
 

 

Abstract 

 

In three-dimensional to two-dimensional (3D-2D) image 

registration, DRR (digitally reconstructed radiograph) 

generation is often a bottleneck in computation. In this 

article, a novel fast DRR generation scheme is proposed 

based on the recently introduced Block Projection method 

and Slab algorithm that reuse building blocks of DRRs 

previously generated for known poses. The scheme is 

flexible as exemplified in pose grid design and slab 

binding, and upper bounds in projection error exist and 

can be estimated. Experiments were conducted to evaluate 

DRR quality and sensitivity to pose difference; computing 

time and error bounds were reported. The results showed 

that on a conventional computer the proposed scheme 

generated high quality, pose-preserving DRRs of size 

512×512 in 6 ms with slab binding, demonstrating its 

potential to be a viable solution to fast, high quality DRR 

generation for 3D-2D image registration. 

 

 

1. Introduction 
 

Image guidance has become a daily practice in clinical 

institutions around the world; it provides unprecedented 

positioning accuracy and improves quality of treatment, 

vital to many clinical procedures such as biopsy [1,2], 

surgery [3], interventional procedures [4], and radiation 

treatments [5]. For example, in image-guided radiotherapy 

(IGRT), the pre-operative image is usually the 3D 

computed tomography (CT) image used for treatment 

planning. At treatment time, intra-operative images are 

acquired and compared with pre-operative images to 

determine alignment errors. Compared with 3D modalities 

such as Cone Beam CT, 2D X-ray imaging is often chosen 

for intra-operative imaging due to its fast acquisition and 

low imaging dose, and 3D-2D image registration is usually 

employed to register the 3D pre-operative CT image with 

2D X-ray images acquired with patient on the treatment 

couch [6]. 

Since 3D and 2D images cannot be directly registered, 

the 2D intra-operative images are usually registered with 

synthetic images called DRRs. DRRs are simulated X-ray 

like images created from a 3D CT image by placing the 3D 

volume (represented by that CT image) in specific poses 

within a virtual imaging system that simulates the actual X-

ray imaging geometry.  

Conventional registration algorithms usually operate 

iteratively: start with a hypothetical pose, create DRRs for 

that pose, evaluate similarity with intra-operative images, 

and search for the next potential pose; then generate DRRs 

for this new pose, and the iteration goes on. During the 

search step, DRRs may be generated for multiple poses 

close to the current pose for numerical estimation of 

derivatives. For example, if the algorithm employs a 6D 

search (i.e., 3D translation and 3D rotation), additional 

DRRs will be generated for six close poses just for a 

gradient estimation at one pose. Typically DRRs will be 

generated for hundreds of times during registration.    

DRR generation is computationally intensive by nature. 

In general, there are two types of methods for DRR 

generation. The most commonly used algorithm is ray 

casting, where each pixel value is a line integral of the CT 

values of the voxels on the path of the beam incidental on 

that pixel, similar to image order volume rendering in 

computer graphics [7]. Another approach is similar to 

object order rendering [8], called voxel projection, treating 

DRR as a sum of all voxel projections [9]. Both methods 

bear a high complexity level of O(n
3
). In comparison, 

similarity measure computation is on the 2D images, and 

usually has a complexity level of O(n
2
). 

Given its complexity and frequency of execution during 

registration, faster DRR generation methods are highly 

desired. For the voxel projection approach, if there are less 

voxels to render, less computation. It has been proposed to 

remove soft tissue voxels and calculate only bony tissue 

voxels. It was reported that a factor of 10-20 in time 

reduction had been achieved with this approach [10]. 

However, this method gains on speed at the cost of lost 
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soft tissue information, limiting the registration algorithm 

to rely solely on bony structures, and subsequently limiting 

its application in regions with primarily soft tissue organs 

such as liver and lung.  And there is little room for further 

improvement on time reduction. 

Another approach to achieve time reduction is to trade 

space for time, storing off-line pre-generated results for 

quick on-line computation. Methods such as light field and 

progressive attenuation field have been proposed to 

compute DRR using previously generated rays[7][11][12]. 

For example, in the light field method, each ray is 

computed by interpolation of several rays of similar poses 

[7][11]. Theoretically, the light field method requires a 

dense sampling of the 4D ray space for high DRR quality, 

and reduces the complexity level from O(n
3
) to O(n

2
), and 

substantial time reduction has been reported [7].  

It is worth to note that in the light field method, because 

a new ray is approximated using whole rays, it inevitably 

involves voxels that are not on the path of the new ray, as 

shown in Fig. 1A, resulting in errors that are difficult to 

estimate or control. 

A new fast DRR generation method, the Block 

Projection method, and its sample implementation, the 

Slab algorithm, have been introduced recently based on the 

idea of ray segment approximation [13]. As shown in Fig. 

1B, if a new ray is approximated by ray segments close to 

its path, contribution from external voxels can be 

substantially suppressed. In this method, a 3D volume is 

divided into blocks; block projections are pre-generated 

for a number of known poses, and new DRRs are created 

by re-projecting and assembling these block projections. In 

essence, it reuses ray segments instead of whole rays (note 

that each pixel in the block projection represents a ray 

segment). Because there are a much smaller number of 

blocks to process at runtime, DRRs can be computed for 

new poses at high efficiency. The results showed that this 

method significantly reduced computing time for online 

DRR generation while maintained very high quality [13]. 

Parallel to the algorithmic improvements, acceleration 

through implementation on GPUs [14][15] has gained a lot 

of attention recently, and computing time in a few 

milliseconds and speed-up ratio up to 98 times of an 

equivalent CPU-based approach have been reported [15].    

In this article, a fast DRR generation scheme based on 

the Block Projection method is proposed for 3D-2D image 

registration, and results are presented to validate the 

proposed scheme and slab binding approach.   

   

2. Method 
 

In this section, a brief introduction of the Block 

Projection method and the Slab algorithm [13] is given 

first. Then a fast DRR generation scheme suitable for 3D-

2D registration is proposed, and important new elements 

of the scheme such as pose grid, projection error 

estimation and slab binding are discussed. 

2.1. The Block Projection method 

 The structure of the Block Projection method is rather 

straightforward. It consists of an offline pre-processing 

part and an online DRR generation part, as shown in Fig. 

2. Note that the block projection can be created with any 

existing method such as ray casting [7] or splatting [16], 

just treating each block as a separate volume. As an 

implementation of this method, the Slab algorithm was 

introduced in [13], and is listed below for readers’ 

convenience.  

Slab Algorithm 

1. Pre-generation of slabs for a number of known poses 

(a) For every known pose, compute projections of all slices 

(b) Calculate the sum of every N consecutive slice 

projections as synthetic block projections, BN, or slabs 

2. To generate DRR for a new pose,  

(a) identify the closest known pose and associated slabs, BN 

(b) Re-project slabs, BN, to compute their projections for a 

new pose, PN 

(c) Sum PN to obtain the new DRR 

where N represents the slab thickness. For convenience, a 

Slab algorithm with a thickness of N slices is called an 

S(N) algorithm, and DRRs it generates are called “slab 

DRRs”. Note that step 2(a), identifying the closest pose, 

need only to be calculated once for each DRR instead of 

for each ray as in the light field method. Hence time 

required for this step is negligible. It is also worth to note 

that the slices may be the native slices in CT, such as the 

coronal or sagittal slices, depending on the projection 

 

Fig. 1 Illustration of whole ray approximation and ray 

segment approximation. A. Whole ray approximation. If a 

new ray x is calculated by interpolation of existing rays 1-3, 

the boxes in red are not on the path of x but will contribute to 

x. B. Ray segment approximation. If the rays are divided into 

segments, the new ray x may be better approximated by ray 

segments 1a-2b-3c.  
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angle. It works the best if the slices are perpendicular to 

the optical axis. And the algorithm may be extended so 

that the CT slices are projected to the imager plane one by 

one, interpolated to the pixel matrix, and summed to 

compute DRR [13]. This method is used in the next 

section to create slabs and “standard” DRRs.  

The Block Projection method is flexible and 

polymorphic (borrowing the concept from object oriented 

programming). In addition to the “plug-and-playability” of 

any existing method for creating block projections, it may 

be implemented with different ways of volume partition 

suitable to the application. For example, in the Slab 

algorithm, the volume is divided into slices. Hence it 

would make a good choice in 2D imaging guidance where 

the anteroposterior (AP) and lateral views are usually 

taken, and the coronal and sagittal slabs may be created 

respectively. 
 

2.2. Pose grid  
 

An important component to customize is the configuration 

of poses to pre-generate slabs for, called “pose grid”, and a 

pose in the grid is called a “grid pose”. Take IGRT as an 

example. A patient is first manually aligned to treatment 

position based on in-room laser and body marks, and then 

image guidance is applied to find residual alignment 

errors, which are usually less than one centimeter in 

translation and a few degrees in rotation. Here image 

guidance does not need to operate in open space, but rather 

serves as a precise alignment tool in short range following 

a gross alignment. In addition, it is reported in [13] that the 

algorithm is insensitive to rotations around the optical axis, 

maintaining high quality even at large slab thickness. 

Therefore, slabs may only need to be pre-generated for 

poses with rotations around the other two in-plane axes. 

Shown in Fig. 3 are two sample pose grids with nine and 

seven poses, respectively. 

 

2.3. Projection error 

An advantageous feature of the Block Projection method is 

the deterministic nature of voxel projection geometry. 

Voxel projection position error is a result of slab re-

projection, and can be thereby estimated. As shown in Fig. 

4, to compute the projection X using slabs created for 

projection 1, according to the algorithm, the voxel in white 

is projected to the same position as the voxel in gray of the 

same slab that is at the center slice, resulting in an error d 

that is given by 

d = Dsin(α).                                (1) 

For the slabs with a thickness of N slices, and let the 

pixel size in the direction of projection 1 be p, then the 

maximum value for D is Np/2, and the maximum error, 

dmax, would be  

dmax=Npsin(α)/2.                            (2) 

This represents the upper bound of projection error. For 

small angle differences, i.e., small αs, it can be further 

simplified as 

dmax≈Npα/2,                                (3) 

where α is in radians. Voxel projection position error in 

the Block Projection method in general can be extended 

 
Fig. 4. Illustration of projection position error resulting from 

slab re-projection. The box in gray represents a voxel at the 

center slice of a slab. If slabs are created for projection 1, and 

a new projection X is to be computed, for a voxel  (in white) 

in the same slab as the gray voxel, the position error in 

projection X would be d. D is the separation between the two 

voxels, and  α is the angle between projection 1 and X. 

 
 

Fig. 2 Diagram of the Block Projection method. 

 
Fig. 3 Illustration of pose grid. A. Nine-pose grid. B. Seven- 

pose grid. The poses are evenly distributed on a circle in 

rotational space. rx, ry: rotation around x and y axis, the in-

plane axes. R: radius of the circle. 
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from this analysis. It can be used as a general guideline in 

selection of pose grid and slab thickness for a given 

maximum projection error. Note that translation induced 

pose difference can be converted to angle difference for 

projection error estimation. 

2.4. Slab binding 

As shown in Eq.  (1-3), the position error depends on slab 

thickness and angle difference. To contain projection 

error, one may choose either to create slabs with small 

thickness or for more poses, both at the cost of memory 

space. Fortunately, the way the volume is partitioned and 

the slabs are stored allow for slab binding, i.e., multiple 

slabs can be added together to form thicker slabs before re-

projection in the Slab algorithm. Slab binding is a simple 

pixel-to-pixel summation, and can be done in a relative 

small fraction of time in comparison with re-projection, 

which consists of mainly interpolations. This way slabs can 

be created for small thickness and bound at run time if the 

angle difference is small, at a minor cost of slab 

summation computation. 
It is indicated earlier that most registration algorithms 

employ a search strategy to find the next potential pose, 

and derivatives are estimated numerically in the course. 

Slab binding is particularly useful in computation of 

derivatives, where DRRs are generated for poses slightly 

offset from the current pose. For this purpose, slab binding 

may be performed after the original slabs are re-projected 

for the current pose, and then the re-projected slabs can be 

bound for re-projection again for the offset poses. Note 

that slabs need to be bound only once when computing 

derivatives in multiple directions at one pose.  

 

2.5. DRR generation scheme 

 

Illustrated in Fig. 5 is a diagram of DRR generation 

scheme for 3D-2D image registration. Slab binding steps 

are optional depending on the pose differences. Note that 

runtime slabs are temporarily stored slabs re-projected 

from grid pose slabs that can be used for slab binding.  

3. Results 
 

A head phantom CT scan was used for experimentation, 

which was 512×512×208 in size with voxels in size of 

0.588×0.588×1.25 mm
3
. In the experiments, the original 

pose was the AP projection of the head phantom placed in 

its native orientation as captured in the CT scan. The X-, 

Y-, and Z- axes were defined as left-right, superior-

inferior, and anterior-posterior directions of the head 

phantom.  

As discussed above, the error in the proposed DRR 

generation scheme is mainly affected by two factors, the 

slab (or block) thickness and the pose difference, namely 

the angle difference. In order to achieve fast online DRR 

generation at desired accuracy, it is important to study how 

error is affected by slab thickness.  

In the first experiment, standard DRR was created for 

the 9 test poses, i.e., with 2, 2.5, and 3 degree rotations 

around the three axes, respectively. Slabs of thicknesses 

varying from 5 to 40 slices were created for the original 

pose; then slab DRRs for the 9 test poses were created 

with the Slab algorithm using these slabs.  Shown in Fig. 6 

are the standard and S(40) slab DRRs for the test poses 

with 3 degree rotations around the three axes, the extreme 

cases (largest thickness with largest rotation) in this 

experiment. Even at a large slab thickness, the differences 

between standard and slab DRRs of the same pose were 

very small and visually difficult to tell, demonstrating the 

high quality of the slab DRRs. Note that the pixel values in 

difference images were multiplied by a factor 10 for 

visualization. As expected, the difference is more eminent 

near edges, and exhibits a somewhat directional pattern, 

horizontal for rotation around x-axis (first row) and 

vertical for y-axis (second row). 

The peak signal-to-noise ratio (PSNR) was calculated as 

a measure of error on intensity, which is given by [7] 

PSNR = 10log10(s
2
/emse),                  (4) 

where emse is the mean squared error between a standard 

DRR and a slab DRR of the same pose, and S is the 

 

Fig. 5 Diagram of DRR generation based on the Slab 

algorithm. The operation in gray box represents offline 

processing, and online operations in white boxes. 3D boxes in 

green and blue are data used and updated during operation. 

Operations in the yellow rectangle are for derivative 
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maximum pixel value in the image.  

Drawn in Fig. 7 are PSNR values of slab DRRs 

generated for 2, 2.5, and 3 degrees using slabs of different 

thicknesses. As shown in Fig. 7, the PSNRs in general 

decrease as N and angle increase, but remain greater than 

50 dB for 2 and 2.5 degrees, and greater than 47 dB when 

N=40 at 3 degree. This result is encouraging because it 

demonstrates the algorithm generates DRRs of high quality 

with much higher efficiency. In comparison, the PSNR 

plateaued below 50 dB with the light field method [3]. It is 

worth mentioning that the PSNRs decrease less than 5 dB 

as N increases from 5 to 40, and remain above 65 dB for 

up to 3 degree rotation around the Z-axis (dash-dot lines in 

Fig. 7), which is parallel to the optical axis. This result is 

consistent with the preliminary results reported in [13] and 

helpful in designing the pose grid for slab generation. 

DRRs are generated for image registration, and the goal 

of registration is to find the pose difference between the 

images. Therefore, in addition to pixel-to-pixel intensity 

accuracy measured by PSNR, it is critical to evaluate 

whether the DRRs faithfully capture the poses they are 

created for.  In the next experiment, standard DRRs were 

generated with rotations of 2 and 3 degrees around the 

three axes. Slab DRRs were generated with S(20) and 

S(40) algorithm for poses with rotations of -2 to 6 degrees 

(at 1 degree step) around the three axes, respectively, using 

slabs created from the original pose (i.e., no rotations). 

Then mutual information (MI), as a similarity measure, 

was calculated between the standard DRRs and their 

corresponding slab DRRs (i.e., in poses with rotations 

around the same axes). Here MI between two image I1 and 

I2 is given by  

MI (I1, I2) = H(I1) + H(I2) – H(I1, I2),             (5) 

 
 
Fig. 6 Comparison of standard and slab DRRs. Left to right: 

standard DRRs, slab DRRs generated by S(40) algorithm, 

and their difference images; Top to bottom: generated for 

poses of 3 degree rotations around the X, Y, and Z axis, 

respectively. The pixel values in the differences were 

multiplied by a factor of 10 for better visualization.   

 

Fig. 7 Values of PSNR of slab DRRs generated for poses 

with 2 (red circle), 2.5 (green +), and 3 (blue diamond) 

degree rotations around X (solid), Y (dash) and Z (dash dot) 

axes using the Slab algorithm with different thickness, N. 

 

Fig. 8 Mutual information between standard DRRs of 2 (red 

circle) and 3 (blue +) degree rotations and slab DRRs created 

for different rotations around the same axes. Solid, dash, and 

dash dot lines are for rotations around X, Y, and Z axes. N is 

the slab thickness.  
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where H(I1) and H(I2) are entropies of the two images, and 

H(I1, I2) is the joint entropy of the two images. The results 

are plotted in Fig. 8. As shown, the curves have peaks at 2 

and 3 degrees, which means the best matches by mutual 

information are found between DRRs of the same pose, 

and the values decrease sharply as the pose differences 

(rotation) grow bigger. These results suggest that the 

DRRs generated by the Slab algorithm preserve subtle 

pose-differentiating information vital to image registration, 

even at large slab thickness such as N=40 used in this 

experiment. 

It has been suggested in section 2 that a very large slab 

thickness (>40) may be used to evaluate for poses with 

very small difference, such as in derivative or gradient 

computation when searching for the next potential pose. 

For example, suppose the initial hypothetical pose is the 

original pose, which is usually the case. To estimate 

gradient numerically, a small step size of 0.2 degree may 

be used, and one will need to generate DRRs for 0.2 

degree rotations around the three axes. To evaluate the 

DRR quality in the large slab thickness, small angle case, 

slab DRRs with thickness varying from 20 to 120 were 

generated using the slabs created from the original pose. 

Note that results for slab thickness greater than 40 were 

obtained through slab binding using slabs of thickness 20. 

The PSNR values are plotted in Fig. 9. In general, they 

exhibits similar trend as the ones in Fig. 7, i.e., PSNR 

decreases as the thickness increases for rotation around the 

X and Y axes, but not affected much for rotation around 

the Z axis, which is the optical axis of projection in this 

case. And even at extremely large thickness of 120 slices, 

the PSNR is still greater than 58 dB for all three curves, 

demonstrating the high quality of slab DRRs and 

validating the idea of using large thickness for derivative 

estimations.  

To further evaluate whether the slab DRRs created with 

such large slab thicknesses preserve the critical pose 

information, now very subtle given the small pose 

difference of 0.2 degree, MI was calculated and plotted in 

Fig. 10. The curves all have peaks at 0.2 degree, 

illustrating that even when very large slab thicknesses such 

as 100 and 120 slices were used, the slab DRRs still 

preserved the critical pose information to correctly identify 

the very small angle of rotation, exemplifying its feasibility 

for fast and accurate numerical derivative estimation 

during registration.  

It was reported in [13] that the slab algorithm achieved a 

reduction in execution time by a factor of 60, generating a 

S(40) slab DRR in 62 ms compared with 3.8 seconds for a 

standard DRR on a computer equipped with an Intel Core2 

Duo CPU. In this study, more extensive tests were 

conducted on a more advanced computer equipped with an 

Intel Core i7 3.4 GHz CPU and 8 GB memory, and the 

focus was on the performance of slab binding. 

As a baseline, execution time to generate slab DRRs of 

size 512×512 with S(10), S(20), S(30), and S(40) 

algorithms were recorded at 80, 40, 23, and 18 ms. Base 

slabs of thickness 10, 20, and 40 were used for slab 

binding to reach large thickness before re-projection, and 

the execution times are listed in Table 1.  

 

Fig.9. Values of PSNR of slab DRRs generated for poses with 

0.2 degree rotations around X (solid), Y (dash) and Z (dash 

dot) axes using Slab algorithm with different thickness, N 

 

Fig.10. Values of mutual information between standard DRRs 

of 0.2 degree rotations and slab DRRs created for different 

rotations around the same axes. Solid, dash, and dash dot 

lines are for rotations around X, Y, and Z axes. N is the slab 

thickness. 
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Table 1. Execution time (in ms) with slab binding. Base X 

indicates that slabs of thickness X were used to bind multiple 

times to reach thickness indicated in the top row. 

Thickness 40 60 80 100 120 

Base 10 26 20 14 N/A N/A 

Base 20 19 17 14 12 10 

Base 40 18 N/A 10 N/A 6 

The maximum voxel projection position errors for 

thicknesses and angle differences used in this section were 

calculated using Eq. (2). The results are listed in Table 2. 

As shown, projection error bounds are smaller than 0.5 

mm for thickness up to 30 with angle difference up to 3° 

(shaded cells). And at small angle difference (0.2°), 

projection error is only around 0.1 mm even at very large 

slab thickness (100 or 120), validating the strategy to 

generate DRR for derivative estimation with large slab 

thickness through slab binding.  

Table 2. Maximum voxel projection position errors (in mm) 

for different slab thickness and angle difference. Shown in 

shaded cells are values less than 0.5 mm.  CT pixel size, p, is 

0.588mm. 

N 0.2° 1.0° 2.0° 2.5° 3.0° 

10 0.0103 0.0513 0.1026 0.1282 0.1539 

20 0.0205 0.1026 0.2052 0.2565 0.3077 

30 0.0308 0.1539 0.3078 0.3847 0.4616 

40 0.0411 0.2052 0.4104 0.5130 0.6155 

60 0.0616 0.3079 0.6156 0.7694 0.9232 

80 0.0821 0.4105 0.8208 1.0259 1.2309 

100 0.1026 0.5131 1.0260 1.2824 1.5387 

120 0.1232 0.6157 1.2313 1.5389 1.8464 

 

4. Discussions 
 

As mentioned above and verified by the results, in the 

proposed DRR generation scheme, computing time is 

affected mainly by slab thickness, N. Since there is n/N 

slabs (each with roughly n
2
 elements) to re-project at run 

time, the computational complexity is O(n
3
/N). Given the 

common parameters of n≤512, and N varies from 10 to 

over 100, the complexity is effectively on the same order 

as O(n
2
log(n)).  

A key element of the proposed DRR generation scheme 

is the pose grid to pre-generate slabs for, which affects 

both speed and accuracy. An obvious option is a cube or 

sphere in the 3D rotational space. As suggested in section 

2 and verified by the results in section 3, DRR quality is 

not affected much by slab thickness if the pose difference 

is for rotation around the optical axis (Fig. 7 and 9). 

Therefore, the pose grid may be further simplified, 

consisting of only rotations around the two in-plane axes, 

evenly distributed on a circle in the rx-ry space as 

illustrated in Fig. 3.   

One may design pose grid based on application, and 

choose slab thickness according to desired accuracy. For 

example, if the radius, R is chosen to be 5° for a nine-pose 

grid, for a vast majority of poses with differences less than 

7.5°, there exists a grid pose within 2.5°. And results in the 

previous section show that high quality DRRs may be 

obtained even with large slab thickness for such a small 

pose difference. This pose grid may be a good choice for 

application such as IGRT where the residual alignment 

error is small, usually within a few degrees from planned 

position. Translation induced pose difference is usually 

less than 2 degrees because the source-to-object distance, 

represented as SAD (source-axis distance) or SSD (source-

surface distance), in the imaging system is much larger 

than translation. Slab thickness between 20 and 40 may be 

chosen so that the slab DRRs have high quality (PSNR > 

50 dB as shown in Fig. 7), and the maximum projection 

errors are less than the pixel size in CT (Table 2). If slab 

thickness of 20 is chosen, there would be at most 26 slabs 

for each pose, and a total of 234 slabs for 9 poses; the 

slabs are about the same size as the DRR which is 

512×512 in this study; the slabs are stored in floating point 

numbers, hence the total size of the slabs in this case is 

about 234 MB, similar to one or two CT dataset, and can 

be accommodated with ease by conventional computers. 

Choice of larger thickness would reduce the size of grid 

slabs and increase DRR generation speed, but at the cost 

of decreased accuracy.   

Slab binding offers additional flexibility in handling the 

trade-off among speed, space, and accuracy, and can be 

employed based on the projection error bound given by 

Eq. (2). For example, during registration, if a new potential 

pose Y is only 1° away from a grid pose G, then base 20 

slabs for pose G can be bound 2 to 4 times to generate 

DRR for pose Y, depending on the desired accuracy. And 

as suggested in section 2 and verified by results in section 

3, slab binding can always be employed in generating 

DRRs for derivative estimation.  Therefore, in a 

registration algorithm utilizing a 6D search, at a given 

pose, typically one DRR is generated for similarity 

evaluation and at least 6 DRRs are generated for gradient 

estimation. Taking computing times from table 1, an S(20) 

DRR for similarity evaluation takes 40 ms, and 6 DRRs for 

gradient estimation takes 6 ms each (base 20, bound 6 

times for N=120), it would total at 76 ms. If two 

orthogonal views are taken for image guidance, then full 

resolution DRRs generation at each iteration would take 

152 ms.  Note that opportunities exist for further reduction 

when getting close to a grid pose, or operating at lower 

resolution if a multi-resolution approach is taken in the 

registration algorithm. Typically full resolution DRRs are 

only needed at later stage of the iterations.  
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The proposed DRR generation scheme is flexible and 

efficient, demonstrating great potential to be used for 3D-

2D image registration. Despite the encouraging results, the 

proposed method is a framework still at early stage of 

development, and more rigorous testing and further 

investigations are warranted in the future. Experiments 

with more datasets from different body parts and 

performance incorporated in registration are needed to 

further evaluate its performance. For example, as shown in 

Fig. 6, the difference between standard and slab DRRs are 

mainly from bony structures. Hence segmentation of soft 

tissue and bony anatomy may be incorporated in the 

scheme, creating slabs separately with different thickness, 

smaller thickness for bony anatomy and larger for soft 

tissue.  In addition, because 3D anatomic information is 

partially preserved in the slabs structure, it allows 3D 

deformation during registration, because the slabs can be 

manipulated individually prior to re-projection. 

Furthermore, this novel method is highly parallel in nature 

and suitable for deployment on GPUs, and CUDA 

implementation is currently under investigation. 

Considering the typical speed-up factors by GPU over 

equivalent CPU-based implementation were reported to be 

greater than 50 except for small CT datasets [15], the 

computing time may be further reduced to sub-millisecond 

level, making real time or near real time registration 

possible. 

 

5. Conclusion 
 

In this study, a fast DRR generation scheme is proposed 

based on the Block Projection method, where ray segments 

are pre-generated and reused. It offers flexibility and 

efficiency in pose grid design and slab binding. An 

important advantage is the existence of an upper bound for 

projection error thanks to the deterministic nature of the 

projection geometry of each voxel. Therefore appropriate 

parameters can be selected based on the application’s 

requirement. The results presented in this article 

demonstrate that DRRs can be generated efficiently at high 

quality and with small projection error, suitable for 3D-2D 

image registration. In particular, a 512×512 DRR 

generated for derivative estimations, which represents a 

large portion of all DRRs generated during registration, 

can be computed in 6 ms on a conventional Intel i7 

computer, with PSNR greater than 58 dB and correctly 

identifying the small pose difference. And there is room 

for further time reduction with hardware acceleration.  
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