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Abstract

This work presents an occlusion aware hand tracker to

reliably track both hands of a person using a monocular

RGB camera. To demonstrate its robustness, we evaluate

the tracker on a challenging, occlusion-ridden naturalis-

tic driving dataset, where hand motions of a driver are to

be captured reliably. The proposed framework additionally

encodes and learns tracklets corresponding to complex (yet

frequently occurring) hand interactions offline, and makes

an informed choice during data association. This provides

positional information of the left and right hands with no in-

trusion (through complete or partial occlusions) over long,

unconstrained video sequences in an online manner. The

tracks thus obtained may find use in domains such as hu-

man activity analysis, gesture recognition, and higher-level

semantic categorization.

1. Introduction

Hand motions and gestures are an important cue for un-

derstanding and inferring human activity. In addition to

this, they are an efficient form of high-bandwidth commu-

nication that may be used in conjunction with the verbal

medium to convey important information. However, track-

ing hands and their articulations is not a trivial task. It is

made complex by the large assortment of poses, shapes and

sizes that hands take on in video sequences. These problems

are further exacerbated by the rapid and often unpredictable

movements of hands. Most approaches manage these con-

cerns by constraining the experimental setup to ensure suit-

able operation for a given hand based application. These

restrictions may be enforced by fixing the pose and loca-

tion of the hands with respect to the camera, by conducting

all experiments in a controlled environment (e.g. indoors),

or by using multiple cameras to help with occlusions. The

validity of these restrictions in a given scenario depends on

the target application chosen.

Tracking of hand poses and hand-object interactions

have been studied extensively in recent literature. These

represent very rich streams of information in contexts of hu-

man computer interaction and human activity recognition.

However, for certain applications, the motion of each hand

as a whole in the image plane may be far more informative

than other traditional hand-based information streams. This

study is devoted to tracking both hands of a subject in the

image plane, for applications in which hand motion and lo-

cation may represent a useful cue for high level semantic

applications. We use tracking both hands of a driver in an

intelligent vehicle test-bed as an exemplar application for

testing and evaluation.

To further motivate this study, we list a few potential ap-

plications below. First, hand tracking allows the study of

preparatory movements for maneuvers[5, 17]. Such infor-

mation may be useful when providing alerts and support

to the driver[7]. A second potential application is in mon-

itoring distraction levels, as hand-vehicle and hand-object

interactions (such as text messaging, handling navigation,

etc.) can potentially increase visual, manual, and cognitive

load[11]. Because driver distraction is a leading cause of car

accidents[23], studying where the hands are and what they

do in the vehicle has never been a more pressing matter. A

third possible application lies in providing a framework for

hand gesture recognition and other high level activities[18]

requiring accurate localization of hands. Finally, long term

analysis of hand motion can provide useful insight into

crash and near-crash events. For instance, in studying ges-

tures performed by the driver for re-gaining control follow-

ing an unexpected event. In addition to these domain spe-

cific applications, the tracking framework developed can be

used to track two strongly interacting hands, riddled with

frequent self occlusions, as is the case in ego-centric videos.

The main contributions of this paper are as follows: We

propose a combined tracking-detection framework that op-

erates online to provide short yet reliable tracklets, while

data association is carried out using a bipartite match-

ing algorithm. To handle frequent self occlusions be-

tween strongly interacting hands, we accommodate a mo-
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Figure 1: Frames from the presented hand occlusion dataset. As can be seen, occlusions may occur at different positions for

both the left and right hands.

tion matching algorithm that tracks hands through occlu-

sion windows. We additionally introduce a challenging

hand tracking dataset (complimentary to the VIVA chal-

lenge dataset[22]) with frequent occlusions, on which the

proposed tracker is evaluated.

2. Related Work

To the best of our knowledge, there is no existing work

that addresses the problem of tracking two or more interact-

ing hands during naturalistic driving scenarios. We there-

fore provide a brief overview of works on single-hand track-

ing and generic multi-object tracking (MOT).

The 3-D model-based methods[21] for hand tracking can

acquire in-depth and accurate motion data and are capable

of coping with occlusions. However, these methods usu-

ally require a complex and expensive hardware setup, suf-

fer from high computational cost and require dense repre-

sentations of hand articulations. Blob-based approaches[1]

detect hands as image blobs in each frame and temporally

correspond blobs that occur in proximate locations across

frames. Kalman filtering has been employed in works

like[3] to transform observations (feature detection) into es-

timations (extracted trajectory). The advantages are real-

time performance, treatment of uncertainty, and the provi-

sion of predictions for the successive frames.

Multi-object trackers, on the other hand, approach the

problem from a data association standpoint. For instance, it

is common for these algorithms to stitch small tracklets to

produce ”smooth” global tracks. However, this assumption

is invalid in our situation where hand dynamics are highly

erratic and almost never smooth e.g. a drivers’ hand alter-

nating rapidly between the wheel and gear stick. Moreover,

most of these algorithms are modeled as data association

problems that require tracklets generated beforehand. These

are called batch or offline methods. It is difficult to ap-

ply such batch methods to time-critical applications such

as ours where safety is of the essence. On the other hand,

sequential or online methods like[24, 10, 8] attempt to re-

solve ambiguities in each frame (or in a small time win-

dow). However, considering more frames before making

association decisions should generally help better overcome

ambiguities caused by longer-term occlusions and false or

missed detections. For a detailed discussion on multi-object

trackers, see [14]. In this study, we propose a sequential

(online) method that leverages information from a temporal

window to jointly predict suitable tracks for each hand.

3. Experimental Setup

In this paper, we are interested tracking both hands of a

driver in an unobtrusive yet reliable manner. To do so, we

mount an over the shoulder, forward facing monocular RGB

camera with an intent of capturing the whole region around

the steering wheel, gear stick and instrument cluster (see

Figure 1). Using this setup, we capture naturalistic video

data of the subject driving. From this corpus of data, a total

of 68 events are segmented, each of which capture the total

or partial occlusion of one more hands of the driver. These

events primarily correspond to the execution of right of left

turn maneuvers as is shown in Figure 1. The 68 events col-

lectively account for 2883 frames of video data, as well as

left and right hand annotations corresponding to each frame.

This dataset highlights a highly complex yet frequently oc-

curring problem while tracking hands of a driver. This also

makes it a very important challenge that must be overcome

if tracking for long periods is desired.

4. Tracking Framework

The long-term object tracking problem is generally ap-

proached either from tracking or detection perspectives.

Trackers generally use information from temporally adja-

cent frames to relocate objects in the current frame. How-

ever, trackers are prone to drift and fail when the object is

either occluded or completely leaves the frame. Detection

based algorithms estimate the object location in every frame

independently. Detectors experience no drift and can de-

tect objects that re-enter the frame. On the other hand, they

may produce many false positives or fail to detect true neg-
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Figure 2: Block diagram of proposed tracking framework

for a single frame. Dotted lines represent data flow and solid

lines represent operation flow.

atives leading to an improper assignment of tracks. Hence,

we propose to integrate the tracker and detector in a mutu-

ally beneficial manner to overcome each others’ individual

shortcomings. Figure 2 shows the block diagram of the pro-

posed algorithm. The following subsections are devoted to

explaining each individual block in detail.

4.1. Hand Detector

The detector is an integral part of our proposed frame-

work. To make an astute choice for the detector, we ex-

perimented with different algorithms and feature selection

schemes, taking special care to ensure that the detector is

both complex enough to capture objects with high degree

of freedom (such as hands), and fast enough to run in real

(or near real) time.

First, we trained an ACF detector[6], carefully tuned for

hand detection in the vehicle, using the VIVA hand detec-

tion dataset. The detector was trained using 10 channels

(LUV + Normalized Gradient Magnitude + 6 x Gradient

Orientation). The detector cascade consists of 4 stages of

AdaBoost with 32, 128, 512, and 2048 weak learners for

each stage respectively. The weak learner chosen was a

depth 4 decision tree. A depth greater than 4 resulted in

over-fitting. The template height was set at 65 pixels with

an aspect ratio of 0.9.

Next, we trained a hand detector based on YOLO[20],

a unified neural net based approach to object detection. A

grid size of 15 and 2 bounding boxes per grid cell ensures

that the network outputs a 15×15×11 tensor of predictions.

The grid size was increased from the original 7 to ensure

better localization. The detector was first trained on images

from the Oxford hand dataset[16], and then fine-tuned on

the VIVA hand detection dataset. YOLO runs at roughly 25

fps for a 1280× 720 video on a Titan X GPU.

Figure 3 depicts the PR curves of different detectors on

both the VIVA challenge dataset, and the proposed hand oc-

clusion dataset. YOLO is seen to significantly outperform

the ACF detector in terms of overall performance. It is also

seen to generalize well to new datasets as is seen from its

performance on the occlusion dataset. Also note that the

new dataset is significantly more challenging than the VIVA

dataset, which is corroborated by the inferior AP/AR num-

bers obtained for each detector.

4.2. Median Flow Tracker

The hand detector alone is found to fall short of pro-

ducing smooth object trajectories in challenging naturalistic

driving settings. The detector fails to detect some hand in-

stances, while introducing occasional false positives. We

propose the use of a modified median flow tracker[9] to

solve these issues. Given an set of bounding boxes from the

previous frame, we initialize a set of keypoints[12] within

each box to track in the next frame. The sparse motion flow

of these keypoints are then determined using the pyrami-

dal Lucas-Kanade algorithm[13]. Only points with a bi-

directional (Forward-Backward) error less than 2 pixels are

retained for the voting step. Additionally, points with a low

skin likelihood are discarded to ensure the final track lo-

cation remains on the hand. This also prevents keypoints

that are not localized on the hand from dominating the vot-

ing procedure, thereby reducing the drift considerably. The

median along both spatial dimensions (in the image plane)

of all retained keypoints gives us the track location of the

object for the given frame.

The median flow tracker may also be exploited to pro-

vide a bounding box estimate based on scale change. Scale

change is computed as follows: for each pair of points, a

ratio between current point distance and previous point dis-

tance is computed; bounding box scale change is defined

as the median over these ratios. An implicit assumption of

the point based representation is that the object is composed

of small rigid patches. Parts of the objects that do not sat-

isfy this assumption (object boundary, flexible parts) are not

considered in the voting since they are rejected by the error

measure. The bounding box is centered about the current

track location.

4.3. Bipartite Matching for Data Association

Consider the problem of matching each of N tracks (from

the ) to one of M bounding box proposals. We formulate the
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Figure 3: Performance curves for the hand detectors on dif-

ferent datasets. YOLO15* and ACF* denote the PR curves

for the detectors when the bounding box overlap criteria is

reduced to 0.3.

probability of associating a track Ti, i = 1, 2, .., N with an

object (bounding box) Oj , j = 1, 2, ..,M at a given instant

of time as the product of three components (distance, detec-

tion, tracking):

P (Oj ∈ Ti) = Pdist(Oj ∈ Ti)Pdet(Oj ∈ Ti)Ptrk(Oj ∈ Ti)
(1)

Distance Pdist encodes the distance between the last

know track location and the current object (bounding box)

location

Pdist(Oj ∈ Ti) =
di,j∗

di,j
, (2)

where

j∗ = argmin
j

di,j , ∀j = 1, 2, ..,M. (3)

di,j denotes the distance between the latest location of

track Ti and the center of the object Oj .

Detection Pdet ensures that false positives are weeded

out before data association. It is defined as follows:

Pdet(Oj ∈ Ti) =

{

1 if score(Oj) ≥ 0.25,

0 otherwise,
(4)

where the score is the class probability obtained from the

final layer of the neural network.

Tracking Ptrk ensures that the bounding box proposals

are reinforced by the tracking data. The score Ptrk(Oj ∈
Ti) is defined to be the fraction of keypoints (from the me-

dian flow tracker) associated to track Ti at the given time

that is enclosed within bounding box Oj . This term rein-

forces belief in objects that are supported by the tracker,

and devalues ones that are not.

Integrating three different cues while assigning probabil-

ities helps handle the data association problem effectively

by taking a more holistic view of the situation, thereby

pushing the matching algorithm to reason over distance in

consecutive frames, tracking data, and detection score con-

fidence.

To find the optimal assignment between tracks and ob-

jects, we need to form a cost matrix C = {Ci,j}, with

Ci,j = − logP (Oj ∈ Ti), (5)

and then apply Hungarian algorithm to find the min-cost

solution. If a finite cost solution is not found, the system

updates each track using the median flow tracker.

5. Occlusion Handling

The tracking framework described above is seen to be

capable of handling harsh illumination changes and rapid

hand movements which frequently occur in naturalistic

driving. However, self-occlusion is a recurrent event that

the framework cannot seem to manage. After analyzing

hours of real world driving data, this was seen to be a com-

mon phenomenon during turns, irrespective of the driver or

the type of turn. To solve this problem effectively, we pro-

pose a data association mechanism that produces the most

probable trajectory that each hand would follow, given a

windowed history of their previous tracks.

The first step to handling occlusions is to detect such

events. Indicators for such events include two tracks merg-

ing spatially, or when the total cost of data association ex-

ceeds a chosen threshold for a contiguous set of frames.

5.1. Track Approximation

We then proceed to encode the windowed history cor-

responding to both tracks. A track T consists of N pairs

of xy-positions in the 2D plane together with associated

timestamps ti as below:

T = (((x0, y0), t0), ..., ((xN−1, yN−1), tN−1)), (6)

where ti < ti+1 for i = 0, ..., N − 1. The track T can be

restricted by several constraints, e.g., by the number of ele-

ments, the distance or a time constraint. In both latter cases,

the number of elements N can vary because it is not guaran-

teed that any of the measured values are equidistant in time.

In our application, we consider a window size that captures

the length of the latest tracklet corresponding to the object.

A tracklet in this context is a set of spatially overlapping

track locations. This is large enough to ensure that signif-

icant hand motion corresponding to the maneuver is cap-

tured. To get a uniform representation of an arbitrary length

track, a Chebyshev decomposition on the components of the

22



track (xy-positions in the image plane) is applied. This rep-

resentation also reliably encodes the motion history of an

object in a succinct form. The coefficients of this polyno-

mial approximation are used as input features of the predic-

tion model. The Chebyshev polynomial Tn of degree n is

defined by

Tn(x) = cos(n arccos(x)), (7)

which looks trigonometric but can be shown to be polyno-

mials. The first two polynomials are defined by

T0(x) = 1 (8)

and

T1(x) = x. (9)

Using the recursive formula

Tn+1(x) = 2xTn(x)− Tn−1(x), ∀n ≥ 1, (10)

one can easily calculate the polynomials of higher order.

To approximate an arbitrary function f(x) in the interval

[−1, 1], the Chebyshev coefficients are defined by

cn =
2

N

N−1
∑

k=1

f(xk)Tn(xk), (11)

where xk are the N zeros of TN (x). The reconstruction

formula is defined as

f(x) ≈
m−1
∑

n=0

cnTn(x)−
1

2
c0, (12)

where m ≤ N can be used to control the approximation

quality. For a detailed description on the Chebyshev ap-

proximation and its advantages compared to other approxi-

mations for spatio-temporal trajectory modeling, see[19, 4].

Both xy-components of each track are transformed to

the interval [−1, 1] and the Chebyshev decomposition is ap-

plied. This results in two m-dimensional vectors, cx and

cy, of approximation coefficients, one for each of x and y.

The final feature vector is formed through a simple concate-

nation as follow:

v = [cx,l, cy,l, cx,r, cx,r] ∈ R4m, (13)

where the supplementary subscripts l and r denote if the

approximation coefficients belong to the left or right hand

respectively. The number of coefficients used influences the

approximation quality. Experiments showed that m = 5
coefficients are enough to obtain a good approximation of

the tracks.
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Figure 4: BIC scores as a function of number of components

in GMM.

5.2. Matching Past and Future Tracks

First, we start off by extracting tracks leading to and from

occlusion events from a set of training video sequences. Let

to denote the time index corresponding to the onset of an oc-

clusion event in a video sequence. Let Ti denote the track

of an object before time index to, and To denote the track

of the same object after. The temporal lengths of Ti and

To may be chosen arbitrarily as long they ensure that Ti

begins and To ends when both hands are completely out

of occlusion. Next, we sample contiguous segments with

length greater than or equal to 5 from Ti and To to generate

sets Ti and To respectively. Let Ti,l and Ti,r denote the

set of incoming segments for the left and right hand respec-

tively. Similarly, let To,l and To,r denote the set of outgo-

ing segments for the left and right hand respectively. Note

that there is a one-to-one correspondence between each ele-

ment in Ti,l and Ti,r, and between each element in To,l and

To,r. For each such correspondence, we generate a vector

of Chebyshev coefficients using (13). This gives us sets of

coefficients Ci and Co respectively obtained from encod-

ing (Ti,l, Ti,r) and (To,l, To,r) respectively. The final set

of features for the given occlusion event is generated as:

Xj = Ci ×Co, (14)

where × denotes the Cartesian product between sets. The

final set of features from the entire training corpus is simply:

X =
⋃

j

Xj. (15)

Note that each feature x ∈ X is a concatenation of two

coefficient vectors [vi,vo] where vi ∈ Ci and vo ∈ Co.
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To match past and future tracks during occlusion events,

we learn a Gaussian Mixture Model (GMM) from the fea-

ture set X. To choose the optimal number of components

in the mixture, we use the Bayesian Information Criterion

(BIC) as a measure of data fit to the model. We plot the BIC

scores as a function of the number of components in the

mixture for different covariance types (see Figure 4). The

model corresponding to the lowest score (full covariance

with 48 components) is chosen for further experiments.

During operation, when an occlusion is detected, we first

extract the vector of coefficients vi from the latest tracklet

associated with each object. Once this is done, the tracker

goes into a state of dormancy until both hands are com-

pletely out of occlusion. This event may be detected when

atleast two strong tracklets of a desired length are observed.

Once this condition is satisfied, we generate a set of pro-

posals for the vector of output coefficients {vo,j} obtained

from each pairwise combination of outgoing tracklets. The

optimal outgoing vector of coefficients is then chosen as fol-

lows:

v
∗

o = argmax
vo,j

P (vo,j | vi)

= argmax
vo,j

P (vi,vo,j)
(16)

where P (vi,vo,j) is the GMM trained using X.

This solves the problem of associating incoming and out-

going tracklets corresponding to each object after occlusion

since v
∗

o includes coefficients corresponding to both left

and right hands. Intuitively, the GMM models this asso-

ciation of tracklets corresponding to different hand motions

encountered while driving. For a given set of maneuvers, it

is seen that hand motion patterns tend to repeat themselves,

thereby enabling tracklet association to be learned offline.

5.3. Interpolation

Once the incoming and outgoing tracklets corresponding

to each object are associated, the tracking continues as nor-

mal. However, one may still be interested in recovering the

tracks of objects during occlusion. This can be done by con-

catenating each pair of associated tracklets, finding the cor-

responding coeffiecients using (11), and then unpacking the

coefficients to the desired length of the interpolation win-

dow using the reconstruction formula in (12).

6. Experimental Evaluation

In order to evaluate the proposed framework, the occlu-

sion dataset is split into two parts for training and testing.

We use 46 video sequences for training, and the remaining

22 for testing. We ensure that the test dataset consists of

all hand gestures that correspond to frequently performed

drive maneuvers. We also include maneuvers that result in

frequent self-occlusion of the hands to thoroughly test the

occlusion handling capabilities of our proposal. The dataset

mimics real world conditions and offers challenges such

as different subjects, different capture settings, background

clutter and harsh illumination.

We use the standard CLEAR-MOT[2] metrics to eval-

uate our proposal (TD + OH). A state of the art base-

line: Discrete-Continuous Energy Maximization (DC-

EM[15], is chosen for comparison and evaluation. All

hyper-parameters are tuned using the training dataset. It

must be noted that DC-EM is an offline method and thus

predicts tracks after observing the entire video sequence as

a whole. In addition to this, we also include the results for

the proposed framework without occlusion handling capa-

bilities (TD). This gives us a tangible sense of the effect

that occlusion handling has on the overall performance of

the tracker. All trackers make use of the same detection box

proposals obtained from the YOLO based hand detector.

As can be seen in Table 1, the tracker without occlusion

handling (TD) performs poorly in comparison to the other

two techniques. This is expected as it performs satisfacto-

rily only under normal conditions. This makes it unsuitable

for long term tracking. The baseline (DC-EM) provides

much better results in comparison to (TD). This is because

it is capable of handling occlusions and missing tracks a

posteriori after observing the entire sequence. It is also seen

that integrating the occlusion handling module (TD + OH)

produces large gains in overall performance. Crucially, the

occlusion handling module also reduces the number of ID

switches considerably, thereby demonstrating better track-

let association. This module enables maintaining reliable

tracks for a longer duration, while handling all common

hand gestures in an online fashion. Figure 5 shows example

results for tracking through occlusion events. These results

indicate that common hand gestures learned offline, gener-

alize well enough for prediction purposes. This idea may

be extended to other applications where the subject carries

out a repeated set of hand gestures that can be reproduced

reliably.

7. Concluding Remarks

This paper introduces a novel tracking framework de-

signed for long-term analysis of vehicle occupants’ hand

movements. The uniqueness and benefits of such a tracker

in comparison to a generic MOT are highlighted, and a case

is made for its separate consideration. A combined tracking

and detection framework is proposed to produce individual

tracks online, and data association is performed using the

Hungarian algorithm. Although motion and appearance-

based tracking is adopted, these alone provide difficult dis-

ambiguation when the hands are occluded or interacting.

Therefore, we introduce a module to handle such cases by

encoding hand motion patterns offline. The proposed algo-
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Table 1: Results on test dataset for different tracking schemes. Arrows next to each metric indicate if a higher(↑) or lower(↓)

is desired.

Method MOTA (↑) MOTP (↓) MT (↑) ML (↓) IDS (↓) Frag (↓)

TD + OH 0.650680 0.753181 0.777275 0.000000 4 30

TD 0.233710 0.626504 0.000000 0.550000 16 83

DC-EM 0.535302 0.588956 0.340909 0.113636 48 79

Normal Operation Occlusion Onset Dormant State Tracklet Association Post Interpolation

1

2

3

Figure 5: Example results from the proposed framework for three occlusion sequences. Different stages of operation of the

tracker are highlighted for better comprehension. The tracks for the left (red) and right (green) hand are color coded for

convenience.

rithm shows significant improvement over a state of the art

baseline, with occlusion handling alone accounting for large

gains. This approach to managing occlusions may easily be

carried over to other applications, where objects of interest

tend to produce similar motion patterns in the long run.
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