It can be seen that different features

provide different classification results. On the one hand,

vQLZM-FV generally outperforms the other feature repre-

sentations in all recognition tasks except that Facial Land-

mark FV provides slightly better performance for leave-

one-subject-out arousal classification. This indicates that

the spatio-temporal texture information encoded in the pro-

posed vQLZM-FV descriptor is very informative for affect

analysis. The results also reveal that body information is

more powerful in predicting arousal. For instance, the F1

scores obtained with body HOG and body HOF for arousal

are 0.63 and 0.61 respectively, but those obtained for va-

lence are 0.55 and 0.58 respectively in leave-one-sample-

out cross-validation setup. This result is consistent with the

literature that reports arousal to be better conveyed by body

information than valence [16]. On the other hand, although

the leave-one-sample-out and subject-specific models show

better performance than the leave-one-subject model due to

the subject-dependency problem, there are only slight dif-

ferences between these results. Overall, the results obtained

show that it is possible to build a generic model across dif-

ferent subjects using the proposed framework.

31



In decision-level fusion, we combined the decision val-

ues (i.e., the probability for each class) from individual

modalities using a linear-SVM. The fusion results show that

when the features are fused at the decision level, all of the

classification results are equal to or better than those ob-

tained by using unimodal features. For instance, the best

classification results from unimodal features are 0.63 for

arousal and 0.70 for valence in terms of F1 score in leave-

one-subject-out experiments; and those obtained from deci-

sion fusion are 0.64 for arousal and 0.70 for valence. Thus,

the fusion of different features is generally useful for im-

proving the classification performance. However, it can be

seen that using the proposed vQLZM-FV feature alone can

achieve very close results to that obtained by fusing all the

different features. In terms of the computational complex-

ity, much more effort is required to generate dense trajec-

tories and encode FVs. Taking both the classification per-

formance and computational complexity into consideration,

using vQLZM-FV alone proves to be more advantageous. In

order to investigate how different features contribute to the

decision fusion, we checked the weights assigned to each

type of feature as shown in Fig. 5. It can be seen that face

/ body motion information (i.e., Landmarks and body HOF

features) is more informative for arousal analysis, while ap-

pearance features, especially local facial appearance (i.e.,

vQLZM), tend to be more helpful for valence classification.

For affect regression, Support Vector Regression (SVR)

was used with a radial basis function (RBF) kernel. The

regression results using unimodal and multimodal features

are summarized in Table 4. For unimodal features, it can be

seen that the regression results are quite similar to the clas-

sification ones: vQLZM-FV generally has the best perfor-

mance and body features have better prediction for arousal

than valence. For the decision-level fusion, we proceeded in

a similar way to the fusion in affect classification. We fused

the ratings predicted from individual regressors in an RBF-

SVR. The results show that using the proposed vQLZM-FV

feature alone can achieve very close results to that obtained

by multimodal fusion.

Finally, we also looked into the affect recognition results

of each group separately for both arousal and valence. We

found that in each group setting, there were a number of

subjects for which the prediction of affect was more chal-

lenging. This is possibly due to the fact that different sub-

jects display affect at different levels of subtlety (as shown

in Fig. 4), leading to a more challenging recognition prob-

lem. For instance, during fusion with leave-one-subject-out

cross-validation, prediction was better and relatively easier

for subject 1 in Fig. 4 (i.e., F1 = 0.91 for valence and

F1 = 0.74 for arousal) than subject 2 (i.e., F1 = 0.59 for

valence and F1 = 0.48 for arousal).

Membership recognition. This experiment focuses on

Dimensions Arousal Valence

F1 F1

One sample out

vQLZM 0.73 0.79

Facial Landmarks 0.65 0.54

body HOG 0.63 0.55

body HOF 0.61 0.58

Decision-fusion 0.73 0.79

One subject out

vQLZM 0.61 0.70

Facial Landmarks 0.63 0.51

body HOG 0.58 0.53

body HOF 0.61 0.60

Decision-fusion 0.64 0.70

Subject-specific

vQLZM 0.74 0.78

Facial Landmarks 0.64 0.58

body HOG 0.62 0.51

body HOF 0.64 0.53

Decision-fusion 0.79 0.79

Table 3. The classification results along arousal and valence di-

mensions with unimodal features, vQLZM-FV, Facial Landmarks

FV, body HOG FV and body HOF FV respectively and the deci-

sion fusion results with these four different features.

        Subject 1                         Subject 2

Scene 1 Scene 2

         Subject 1                         Subject 2

Figure 4. Ground truth (and predicted) affective states of two dif-

ferent subjects. In Scene 1: Subject 1 high (high) arousal and

positive (positive) valence; Subject 2 low (low) arousal and posi-

tive (negative) valence. In Scene 2: Subject 1 low (low) arousal

and negative (negative) valence, Subject 2 low (low) arousal and

negative (negative) valence.

automatically recognizing the group that each individual be-

longs to. The experimental results are shown in Table 5 and

the confusion matrix with decision-fusion is shown in Ta-

ble 6. From Table 5, we can see that both body features

work better than the face features in predicting membership.

The decision-level fusion helps improve the membership

recognition result. Compared to chance level recognition of

25%, our results obtained with decision-fusion of 43.75%
is a significant result. This result indicates that non-verbal

behaviours, especially body behaviours, are influenced and
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Dimensions Arousal Valence

MAE(std) MSE(std) CC CCC MAE(std) MSE(std) CC CCC

Leave one sample out

vQLZM 0.088(0.07) 0.013(0.02) 0.62 0.53 0.090(0.08) 0.015(0.03) 0.54 0.47

Facial Landmarks 0.110(0.07) 0.017(0.02) 0.43 0.24 0.110(0.09) 0.020(0.03) 0.27 0.10

body HOG 0.106(0.08) 0.017(0.02) 0.40 0.32 0.110(0.09) 0.020(0.04) 0.28 0.18

body HOF 0.100(0.07) 0.016(0.02) 0.46 0.32 0.110(0.09) 0.020(0.04) 0.27 0.14

Decision-fusion 0.086(0.07) 0.092(0.02) 0.62 0.53 0.082(0.09) 0.014(0.03) 0.56 0.49

Leave one subject out

vQLZM 0.111(0.08) 0.009(0.01) 0.36 0.30 0.096(0.09) 0.017(0.03) 0.43 0.36

Facial Landmarks 0.110(0.07) 0.017(0.020) 0.39 0.22 0.110(0.09) 0.020(0.04) 0.22 0.104

body HOG 0.120(0.08) 0.021(0.03) 0.19 0.11 0.118(0.10) 0.023(0.04) 0.08 0.05

body HOF 0.11(0.075) 0.017(0.02) 0.39 0.26 0.115(0.09) 0.021(0.04) 0.17 0.09

Decision-fusion 0.100(0.08) 0.016(0.02) 0.44 0.33 0.089(0.10) 0.017(0.04) 0.45 0.33

Subject-specific

vQLZM 0.099(0.07) 0.014(0.02) 0.60 0.45 0.104(0.09) 0.018(0.03) 0.42 0.33

Facial Landmarks 0.110(0.07) 0.018(0.02) 0.41 0.26 0.120(0.08) 0.020(0.03) 0.24 0.14

body HOG 0.106(0.08) 0.017(0.03) 0.38 0.28 0.115(0.09) 0.022(0.04) 0.23 0.19

body HOF 0.110(0.08) 0.017(0.03) 0.39 0.29 0.117(0.09) 0.022(0.04) 0.20 0.15

Decision-fusion 0.082(0.08) 0.013(0.03) 0.58 0.55 0.081(0.10) 0.016(0.04) 0.52 0.46

Table 4. The regression results along arousal and valence dimensions with unimodal features, vQLZM-FV, Facial Landmarks FV, body

HOG FV and body HOF FV respectively and the decision fusion results with these four different features.

vQLZM Landmarks body HOG body HOF
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0.2
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0.7
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Arousal

Figure 5. The average and standard deviations of weights as-

signed to different features in decision-level fusion with leave-one-

subject-out cross-validation experiment.

shared among different group members. This result is also

consistent with what is reported in psychological studies -

– people in a group often mirror one another’s posture and

behaviours [2, 19]. From Table 6, we can see that some

groups (i.e., group 1, group 2 and group 3) are more easily

to be recognized than others (i.e., group 4). This is possi-

ble because that group members in some groups share more

information than those in the other groups.

5. Conclusion and Future Work

In this paper, we propose a novel framework for au-

tomatic emotion analysis of each individual in group set-

One subject out

Chance level 25.00%
vQLZM 18.96%
Facial Landmarks 13.07%
body HOG 36.20%
body HOF 41.56%

Decision-fusion 43.75%

Table 5. The group membership recognition results with unimodal

features, vQLZM-FV, Facial Landmarks FV, body HOG FV and

body HOF FV respectively and the decision fusion results with

these four different features.

Table 6. Confusion matrix of the group classification results with

decision-fusion.

Group1 Group2 Group3 Group4

Group1 45 7 31 17

Group2 26 52 10 11

Group3 19 4 54 24

Group4 29 17 26 28

tings. We first extract face and body static and dynamic

information to analyse the affective states along both va-

lence and arousal dimensions. For facial expression anal-

ysis, we introduce the (vQLZM-FV) descriptor to encode

spatio-temporal information. We then propose a method to

recognize the group membership of each individual by us-

ing their face and body behavioural cues. A set of experi-

ments is conducted on a newly collected database. Overall,
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we observe that first, the proposed vQLZM-FV represen-

tation outperforms other unimodal features and generates

similar results to decision-level fusion for affect recogni-

tion; and second, group membership can be recognized us-

ing non-verbal behaviours, indicating that individuals influ-

ence each other’s behaviours within a group.

Since the data, annotation and evaluation methods are

different, most of the results published in the literature are

not directly comparable with the results reported in our

work. However, we attempt to compare our results with the

methods having the most similar setup. For instance, Koel-

stra and Patras [18] also used a multimedia content evoked

affect database (i.e., MAHNOB HCI [29]) to do binary

emotion classification. They obtained 0.638 for arousal and

0.628 for valence in terms of F1 score by using face fea-

tures. The results we obtained are 0.63 for arousal and 0.70

for valence in leave-one-subject-out setup by using the pro-

posed face feature (i.e., vQLZM-FV). For affect regression,

we provide a comparison with the 2015 Audio/Visual Emo-

tion Challenge and Workshop (AV+EC) [24]. AV+EC 2015

used the spontaneous RECOLA database [25] that contains

recordings of pairs of people in a remote collaborative work

setting. They did emotion analysis along arousal and va-

lence dimensions with subject-independent setup, and also

used the same evaluation metric (i.e., CCC) as ours. In the

winner paper [14], although the multimodal regression re-

sults were 0.824 for arousal and 0.688 for valence by com-

bining audio, visual and physiological signals, the results

obtained for unimodal regression using face appearance fea-

tures were 0.587 for arousal and 0.346 for valence. The re-

sults that we obtained with the proposed vQLZM-FV face

appearance feature are 0.30 for arousal and 0.36 for valence

with subject-independent setup (i.e., leave-one-subject-out

cross-validation).

Despite the promising results obtained in the experi-

ments, analysis of the affect expressed in group videos is

very challenging and needs to be further investigated in fu-

ture work by taking advantage of other fusion techniques

and extending the current work to group-level affect analy-

sis.
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