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Abstract

We propose a deep Convolutional Neural Network

(CNN) for land cover mapping in remote sensing images,

with a focus on urban areas. In remote sensing, class im-

balance represents often a problem for tasks like land cover

mapping, as small objects get less prioritised in an effort to

achieve the best overall accuracy. We propose a novel ap-

proach to achieve high overall accuracy, while still achiev-

ing good accuracy for small objects. Quantifying the uncer-

tainty on a pixel scale is another challenge in remote sens-

ing, especially when using CNNs. In this paper we use re-

cent advances in measuring uncertainty for CNNs and eval-

uate their quality both qualitatively and quantitatively in a

remote sensing context. We demonstrate our ideas on differ-

ent deep architectures including patch-based and so-called

pixel-to-pixel approaches, as well as their combination, by

classifying each pixel in a set of aerial images covering Vai-

hingen, Germany. The results show that we obtain an over-

all classification accuracy of 87%. The corresponding F1-

score for the small object class ”car” is 80.6%, which is

higher than state-of-the art for this dataset.

1. Introduction

Object detection, mapping of land cover and change de-

tection have historically been some of the the most impor-

tant tasks in remote sensing and find application in, among

others, environmental monitoring, agriculture, forestry, and

urban planning. For instance, a high quality and updated

land cover map is required by local government agencies

that are interested in large-scale analysis to automatically

extract useful geographical features, by economic forecast-

ers that are interested in how much business a particular re-

tail store did conduct by counting cars in the parking lot, or

by relief agencies that are interested in knowing the hardest

hit areas after a natural disaster.

Remote sensing imagery is often characterized by com-

plex data properties in the form of heterogeneity and class

imbalance, as well as overlapping class-conditional distri-

butions [6]. Together, these aspects constitute severe chal-

lenges for creating land cover maps or detecting and local-

izing objects, producing a high degree of uncertainty in ob-

tained results, even for the best performing models [21, 24].

In recent years, deep CNNs have emerged as the leading

modeling tools for image pixel classification and segmenta-

tion in general [14, 22], and have had an increasing impact

also in remote sensing [21, 24, 25, 28]. This increasing in-

terest is reflected for example in the ISPRS semantic seg-

mentation challenge [1], where deep CNNs are dominating

and are shown to provide the best performing models.

In this paper we apply and develop two recent CNN ar-

chitectures, patch-based and pixel-to-pixel based, for seg-

mentation of urban remote sensing images to map land

cover with a focus on small objects. We study the poten-

tial of the cross-entropy loss function weighted with median

frequency balancing, a loss function that was proposed by

Eigen and Fergus [9] in the last few months, to improve seg-

mentation accuracy for small classes in urban remote sens-

ing, which to the authors knowledge has not been done pre-

viously. Inspired by the success of ensemble methods in the

ImageNet competition [15, 32], we propose a combination

of our models to achieve good overall classification perfor-

mance, maintaining at the same time a good accuracy for

small classes.

Of interest for this paper, is the recently introduced tech-

nique for quantifying uncertainty in deep learning by Gal

and Ghahramani [12]. They showed that dropout train-

ing [31] in neural networks can be cast as approximate

Bayesian inference in Gaussian processes. This means that

uncertainty information can be extracted from models with-

out requiring additional parameters. Performing dropout

during the test phase can be viewed as performing Monte

Carlo sampling from the posterior distribution over the var-
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Figure 1: A small example patch from the validation dataset. From left to right: RGB image, DSM, normalized DSM, and

ground truth image. It illustrates the difference in size between classes, such as the car class (red) and the building class

(blue).

ious dropout models. This technique has been utilized in

order to produce uncertainty maps as a visual aid e.g. in

the context of segmentation of indoor scenes and outdoor

camera videos [19]. To the authors knowledge, CNN model

uncertainty in segmentation has previously only been used

for visualization. One of our contributions in this work is

a novel analysis of uncertainty maps that links uncertainty

information and segmentation accuracy.

2. Related work

Our approach to segmentation builds on the recent suc-

cesses that deep learning techniques have achieved for im-

age segmentation. CNNs have been extensively used for

the task of image classification [20], the task of localiza-

tion [29] and the more challenging task of object detection

both using bounding box [13, 27] and sliding window ap-

proaches [29].

Lately, CNNs have also been applied to the task of image

segmentation. In practice, there are currently two main ap-

proaches to performing image segmentation using CNNs.

The first one, which we refer to as patch-based, relies on

predicting every pixel in the image by looking at the enclos-

ing region of the pixel. This is commonly done by training a

classifier on small image patches and then either classifying

all pixels using a sliding window approach, or more effi-

ciently, convert the fully connected layers to convolutional

layers, thereby avoiding overlapping computations as de-

scribed in Sermanet et al. [29]. Further improvements can

be achieved using multi-scale approaches or by iteratively

improving the results in a recurrent CNN [11, 26].

The second approach is based on the idea of pixel-to-

pixel semantic segmentation using end-to-end learning [22].

It uses the idea of a fully convolutional network (FCN), con-

sisting of an encoder and a decoder. The encoder is respon-

sible for mapping the image to a low resolution represen-

tation, whereas the decoder provides a mapping from the

low resolution representation to the pixel-wise predictions.

Up-sampling is achieved using fractional-strided convolu-

tions [22]. This approach has recently improved the state-

of-the art performance on many image tasks and, due to

the lack of fully-connected layers, allows pixel-wise pre-

dictions for arbitrary image sizes.

Previous work that has been published on the ISPRS

challenge includes among others Paisitkriangkrai et al. [24],

who proposed a scheme for semantic segmentation using

a combination of a patch-based CNN and a random forest

classifier that is trained on hand-crafted features. To in-

crease the classification accuracy further, a conditional ran-

dom field (CRF) was used to smooth the final pixel labeling

results. Recently, a dense FCN approach has also been em-

ployed, however, the paper is not published yet. Besides

CNNs, also graph based approaches have been previously

tested on the dataset [23].

Other related approaches applied pre-trained CNNs and

a sliding window approach to perform a pixel classifica-

tion in remote sensing images [21, 25]. Additionally, a

region-based approach combined with a pre-trained CNN

was adopted to detect small objects in areal images [28].

Recently, focus has also been put on using geospa-

tial data from e.g. geographical information system (GIS)

databases or crowd-sourced cartographic maps to improve

object detection and semantic segmentation performance [2,

3, 33] or to perform cross-view matching between street-

level images and GIS maps [7].

3. Dataset

The remote sensing dataset used to evaluate our pro-

posed method is the ISPRS Vaihingen 2D semantic label-

ing contest dataset [1]. The dataset consists of 33 images

of varying size, ranging from approximately 3 million to 10

million pixels each, each one being an image patch of a high

resolution true ortho photo (TOP) that was taken of Vaihin-

gen, a small town in Germany, with a ground sampling dis-

tance of 9 cm. Besides the TOP images, the dataset contains

the Digital Surface Model (DSM) for each of the 33 images

with the same spatial resolution. Additionally, normalized
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DSMs were provided by Gerke [23], to limit the effects

of varying ground height. Ground truth images are avail-

able for 16 of the 33 images in which all pixels are labeled

by one of 6 classes, namely Impervious surfaces, Building,

Low vegetation, Tree, Car, Clutter/background. An exam-

ple patch of a TOP image from the validation dataset is dis-

played in Figure 1 alongside the corresponding DSM, nor-

malized DSM, and ground truth image.

The evaluation procedure defined by the ISPRS [1] was

used to evaluate our results. The performance on the classes

is measured by using the F1-score (the F1-score is defined

as 2 · precision · recall/(precision + recall)) and the overall

accuracy is measured as the percentage of pixels that were

labeled correctly. To reduce the effect of class boundaries,

the class boundaries were eroded with a disk of radius 3 and

ignored during evaluation, as specified by the ISPRS.

To evaluate our method, the labeled part of the dataset

is divided into a training and validation set. Following the

example of Paisitkriangkrai et al. [24], the training set con-

sists of 11 images (areas: 1, 3, 5, 7, 13, 17, 21, 23, 26, 32,

37) and the validation set of 5 images (areas: 11, 15, 28,

30, 34). There are some ambiguities in the dataset, where

pixels are mislabeled (for examples see Paisitkriangkrai et

al. [24]) and some errors in the normalized DSM [23].

4. Approaches

This section introduces the components of our approach

to high-resolution image segmentation in remote sensing.

We first describe the first stage components, namely the

patch-based pixel classification and the pixel-to-pixel seg-

mentation, which allow us to achieve dense segmentation.

We then elaborate on our idea of combining models to

achieve improved overall segmentation accuracy, while pre-

serving high classification performance for small classes,

and introduce uncertainty maps.

4.1. Patch­based pixel classification

A CNN is trained on small image patches, which are ex-

tracted from the large training images. The patch size was

chosen following the example of Paisitkriangkrai et al. [24],

who achieved their best standalone CNN accuracy using

64× 64 patches. However, we chose a 65× 65 pixel shape,

as we want to classify the image patch according to its cen-

ter pixel. During the test-phase the trained CNN is used to

classify the whole test image efficiently.

Architecture The chosen architecture for the patch-based

CNN consists of four convolutional layers, followed by two

fully connected layers. The first convolutional layer con-

sists of 32 kernels of size 5×5×5, which are applied with a

stride of 1 on the 65×65×5 input image. The second convo-

lutional layer takes the output of the first convolutional layer

as input and has 64 kernels of size 5× 5× 32. There are 96
kernels of size 5×5×64 in the third and 128 kernels of size

5×5×96 in the fourth convolutional layer. Each of the con-

volutional layers is followed by a ReLU non-linearity, batch

normalization [17] and a 3×3 max-pooling layer. The max-

pooling operations are applied using a stride of 1, thereby

avoiding down-sampling and allowing for a high spatial res-

olution. Weight initialization was performed following He

et al. [16]. The two final fully connected layers consist of

128 neurons each and are followed by dropout layers with

a 50% drop probability. The final layer consists of a 5-way

softmax layer.

Data augmentation The training and validation data was

generated by first extracting a patch for every car with the

car being centered. Then additional training data for the car

class is generated by rotating each of the patches several

times at random angles. No translation augmentation was

used, since we want to achieve high spatial resolution. The

other classes are sampled randomly from the images, such

that the center pixel belongs to the class of interest. The

same amount of training data was sampled from each class

to achieve class balance.

Fully convolutional classification To allow efficient

classification of larger images, the fully connected layers

are converted to convolutional layers following the example

of Sermanet et al. [29]. This avoids the computational com-

plexity of performing a sliding window approach, where

overlapping regions would lead to redundant computations,

and allows the classification of arbitrary image sizes.

4.2. Pixel­to­pixel segmentation

Inspired by the FCN architecture [22], we design an ar-

chitecture that allows end-to-end learning of pixel-to-pixel

semantic segmentation. The network is trained in mini-

batches on patches of 256× 256 pixels. The patch size was

chosen due to GPU memory considerations.

Architecture The CNN architecture of the FCN network

used in this paper is inspired by Simonyan and Zisser-

man [30] and is shown in Figure 2. The architecture consists

of four sets of two 3×3 convolutions (blue layers), each set

separated by a 2 × 2 max pooling layer with stride 2 (red

layers). All convolution layers have a stride of 1, except

the first one, which has a stride of 2. The change in the

first convolution layer is a design choice, which was mainly

made due to limits in GPU memory during test phase when

considering large images. As in the patch-based architec-

ture, all convolutional layers are followed by a ReLU non-

linearity and a Batch normalization [17] layer. Weights

were again initialized according to He et al. [16]. The
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Figure 2: Pixel-to-Pixel architecture. Blue layers represent convolutional layers (including ReLU and batch-normalization

layer), red layers represent pooling layers, the green layer represents the fractional-strided convolution layer and the yellow

layer the softmax layer.

final 3 × 3 convolution is followed by a 1 × 1 convolu-

tion, which consists of one kernel for each class to produce

class scores. The convolutional layers are followed by a

fractional-strided convolution layer [22] (green layer, some-

times also referred to as deconvolution layer), which learns

to up-sample the prediction back to the original image size

and a softmax layer (yellow layer). The network is trained

end-to-end using backpropagation.

Data augmentation The image patches are extracted

from the input image with 50% overlap and are flipped (left

to right and up down) and rotated at 90 degree intervals,

yielding 8 augmentations per overlapping image patch.

Median frequency balancing Training of the FCN net-

work was done using the cross-entropy loss function. How-

ever, as this loss is computed by summing over all the pix-

els, it does not account well for imbalanced classes. To

take the imbalanced classes into account, two FCN mod-

els are trained: one using the standard cross-entropy loss,

and one where the loss of the classes is weighted using me-

dian frequency balancing [5, 9]. Median frequency balanc-

ing weights the class loss by the ratio of the median class

frequency in the training set and the actual class frequency.

The modified cross-entropy function is

L = −
1

N

N
∑

n=1

C
∑

c=1

l(n)c log
(

p̂(n)c

)

wc , (1)

where N is the number of samples in a mini-batch,

wc =
median ({fc | c ∈ C})

fc
(2)

is the class weight for class c, fc the frequency of pixels in

class c, p̂
(n)
c is the softmax probability of sample n being in

class c, l
(n)
c corresponds to the label of sample n for class c

when the label is given in one-hot encoding and C is the set

of all classes.

4.3. Uncertainty maps

Uncertainty maps are images that indicate the models

uncertainty for a given pixel classification. Using Monte

Carlo dropout [12] uncertainty maps are computed for all

three CNNs by retrieving 10 Monte Carlo samples from the

networks and then computing the standard deviation over

the softmax outputs of the samples. In the rest of the paper,

if not stated otherwise, we assume that uncertainty maps are

displaying the mean standard deviation over all the classes.

Besides the uncertainty maps, Monte Carlo sampling has

also been shown to be valuable to increase classification ac-

curacy [5, 12], as it has been shown to outperform the stan-

dard weight averaging technique.

4.4. Combined approach

Inspired by the idea of model ensembles, we propose a

combination of the models to combine their strengths and

achieve high overall accuracy, while still achieving high

performance on small classes. We combine the softmax

probabilities of the different methods by training one-vs-

all linear SVMs on the combined softmax probabilities. (A

linear SVM was chosen in order to speed up the training.)

LIBLINEAR [10] was used to train the SVM.

5. Experiments and results

We evaluate the performance of the different methods on

the ISPRS dataset with respect to overall accuracy and per-
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Figure 3: Results of the patch-based CNN. From left to right: One of the validation images, its ground truth, the results for

the patch-based CNN and the uncertainty map.

Figure 4: Results of the pixel-to-pixel CNN. From left to right: The results for the pixel-to-pixel CNN and the uncertainty

map using the standard cross-entropy and using the cross-entropy with median frequency balancing, respectively.

formance on the small classes. Combinations of the meth-

ods are then considered to improve the stand-alone model

performance. Finally, we evaluate the performance of the

uncertainty measure.

Patch-based In this section we discuss the results for the

patch-based CNN (PB). Figure 3 displays the classification

results for one of the images in the validation dataset (area:

30). Note that due to the nature of the patch-based CNN ar-

chitecture, classification of a 32 pixel boundary at all sides

was omitted. It can be seen that the classification results

are generally good for large objects, such as buildings and

roads, however, there are many cars detected that are not

actually in the image (false positives). Additionally, it can

be observed that small areas of trees are misclassified as

vegetation, or on rare occasions as buildings (bottom left

corner). The uncertainty map displays the mean uncertainty

over all the classes and it can be seen that the models uncer-

tainty is especially high at boundaries and in regions where

the model is performing misclassifications, for example in

the bottom left corner. In semi-automatic approaches for re-

mote sensing these areas could be presented to an operator

for manual clarification. To visualize the uncertainty maps,

the uncertainties were scaled into the range [0,1] and dark

blue refers to low uncertainties, whereas lighter colors refer

to higher uncertainties.

Table 1 shows the quantitative results for the patch-based

CNN on the validation data set, and it can be seen that the

worst class-accuracy is achieved for the car class.

Pixel-to-pixel The results of the pixel-to-pixel approach

(FCN) for the same image as in Figure 3 is shown on the

left side of Figure 4. Comparing its results to the patch-

based approach illustrates the superior performance of the

encoder-decoder architecture for segmentation. Edges of

buildings are classified more evenly and small regions such

as the trees at the bottom right side of the horizontal road are

segmented out more accurately. This agrees with the quan-

titative results shown in Table 1, however, the quantitative

results also illustrates that the native pixel-to-pixel approach
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Imp Surf Building Low veg Tree Car Overall

Method F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc Avg F1 Acc

PB 90.45 86.47 95.01 92.23 80.22 71.98 88.39 83.74 77.72 64.34 86.36 83.74

FCN 92.77 89.96 95.81 94.10 83.96 76.86 90.81 87.39 43.03 27.42 86.36 86.65

FCN-MFB 91.16 86.14 95.30 93.37 84.36 77.80 90.79 87.39 92.57 86.61 90.84 86.48

Table 1: Performance of the three different models. The F1 scores and accuracies are shown as percentages.

achieves worse results for the car class than the patch-based

approach. From Figure 4 it can be seen that, compared to

the patch-based approach, much fewer cars are detected and

many car pixels are misclassified as roads (impervious sur-

face).

Re-training the model with median frequency balancing

(FCN-MFB) as described in Section 4.2, yielded much bet-

ter accuracy for the car class, while still achieving a good

overall classification accuracy close to the native FCN. The

results can be seen on the right side of Figure 4 and in Ta-

ble 1. Qualitatively the main difference to the standard FCN

approach appears to be the increase in car classification fre-

quency, however, this comes at the cost of some pixels being

misclassified as cars.

The uncertainty information for both the FCN and the

FCN-MFB are displayed in Figure 4. As for the patch-based

approach it can be seen that the model uncertainty is quite

high for boundary pixels, however, overall the FCN models

appear to have very low uncertainty for most of the build-

ing pixels. Similar to the patch-based model it also gives

high uncertainty for the vegetation region in the bottom left

image corner.

Combined approach The results of combining the patch-

based and the two pixel-to-pixel based approaches can be

seen in Table 2. Comparing its results to Table 1, it can

be seen that the total accuracy for the combined approaches

is higher than for any of the single approaches. We illus-

trate results for all the combinations of the three approaches

and observe that the best overall accuracy is achieved when

combining all three models, whilst still achieving a good

performance for the car class when comparing it to the best

single model (FCN). The best accuracy for the car class

is achieved when combining the patch-based approach and

the median-frequency balancing FCN. However, this result

comes at the cost of a decrease in overall accuracy. The seg-

mentation result for our example image from the validation

dataset when combining all three models can be seen in Fig-

ure 5. Overall, it can be seen that many of the misclassified

cars from the patch-based method are removed. However,

especially in the bottom right corner, it is possible to see that

cars that are close together are merged into single blobs.

Figure 5: Result of the combined approach.

Uncertainty maps In this section we perform a novel

analysis of uncertainty maps for CNNs in the context of re-

mote sensing to illustrate that model uncertainty, the stan-

dard deviation of the Monte Carlo samples, is indeed related

to classification accuracy. Figure 7 illustrates the relation-

ship between uncertainty and accuracy. It displays the over-

all classification accuracy that is achieved on the validation

dataset when dropping pixels that have a mean-class uncer-

tainty above a certain threshold. The mean-class uncertain-

ties have been normalized to the range [0, 1] for all three

models. Increasing the threshold and therefore including

pixels with larger uncertainty leads to a decrease in overall

accuracy for all three CNN approaches. This confirms our

hypothesis that pixels with low uncertainty are more likely

to be classified correctly.

Figure 6 illustrates, which pixels get included, when we

threshold uncertainty such that the overall classification ac-

curacy is at 97.5%, 95% and 90% for the FCN. It can be

seen that the model is quite certain for many pixels and

achieves a 97.5% accuracy, when including the pixels with

least uncertainty. Here 64.85% of all the pixels in the im-

age were classified, or when ignoring segmentation of the

boundaries (as in the ISPRS contest) 67.65%. Increasing
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Imp Surf Building Low veg Tree Car Overall

Method F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc Avg F1 Acc

PB+FCN 92.90 90.06 95.86 94.04 83.81 76.54 90.98 87.83 54.94 37.89 83.70 86.84

PB+FCN-MFB 92.11 88.26 95.38 93.29 83.92 76.82 91.02 87.97 83.62 71.97 89.21 86.74

FCN+FCN-MFB 92.47 88.81 95.71 93.85 83.98 76.87 91.03 87.94 81.52 68.91 88.94 86.98

ALL 92.55 88.95 95.77 93.92 83.98 76.87 91.05 87.99 80.61 67.61 88.79 87.03

Table 2: Performance of the combined models. ALL refers to the combination of the PB, FCN and FCN MFB method.

Figure 6: Results of the uncertainty experiment. The images show the segmentation for the FCN when setting the uncertainty

threshold such that the overall accuracy is 97.5% (left), 95% (middle) and 90% (right). Black pixels are pixels that are not

classified for a given threshold due to their uncertainty being larger than the defined threshold.
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Figure 7: The relationship between accuracy and the uncer-

tainty measure. We see that the accuracy decreases when

more pixels with higher uncertainty are included.

the uncertainty threshold (middle Figure), a classification

accuracy of 95% is achieved, while including 75.81% (or

78.27%) of the image pixels. When setting the threshold

such that 90% accuracy is achieved, 94.06% (or 94.97%)

of the pixels get classified. This illustrates that uncertainty

maps can indeed be used to classify a large number of pixels

with high accuracy.

Further, it can be seen that areas of class boundaries are

the main cause of misclassification, which agrees with our

previous observation that uncertainties were large in these

areas. Additionally, it can be seen that the FCN model re-

turns high uncertainties for cars and does barely segment

any cars for the 97.5% and 95% threshold.

Experimental setup All experiments in this paper were

performed using the deep learning framework Caffe [18] on

a single Titan X, unless stated otherwise. To support seg-

mentation of the large images in the patch-based approach,

Caffe was modified to free redundant memory buffers dur-

ing the forward pass during the testing stage. Additional

modifications were made to support the median frequency

balancing.

6. Discussion

The results showed that class imbalance may lead to re-

duced performance if not accounted for properly. This was

evident when using the FCN approach, where the car class
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was only classified with an accuracy of 27.4%. When op-

timizing the cost function for overall accuracy, classes with

many pixels will automatically have a larger impact. Ac-

cordingly, more focus is put on improving the impervious

surface class than the car class. This resulted in many cars

being misclassified as roads. For the patch-based approach

(car accuracy equal to 64.3%) this was not a problem, as

classes were balanced in the training dataset. In this work

we observed that median frequency balancing was essential

to counter class imbalance when trying to perform segmen-

tation of small objects using pixel-to-pixel CNNs. Incorpo-

rating median frequency balancing increased the accuracy

of the FCN to 86.6% for the car class.

One region in our example image (area: 30) that contains

many misclassified pixels for all the different approaches

was the bottom left corner, where the models misclassified

low vegetation as buildings. Figure 8 shows the RGB image

and the normalized DSM for the small region of interest. It

can be seen in the RGB image that the vegetation patch is

elevated above the road and therefore separated from the

road below by a strong edge. This can also be observed in

the normalized DSM, where there is a drop both towards the

road, but also towards the rest of the vegetation patch. This

is a behavior, which we would usually expect for buildings

and it is not surprising that the various approaches strug-

gle with this particular area. However, the models generally

display quite high uncertainty in that area (Figure 3 and 4),

which confirms the importance of using uncertainty in sce-

narios where highly uncertain patches can be presented to

an operator.

Smoothing the final pixel labeling results using a CRF

has previously shown to increase overall classification ac-

curacy [24] and could be combined with our approach. By

using a CRF on the combined models we expect to achieve

more robust classification results, in particular in terms of

removing small mislabeled regions. It might, however, also

impact the resolution of our segmentation by removing thin

regions (e.g. pixels between parking cars).

Instead of learning CNNs from scratch, many CNNs

have recently been based on the idea that CNN features are

quite general and that CNNs can be pre-trained on large,

often unrelated, datasets and can then be fine-tuned on the

data at hand [4]. This allows for efficient training, even in

situations where the available training dataset is small. One

problem for remote sensing data is the fact that these large

datasets and pre-trained networks generally only accept a

three band input (RGB), which makes it inapplicable to sit-

uations where additional bands are available, such as in our

scenario. Lagrange et al. [21] proposed to fine-tune sepa-

rate CNNs for the different image bands and combine them

using an SVM. A similar approach could be employed in

our case and an investigation of this is left for future work.

As a continuation of this work, additional data sources

Figure 8: Zoomed in image of the bottom left corner of the

image in Figure 3, where the vegetation area was misclas-

sified as a building in all three models. The RGB image on

the left and the normalized DSM on the right.

(e.g. street view, satellite imagery) could be utilized to clas-

sify uncertain pixel areas in our segmentation, leading po-

tentially to higher overall accuracy.

7. Conclusions

In this paper we have applied three recent approaches for

pixel-wise classification based on advances in deep learn-

ing, and have analyzed their performance for small object

segmentation and land cover mapping in urban remote sens-

ing. We concluded that a combination of the models pro-

vided the best overall performance in terms of good accu-

racy for small objects, while still achieving a high overall

accuracy. We also conclude that uncertainty maps, recently

proposed by Gal and Ghahramani [12], are a good mea-

sure for the pixel-wise uncertainty of the segmented remote

sensing images.
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