
Differential Geometry boosts Convolutional Neural Networks for Object

Detection

Chu Wang Kaleem Siddiqi

School of Computer Science and Centre for Intelligent Machines,

McGill University, Canada

{chuwang,siddiqi}@cim.mcgill.ca

Abstract

Convolutional neural networks (CNNs) have had dra-

matic success in appearance based object recognition tasks

such as the ImageNet visual recognition challenge [8].

However, their application to object recognition and detec-

tion thus far has focused largely on intensity or color im-

ages as inputs. Motivated by demonstrations that depth can

enhance the performance of CNN-based approaches [2][5],

in this paper we consider the benefits of also including dif-

ferential geometric shape features. This elementary idea

of using zeroth order (depth), first-order (surface normal)

and second-order (surface curvature) features in a princi-

pled manner boosts the performance of a CNN that has been

pretrained on a color image database. Notably, in an object

detection task involving 19 categories we achieve 39.30%

accuracy on the NYUv2 dataset, which is a 10.4% improve-

ment over the current state-of-the-art accuracy of 35.6% us-

ing the method in [5]. In the simpler scenario of turntable

style object recognition, our experiments on the University

of Washington (UW) RGB-D dataset yield an accuracy of

88.7% correct recognition over 51 object categories, where

the best competing result is 87.5% [2]. Taken together, our

results provide strong evidence that the abstraction of sur-

face shape benefits object detection and recognition.

1. Introduction

The emergence of Kinect like sensors has the potential to

revolutionize computer vision applications, since they pro-

vide registered appearance (color) and depth (RGB-D) im-

ages. Unlike color images, depth maps are robust to varia-

tions in lighting, and they provide strong shape cues along

with information to separate object boundaries via depth

discontinuities. Recent work in pattern recognition with 3D

point cloud data demonstrates the promise of using depth

information along with appearance for object detection and

recognition [2][5][9][13][14].

A parallel trend in the computer vision community has

been the use of deep learning with convolutional neural

networks (CNNs) [10], for category level object recogni-

tion and detection, with demonstrated success on 2D im-

age databases such as ImageNet [8] and on CIFAR-10 [6].

By combining region proposal algorithms with CNNs, a R-

CNN algorithm by Girshick et al. [3] achieved the best re-

ported accuracy thus far on the ImageNet detection chal-

lenge. Gupta et al. have extended this R-CNN to incorpo-

rate depth data from point clouds using hand designed depth

features [5], yielding the best reported accuracy to date in

an object detection task on the NYUv2 RGB-D dataset [11].

While depth information is informative, the manner in

which it has been used thus far is somewhat ad-hoc. For

example, Socher et al. [13] tackle object recognition on the

UW dataset [9] using recursive CNNs combining appear-

ance and depth, but with no additional shape cues. Gupta et

al.’s approach in [5] uses hand crafted (HHA) features such

as the angle between surface normals and an estimated di-

rection of gravity assumed to be orthogonal to the ground

plane. Bo et al. apply a K-SVD method on depth and sur-

face normal features in the UW dataset [2], but no curvature

features are incorporated. The sliding shape method of [14]

utilizes eigenvalues from a point cloud covariance matrix

along with surface normals as shape features for an SVM

classifier.

In the present article we abstract surface differential ge-

ometry for 3D object detection in a principled manner, i.e.,

we use zeroth order (depth), first-order (surface normal) and

second-order (curvature) estimated from point cloud data,

as inputs to the state-of-art R-CNN for object detection on

the NYUv2 RGB-D dataset in [5]. Though elementary, this

addition of differential geometric features allows us to fine

tune CNNs pretrained on appearance (color) images in a

straightforward manner. Our experiments show that this

improves upon the current best reported object detection re-

sults in [5]. We also report on leave-object-out recognition

experiments on the easier problem of turntable style object

recognition on the UW dataset, where we achieve competi-

51

Surface Normals

Curvatures

Depth Map

Color Map

Region Proposal

 Algorithm

An Example Proposal

Region Proposal features

RGB CNN
Surface

Normal

 CNN

Curvature

 CNN
RGB CNN

Surface

Normal

 CNN

Curvature

 CNN

Deep Learning

 Framework

 fc6 output

O!ine Computation

 SVM

Classi�er

 fc6 vectors for

all region proposalsDetection Output

Figure 1: A schematic of the object detection framework.

Given an input RGB and depth image pair, we use a point-

clouid library (PCL) based implementation to compute the

surface normals and curvatures. Then, following the steps

used in [5], region proposal algorithms are applied to the

color and depth data to generate proposal bounding boxes.

Features are then extracted from each bounding box and are

fed into CNNs. SVM classification is carried out on the

CNNs’ fc6 layer vector outputs. The system then generates

object detection bounding boxes along with class labels for

the RGB and depth image pair.

tive accuracy against the best reported current results in [2].

We describe the framework for detection and recognition,

which we adopt from [5], in Section 2. We then describe

Gaussian weighted depth attention maps, which we use as

zeroth order shape features, in Section 3 and methods for

estimating surface normals and principle curvatures from

point cloud data in Section 4. Our experimental settings are

described in Section 5 and extensive comparative detection

and recognition results on the NYUv2 and the UW RGB-

D datasets are presented in Section 6. We conclude with a

discussion in Section 7.

2. Detection and Recognition Framework

We follow the R-CNN object detection approach of

Gupta et al. in [5] since our main goal is to add differen-

tial geometric features and to evaluate their efficacy. The

numerical implementation of this R-CNN is adopted from

the GitHub repository of Gupta et al. [4] and for CNN train-

ing we use the Caffe Deep Learning Toolbox [7]. Figure 1

presents a schematic of the approach.

2.1. Region Proposals

To generate region proposals for evaluation we applied

the multiscale combinatorial grouping (MCG) method of

[1] with color and depth features computed from Gupta et

al. [5]. For each 560×425 scene in the NYUv2 database the

proposal algorithm typically generates around 2000 region

candidates that cover the ground truth objects with high re-

call.

2.2. Fine tuning Imagenet CNNs for Multiple Fea­
ture Spaces

The region proposals for each scene were then fed into

multiple CNNs, with different feature spaces as inputs. Pre-

trained ImageNet CNNs from the ILSVRC 2012 dataset [8]

are used as the baseline CNNs, and these are fine tuned

using different feature spaces, including color, depth, and

shape. Details of the network structure and training param-

eters are in [8].

2.3. Feature Fusion and SVM Classification

The CNN outputs from the fully connected layers are

then used as inputs for the final classifier, based on SVMs.

The fully connected layer outputs from different CNNs can

be concatenated in a manner of feature fusion. Binary

SVMs for each object class are then trained on the fused

feature space, and these generate final labels for each region

proposal. For each scene non-maximum suppression is then

applied on the region proposal boxes to generate sparse de-

tections.

2.4. Recognition Framework

In the context of the simpler turntable style recognition

experiments that we carry out on the UW database, we use

essentially the same pipeline as that described above from

[5] but without using region proposals. After SVM based

classification, labels are assigned to each image. For this

database each scene contains only one object of interest.

3. Depth based Mixture Attention Maps

Depth based features have been successfully used in

previous pattern recognition work on point cloud data

[2][5][9][13][14], with different encoding strategies for im-

proving detection and recognition accuracy. In this section

we introduce a zeroth order depth feature using Gaussian

Mixture Attention Maps. The basic idea is to extend a raw

depth map so that it has 3-channels: a foreground map, a

mid-range map and a background map. The use of 3 chan-

nels is a design choice which we find works well in practice.

52

The assumption we make is that an object of interest is usu-

ally compact in space and is thus bounded by a finite vol-

ume which lies mostly in one of these channels. By doing

this the CNN can learn features from each of the three depth

ranges, and the manner in which they interact. For a given

region proposal patch, to classify each point into one of the

three categories: foreground, mid-range and background,

we apply Gaussian Mixture Models (GMM).

The likelihood of the depth data point d in a given point

cloud D can be modelled with a GMM

p(d|Θ) = αfNf (d;µf , σf) + αmNm(d;µm, σm) (1)

+ αbNb(d;µb, σb) (2)

satisfying µf ≤ µm ≤ µb, where Nm stands for the Gaus-

sian Model for the mid-range depth data associated with

mean µm and variance σm. The corresponding parameters

with sub-index f and b represent the foreground and back-

ground ranges. Θ stands for the entire parameter set of the

mixture model. We use Expectation Maximization to find

the parameter set

Θ∗ = argmax
Θ

p(D|Θ) (3)

that best separates the three depth ranges. Here we have

p(D|Θ) =

N∏

i=1

p(di|Θ), (4)

assuming that the observed depth samples are i.i.d. We then

process the depth data using the foreground, mid-range, and

background Gaussian models to create 3 attention maps.

The raw depth Draw measurements from the point cloud

are fed into the trained GMM components Ni to acquire the

Gaussian Mixture Weighted depth Di as

Di = Ni(Draw;µi, σi), (5)

where i = f,m, b. The final attention map is generated

by combing the Di’s into a 3 channel image and then scal-

ing each channel to the range [0, 255], to make them com-

mensurate with the range of the color channel features. We

illustrate the depth based mixture attention map in compar-

ison to the raw depth map for a mug from the UW database

in Figure 2. For the NYUv2 dataset, this attention map is

computed for each region proposal in a given scene.

4. Surface Normals and Curvatures

We now go beyond zeroth order depth features to include

first-order derivatives of depth (surface normals), which are

invariant to translations, and also second-order derivatives

(surface curvatures), which are invariant to rotation as well.

Our numerical estimates are based on use of the Point Cloud

Library [12].

(a) Raw Depth Map (b) Mixture Attention

Map

Figure 2: Depth based mixture attention map learned by

GMM in comparison with a raw depth map for a mug.

4.1. Surface Normals

We acquire estimates of the surface normal at a point of

interest by performing principle component analysis over

the covariance matrix created from its nearest neighbours.

For each 3D data point pi = (xi, yi, zi) we construct its

covariance matrix C as

C =
1

N

N∑

i=1

(pi − p)(pi − p)T , (6)

where N is the number of points that are considered as

neighbours of pi within some radius and p is the centroid

of the N neighbours. We increase the neighbourhood ra-

dius size linearly with increasing depth, in order to acquire

a sufficient number of data points for numerical estimation.

Eigen system analysis is then performed on the covariance

matrix C and the eigenvector associated with the smallest

eigenvalue is treated as the surface normal estimate at this

point pi.

Surface normals consist of unit vectors with each entry

having values in the range [−1, 1]. To make surface nor-

mal features commensurate with the other features used as

inputs to the CNNs, we followed two strategies for normal-

ization:

1. We linearly scaled the surface normal map from

[−1, 1] to [0, 255]. This generates what we refer to as

“raw” surface normal maps and we used these as in-

puts for fine tuning the CNN for detection experiments

on the NYUv2 dataset.

2. We took the absolute value of each surface normal en-

try and multiplied it by 255: sproj = 255 ∗ abs(sraw).
This has the effect of projecting each surface normal to

the positive orthant, which we refer to as “projected”

surface normal maps. We used these as inputs for fine

tuning the CNNs for recognition experiments on the

UW dataset, since they highlight objects with symme-

try.

53

(a) Color Map (b) Raw Surface Normals (c) Projected Surface Nor-

mals

(d) Curvature Map

(e) Color Map (f) Raw Surface Normals (g) Projected Surface Normals (h) Curvature Map

Figure 3: An illustration of shape features for a coffee mug in the UW dataset and a sample scene from the NYUv2 dataset.

In the surface normal maps, the x, y, z components of the vectors are mapped to the colors blue, red and green, respectively.

As illustrated by the example in Figure 3, the NYUv2

dataset is inherently more complex. It contains objects at

many different depth ranges of many different sizes in clut-

tered scenes with complex surfaces. As such, we retain the

“raw” surface maps for such scenes. The UW dataset, on the

other hand, is quite a bit simpler. Each image in it consists

of a single largish object, with well defined boundaries and

very little clutter. For such scenes the “projected” surface

normal maps have the advantage of emphasizing symmetry.

4.2. Surface Curvatures

Our curvature estimates are also based on principle com-

ponent analysis over a covariance matrix constructed by

point normals in a neighbourhood defined by some radius

parameter. For each point pi, a projection matrix Pi is con-

structed for the tangent plane at pi given by the surface

normal si. Then, for every point pj in the neighbourhood,

each surface normal sj is projected onto the tangent plane

by multiplying it with the projection matrix Pi:

s′j = Pisj . (7)

Then a covariance matrix for surface normals Cs is built on

top of the projected surface normals, which is given by

Cs =
1

N

N∑

j=1

(s′j − s′)(s′j − s′)T . (8)

Finally eigen system analysis is performed over the covari-

ance matrix Cs. The maximum eigenvalue is proportional

to the first principle curvature κ1 while the minimum eigen-

value is proportional to the magnitude of the second princi-

ple curvature κ2. We take the average of the two to represent

a type of mean curvature:

κm =
κ1 + κ2

2
. (9)

Strictly speaking, of course, covariance based estimation

from a point cloud does not capture the sign of the sec-

ond principal curvature estimate. One would need a more

refined procedure for doing this, e.g., based on fitting sur-

faces.

We construct a curvature map κ with following the 3

channels κ = (κ1, κ2, κm) and scale each channel in it lin-

early to the range [0, 255], again, to make its values com-

mensurate with those of the other features (color, depth and

surface normals). Examples of shape feature maps (surface

normals and curvatures) used for finetuning the CNNs are

presented in Figure 3.

4.2.1 PCL based Implementation

Our numerical implementations are based on the convenient

Point Cloud Library (PCL) [12]. Our code takes a pcd file

containing the 3D coordinates of each scene point as input

and outputs a pcd file with each point’s surface normal and

curvature information. The use of PCL does add computa-

tional overhead since PCL is not optimized, e.g., on an Intel

i7 Quad core CPU a 560 × 425 pcd image takes around 30

54

seconds to process. However, since this is done offline in

our pipeline this step does not adversely affect recognition

or detection time.

5. Experiments

We now present details of the NYUv2 dataset [11],

which we use for object detection, and the UW RGB-D

dataset [9], which we use for turntable style object recog-

nition. We also present details of the training and testing

phases.

5.1. Datasets

For object detection in the NYUv2 RGB-D dataset [11],

there are 1449 scenes including everyday indoor environ-

ments such as bedrooms, offices, living rooms and kitchens.

Within the densely labelled object categories, both Gupta et

al. [5] and the sliding shape approach [14] focus on the

19 most common represented furniture object categories in-

cluding chairs, beds, sofas, tables, and toilets. To provide

a fair comparison with the present state-of-the-art work on

this dataset [5], we use the same train, val, and test splits

they used. In our experiments, all training processes are

carried out on the train and val sets, and the final detection

accuracy is then reported on the test set, using the trained R-

CNN model. The train + val set contains 795 scenes for de-

velopment and training and the test set contains 654 scenes

for testing.

For turntable style object recognition on the UW RGB-

D dataset [9] we work on a total of 300 instances span-

ning 51 different categories of everyday objects, with sev-

eral images of each instance. The RGB-D dataset provides

10 leave-object-out training/testing splits, which have been

used for the baseline recognition experiments in [9]. For

each split, one random object within each category is se-

lected as the test object and images of it are not used in

the training process. The use of the provided splits, as in

[2, 13], is standard when reporting performance on the UW

RGB-D dataset for object recognition. The data set contains

roughly 42,000 RGB-D images, as well as the point cloud

data. The splits give about 35,000 images for training and

7,000 images for testing.

5.2. Experimental Settings

Since the recognition framework is directly adopted from

the detection framework, we focus on the experimental set-

tings for the detection task on the NYUv2 dataset.

5.2.1 Training Process

During the training phase, we have to

• Generate region proposals for each scene using the

MCG algorithm [1].

• Fine tune the pretrained ImageNet CNNs from the

ILSVRC 2012 dataset [8], using the region proposals

from the train + val set. For the CNN training, we

used the Caffe CNN library [7] and applied the same

training parameters as in [5]. During the training, a

proposal patch is labelled as the class corresponding to

the maximum overlapping ground truth instance, if this

overlap is larger than 50%, and is labelled background

otherwise. Multiple CNNs have to be fine tuned for

color images, HHA feature maps (used in [5]), sur-

face normal maps and curvature maps. The feature

maps are computed before the training process. With

an NVIDIA Tesla K40 card, four CNNs can be trained

in parallel and it takes around 6 hours for 30k iterations

with a batch size of 64, which is a half of the applied

batch size in [5].

• Train binary SVMs for each class on top of the CNNs’

fully connected layer 6 features. The process and pa-

rameters in this phase are the same as in [5].

For object recognition, region proposal algorithms are

not applied, since the images contain a single object.

5.2.2 Testing Process

During the testing phase, region proposals for each test

scene are first generated using the MCG algorithm [1].

For each region proposal, forward propagation through the

CNNs is applied for different feature maps and the fully-

connected layer 6 (fc6) features are extracted. These are

then fed into binary SVMs followed by per-scene non-

maximum suppression in each region proposal box. The

above process generates sparse detections for a test scene.

For object recognition on a test image, the label associated

to the maximum response over the binary SVMs is selected

as the predicted label.

6. Results

We present comparative results against Gupta et al. [5]

for object detection on the NYUv2 dataset and against [2]

[13] for recognition on the UW dataset. For the tables in

both Section 6.1 and 6.2, we apply the following abbrevia-

tions. RGB stands for the color image. HHA is the feature

designed by Gupta et al. [5] which contains for each chan-

nel: horizontal disparity, height above the ground and the

angle between the surface normal at a scene point and the

direction of gravity. GaussD stands for the depth based mix-

ture attention map introduced in Section 3. Shape stands for

a feature space containing both the surface normal maps and

the curvature maps, as introduced in Section 4.

55

Table 1: NYUv2 Results

A B C D E F G H

input feature RGB HHA GaussD Shape
RGB +

HHA [5]

RGB +

Shape

RGB +

GaussD +

Shape

RGB +

HHA +

Shape

bathtub 16.22 30.25 9.82 21.34 37.80 29.51 37.86 41.77

bed 41.0 66.34 62.62 68.44 69.90 70.64 73.30 75.03

bookshelf 27.96 19.84 21.81 21.19 33.89 34.37 38.19 36.42

box 0.69 0.90 0.21 0.74 1.48 1.66 1.78 2.17

chair 27.44 35.69 27.33 35.21 43.18 41.63 43.45 46.87

counter 34.56 35.29 25.54 38.13 44.97 43.86 45.26 46.39

desk 8.44 6.53 2.41 5.03 15.73 13.66 14.01 15.75

door 15.19 6.78 3.46 7.36 20.54 22.45 22.65 23.88

dresser 16.92 25.24 11.18 18.41 32.93 31.57 36.65 37.92

garbage-bin 16.51 18.39 5.89 22.17 32.88 34.48 33.64 39.88

lamp 25.88 22.03 23.83 29.93 33.65 35.58 37.16 37.46

monitor 38.42 32.87 4.93 16.74 50.86 44.44 45.35 52.95

night-stand 12.09 23.25 18.05 25.84 31.56 32.63 39.58 41.67

pillow 14.97 31.52 7.56 33.84 37.33 39.06 40.50 43.98

sink 27.5 31.67 14.55 38.53 38.97 46.83 43.81 44.43

sofa 28.16 46.48 27.65 48.36 49.00 45.80 48.44 51.79

table 10.55 19.18 21.77 22.16 22.94 24.28 26.09 26.85

television 24.94 13.39 2.99 9.04 32.23 31.60 30.50 34.51

toilet 44.83 40.00 30.83 38.26 44.91 45.39 45.10 46.96

mean 22.75 26.61 16.97 26.35 35.51 35.23 37.02 39.30

6.1. Detection accuracies on the NYUv2 dataset

We provide detection accuracies for the same 19 classes

using the same test set from the NYUv2 dataset as in

[5]. Following the standard metric they apply, which is

PASCAL VOC box detection average precision (AP), we

present APs when using different feature spaces in the R-

CNN framework, for individual object classes as well as for

overall performance. These results are in Table 1, with the

best result for each category, as well as for overall accu-

racy (bottom row), highlighted with a bounding box. This

table’s style is similar to that in [5], allowing us to carry

out a direct comparison. In these experiments we repeat the

experiments of [5] using code from their GitHub repository

[4], but without data augmentation using synthetic exam-

ples. As reported in [4] [5] such augmentation can improve

overall performance by around 1%, but this implementation

has not yet been released.

6.2. Recognition accuracies on the UW dataset

We present recognition results for the same system,

but applied without region proposals, on the UW RGB-D

dataset using different input features, in Table 2, and a com-

parison against previous work in Table 3. We provide re-

sults averaged over the first 4 of their 10 leave-object-out

splits, due to the fact that we need to train multiple CNNs

for each split which is time consuming. The numbers in

both tables are recognition accuracies as percentages.

7. Discussion

We discuss our results and the impact of using differ-

ential geometric features in comparison with the present

state-of-the-art detection and recognition results on these

databases.

56

Table 2: UW Benchmark

Mean Accuracy

RGB 79.46 ± 4.20

RGB + HHA 82.98 ± 1.46

RGB + GaussD 85.37 ± 3.54

RGB + Shape 88.40 ±1.99

RGB + HHA +

Shape
88.37 ± 2.17

RGB + GaussD +

Shape
88.67 ± 2.11

Table 3: UW results

Mean Accuracy

Bo et al. [2] 87.5 ± 2.9

Socher et al. [13] 86.8 ± 3.3

Ours 88.7 ± 2.1

7.1. Contribution of Surface Normals and Curva­
tures

From columns E and H in Table 1, we observe that shape

features can boost the performance of RGB + HHA [5] by

a non-trivial 10.4% to a new result of 39.3%. In addi-

tion, comparing columns E and F, we see that using RGB

+ Shape, but without zeroth order depth features, is still

competitive against the state-of-the-art RGB + HHA. To

further demonstrate the contribution of shape features, we

provide qualitative examples in Table 4, where we compare

the detection outputs between the following two scenarios:

R-CNN with RGB + HHA, as used in [5], and the same

setting but with the addition of shape features. The detec-

tion accuracy results for these two scenarios corresponds to

columns E and H in Table 1. It is clear that when combined

with shape features, the system from [5] works consistently

better, across each object category.

7.2. HHA versus Mixture Attention Maps

The HHA features are comprised of horizontal dispar-

ity, height above ground, and the angle between the sur-

face normal and gravity. Whereas this choice is ad-hoc,

these features are engineered to work well with the NYUv2

dataset. An implicit assumption behind their use is that

the camera viewing direction is parallel to the ground plane

and thus the angle component builds a certain invariance to

view direction. This assumptions holds true for the NYUv2

dataset and hence it is not surprising that the best results are

achieved when combining color, HHA and surface normals

and curvature.

HHA does not perform nearly as well in databases where

the viewing direction varies relative to the ground plane, as

is the case for the UW database. From the experiments in

Table 2, it is evident that RGB + Shape outperforms RGB

+ HHA, while the opposite is true for the NYUv2 detection

experiments. In addition, HHA brings down the overall per-

formance when combined with color and shape features in

the UW dataset. Another drawback of HHA is that whereas

it builds invariance to the viewing angle, details in surface

normal variation are lost. This is likely why shape features

boost the use of RGB + HHA.

The mixture attention maps, which do not implicitly as-

sume certain camera viewing directions, are successful in

both the NYUv2 experiments and the UW RGB-D experi-

ments. Columns E, F and G in Table 1 show that the use of

attention maps boosts the performance of RGB + Shape and

outperforms Gupta et al. [5], without use of the engineered

HHA feature. Moreover, the results with mixture attention

maps consistently yield higher recognition accuracy for the

UW dataset, as shown in Table 2.

7.3. Conclusion

The use of elementary differential geometric features as

inputs to a CNN based detection or recognition pipeline, has

the potential to boost recognition performance. We have

shown this experimentally by extensive benchmarking on

two large databases - the NYUv2 dataset and the UW RGB-

D dataset. For both the harder problem of object detection

and the easier one of object recognition, we demonstrate a

consistent improvement over the current state-of-the-art in

terms of accuracy when such features are used. Our results

suggest that higher order shape features including surface

normals and curvature as independent input feature maps

are critical for object recognition and detection. They do

not appear to be easily abstracted or learned by CNNs from

depth information alone.

Acknowledgments We are grateful to the Natural Sci-

ences and Engineering Research Council of Canada for

funding and to NVIDIA for donating a Tesla K40 graphics

card to facilitate numerical computation.

References

[1] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 328–335, 2014.

[2] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for

RGB-D based object recognition. In Experimental Robotics,

pages 387–402. Springer, 2013.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

57

Table 4: Object detection examples focusing on the following 5 classes : bed, chair, lamp, sofa, table. These are bounded

by boxes with color blue, green, red, cyan and purple, respectively. The first row contains detection results using [5], while

the second row contains detection results when shape features are used in addition. The last row contains the labelled ground

truth results. In the first 3 example scenes (columns 1 to 3), our system achieves almost 100% detection accuracy except for

scene 1 where some ground truth boxes are too small even for a human to detect. In the last 2 examples (columns 4 and 5),

we missed several ground truth objects while still outperforming [5].

computer vision and pattern recognition, pages 580–587,

2014.

[4] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Imple-

mentation for learning rich features from RGB-D images for

object detection and segmentation. https://github.

com/s-gupta/rcnn-depth, 2014. [Online; accessed

24-Mar-2016].

[5] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning

rich features from RGB-D images for object detection and

segmentation. In Computer Vision–ECCV 2014, pages 345–

360. Springer, 2014.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of

the ACM International Conference on Multimedia, pages

675–678. ACM, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[9] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical

multi-view RGB-D object dataset. In Robotics and Automa-

tion (ICRA), 2011 IEEE International Conference on, pages

1817–1824. IEEE, 2011.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[11] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor

segmentation and support inference from RGBD images. In

ECCV, 2012.

[12] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library

(PCL). In IEEE International Conference on Robotics and

Automation (ICRA), Shanghai, China, May 9-13 2011.

[13] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.

Convolutional-recursive deep learning for 3D object classifi-

cation. In Advances in Neural Information Processing Sys-

tems, pages 665–673, 2012.

[14] S. Song and J. Xiao. Sliding shapes for 3D object detection

in depth images. In Computer Vision–ECCV 2014, pages

634–651. Springer, 2014.

58

https://github.com/s-gupta/rcnn-depth
https://github.com/s-gupta/rcnn-depth

