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Abstract

Automated crowd counting has garnered significant in-

terest for video surveillance. This paper proposes a novel

scene invariant crowd counting algorithm designed for high

accuracy yet low computational complexity in order to fa-

cilitate widespread use in real-time embedded video analyt-

ics systems. A novel low-complexity, scale-normalized fea-

ture called Histogram of Moving Gradients (HoMG) is in-

troduced for highly effective spatiotemporal representation

of crowds within a video. Real-time crowd region detection

is achieved via boosted cascade of weak classifiers based on

HoMG features. Based on the detected crowd regions, lin-

ear support vector regression (SVR) of crowd-region HoMG

features is introduced for real-time crowd counting. Exper-

imental results using a multi-scene crowd dataset show that

the proposed algorithm outperforms state-of-the-art crowd

counting algorithms while embedded on modern surveil-

lance cameras. Thus demonstrating the efficacy of the

proposed method for accurate, real-time, embedded crowd

analysis.

1. Introduction

Video analytics – computer vision algorithms to pro-

cess and understand video – for the surveillance industry

has garnered significant interest for some time now. Tradi-

tionally, most video analytics applications for surveillance

purposes have required the use of a centralized computer

server, which has several key disadvantages. First, all video

from the cameras must be sent to the centralized server,

which puts a heavy load on the network. Second, the server

must decode the compressed video streams coming from

the cameras, which adds additional computational strains

on the server. Due to these limitations, scaling video ana-

lytics systems from a few cameras to hundreds or even thou-

sands of cameras needed for large scale video surveillance

of transportation hubs and cities have become a major chal-

lenge. To address this limitation, many surveillance camera

manufacturers such as Axis, Samsung, and Hikvision pro-

vide open platforms to embed video analytics algorithms

directly on the camera. Many of the simpler video analytics

algorithms such as motion detection, people tracking and

counting in low traffic areas, have already been embedded

on such video cameras. However, due to the limited free

computational power available on these cameras, it is very

difficult to embed more demanding algorithms.

In particular, for large-scale monitoring of busy public

spaces, such as transportation hubs and city squares, al-

gorithms for determining the presence and distribution of

crowds are highly desired as they enable numerous applica-

tions ranging from analyzing crowd congestion patterns and

customer attention behaviour, to detecting long queues, un-

safe crowding or even mass panic. In particular, the crowd

counting problem is of significant interest to the surveil-

lance community and involves estimating the number of in-

dividuals within crowds.

Many methods have been proposed for the crowd count-

ing problem [16, 17, 20, 22, 29, 4, 6, 13, 28], with a re-

cent survey on state-of-the-art methods found in [25]. How-

ever, these methods require high-dimensional data formed

from many computationally intensive features, making such

methods unsuitable for embedding on cameras for large

scale systems. Furthermore, most existing methods require

expensive, manually-annotated training data for each scene,

and even methods that can perform per-scene training over

a period of time ([29, 17]) significantly complicate large-

scale deployment given the need to adopt such methods to

different scene settings and views. Ryan et al. [23, 24, 22]

have proposed scene invariant approaches that do not re-

quire per-scene annotation or training; however, such ap-

proaches require the use of several computationally inten-

sive features, which makes them unsuitable for real-time

embedded crowd counting.
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Figure 1: Overview of proposed method. First, scale-normalized

moving gradients are computed. Second, sliding-window His-

togram of Moving Gradient (HoMG) features are computed and

used to detect crowd regions. Finally, crowd-region HoMG fea-

tures are computed based on the detected crowd regions and used

to obtain the crowd count.

In this paper, we propose a novel method for realtime,

embedded scene invariant crowd counting. The proposed

method centers around a novel, scale-normalized feature

called Histogram of Moving Gradients (HoMG) that is de-

signed to represent crowds with high accuracy yet low com-

putational complexity. We show that our method signifi-

cantly improves on the state-of-the-art for the seven scenes

tested in [22] and introduce an expanded set of annotated

videos for testing. We also demonstrate, with timing results,

that our algorithm can be embedded on an Axis Q1615 cam-

era with an ARTPEC-5 processor.

2. Methodology

An overview of the proposed crowd counting method is

shown in Fig. 1. First, scale-normalized moving gradients

are obtained to facilitate the computation of HoMG features

(Section 2.1). Based on the obtained moving gradients,

sliding-window HoMG features are computed and classi-

fied to obtain crowd regions (Section 2.2). Finally, using

both the crowd region detection results and the scale nor-

malized moving gradients, crowd-region HoMG features

are computed and used by a linear regressor to obtain the

crowd count (Section 2.3).

2.1. Histogram of Moving Gradients (HoMG)

We introduce the concept of histogram of moving gradi-

ents (HoMG) a single, powerful, yet low-complexity, scale-

normalized feature descriptor used for both crowd region

detection and counting. We will show that sliding-window

HoMG features can be used for crowd region detection in

an effective and efficient manner. Furthermore, we show

that the cumulative scale-normalized moving gradient mag-

nitude in crowd regions is linearly related to the number of

people in the frame, thus leading to crowd-region HoMG

features that can be easily used to obtain the crowd count.

Figure 2: Scale normalization: each video frame is broken into

overlapping strips of height Wh(r) (the height of person at a given

image row r) and re-scaled such that the person width in each strip

goes to wp pixels.

2.1.1 Scale Normalization

It is often helpful, when seeking to detect or recognize ob-

jects, to compute features at a scale that is relative to the ob-

ject’s size in the image. For instance, in SIFT [18], descrip-

tors are computed at a fixed window size based on the scale

of the detected key points. Since our interests lie in crowd

detection, we instead compute HoMG feature descriptors at

a fixed scale relative to person size. Therefore, in this work,

the goal is to re-scale the expected person size windows at

all locations in the image such that the width of the person

is wp pixels wide.

The scale normalization process here is driven by the no-

tion that while the general shape of people is similar, there

can be significant clothing variations. As such, it is impor-

tant to fix the scale such that it is small enough that clothing

details are removed, yet large enough that the general shape

of individuals are preserved. Motivated by this, we lever-

age the camera calibration model, with the assumption that

the person height and width per image row is approximately

constant1, and decompose the image into overlapping strips

(Fig. 2) of height Wh(r), where Wh(r) is the height of a

person at row r obtained from the calibration model.

Based on the calibration model, a person within each

strip will have a width of Ww(r) pixels. Therefore, each

strip is re-scaled by s such that the average person width

becomes wp pixels (i.e., s =
wp

Ww(r) ). The resulting scale-

normalized frame S is illustrated in Fig. 2. Furthermore,

based on the calibration model, any locations in the scene

where the person size is less than ws pixels in width (in the

original video resolution) will not be analyzed.

2.1.2 Moving Gradients

A key observation when incorporating temporal informa-

tion for crowd analysis is that a person, even if they are

waiting at a location, is never perfectly stationary over a pe-

riod of time. Such slight motions can cause problems for

standard background subtraction techniques [26], as parts

1while this assumption may sometimes be violated due to lens distor-

tion and camera rotations, such an assumption makes the sliding-window

approach computationally tractable.
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of the person will become background while other parts are

treated as foreground, thus leading to unreliable crowd seg-

mentation. To mitigate such issues, we identify moving gra-

dients instead, allowing us to capture the outlines of individ-

uals who are standing at a single location but exhibit slight

motions.

For a given scale-normalized frame S , we wish to iden-

tify its moving gradients, which essentially characterize the

edges of moving foreground objects. There are a number of

approaches to computing moving gradients such as back-

ground modeling followed by edge detection, background

modeling on the edge image, frame differencing, etc. For

the purposes of this paper, we chose to compute moving

gradients based on frame differencing in the Sobel [14] gra-

dient domain as it is computationally efficient.

Formally, given an input video, we represent a scale-

normalized grayscale strip at time t as St ∈ S , where t = 0
refers to the current strip and t = −a refers to the strip a

seconds ago. Furthermore, we define the Sobel [14] gradi-

ent of strip St as ~Et = (Et
x, E

t
y), where Ex is the horizontal

gradient component and Ey is the vertical gradient compo-

nent.

The moving gradient, E, of a current-frame strip S0 is

defined as the truncated median gradient between S0 and a

set A, consisting of the past frame (a0) and l past keyframes

(a1, . . . , al) (Fig. 3):

E = min(max(0, Ē − T1), T2) (1)

Ē = median
a∈A

(Da) (2)

Da =

{

‖ ~E0 − ~Ea‖ if ‖ ~E0‖ > ‖ ~Ea‖

0 else
(3)

where T1 and T2 are thresholds on gradient magnitude to

minimize the effects of very strong or very weak gradient

magnitudes, and A = {−a0,−a1, . . . ,−al} is the temporal

scale of the moving gradient. Eq. 3 effectively detects edges

on the current strip not present in the strip a seconds ago.

The moving gradient magnitude E is given by Eq. 1,

while the orientation O is obtained as

O =
⌊

N
atan2

(

E0
y , E

0
x

)

+ π

2π

⌋

(4)

where ~E0 denotes the Sobel gradient of the current frame,

and N represents the number of discretized orientation bins.

To allow for immediate reporting of crowd informa-

tion when the algorithm is first started, we allow A to be

small (i.e. A = {−a0}) and then grow to the full size

A = {−a0,−a1, . . . ,−al}. As such, at least a0 seconds

of video is needed before reporting crowd statistics.

Frame differencing over long periods of time requires

a significant amount of memory to store the historical

frames A. For embedded systems we have limited mem-

ory availability; as such we use frame differencing with

Figure 3: The moving gradient is obtained as the truncated me-

dian gradient between the current frame and a set consisting of the

past frame and l past keyframes. The closest previous keyframe

(a1) can be up to K seconds from the current frame.

Figure 4: Illustration of a sliding-window within a strip and the

1× 1.25wp celled HoMG block used within a sliding-window.

keyframes, where keyframes are obtained at a much lower

frames per second (FPS) than the video being processed.

Set A consists of the past frame (a0) and past l keyframes

(a1, . . . , al), rather than a large set of past frames (Fig. 3).

Only l+1 frames need to be kept in memory, which signif-

icantly reduces memory overhead.

2.1.3 Histogram Construction

Based on the moving gradient magnitude E and the moving

gradient orientation O, the histogram of moving gradients

(HoMG) within a window of interest W is defined as

h(θ) =
∑

p∈W |O(p)=θ

E(p) (5)

2.2. Crowd Region Detection

For crowd region detection, we wish to detect the region

occupied by crowds on each scale-normalized strip Sk in

S . This is accomplished using a sliding-window approach

(Fig. 4), with the window spanning the height of the strip

and a width of 1.25wp pixels, where wp is the width of the

person as defined in Section 2.1.1.

69



2.2.1 Sliding-Window HoMG

Given a sliding-window of interest, a single 1 × 1.25wp

HoMG block is used as defined in Fig. 4. The HoMG rep-

resentation of the block is denoted by h
g
θ , where θ is the

discretized moving gradient orientations and g is the cells

in the HoMG block. Furthermore, we compute the total

moving gradient (MG) magnitude within each of the cells

as sg =
∑

θ h
g
θ . Finally, the total moving gradient (MG)

magnitudes within the entire window of interest t is also

computed. The HoMG block, MG magnitudes within the

cells, and the MG magnitude within the entire window are

concatenated to form the crowd detection feature f .

f = {hg
θ , s

g, t} (6)

In this work, we use 8 moving gradient orientations and 1×
1.25wp = 1 × 10 cells in the HoMG block; as a result, the

crowd region detection feature vector f is of dimensions

1× 91.

While all strips are scale-normalized to obtain constant

person width, the person height (i.e., height of the strip) may

still vary within an image due to differences in viewing an-

gle at different image locations. To counteract this variance,

we normalize our feature vector f (6) by the height of the

strip.

2.2.2 Classification

Given the computed feature vector, the next step is to clas-

sify whether the window of interest is crowd or non-crowd.

While there are many effective classification algorithms, we

find that a boosted cascade of weak classifiers [27], due to

its low computational complexity at run time, best satisfies

our primary goal of achieving a real-time algorithm on rela-

tively slow hardware. Specifically, the AdaBoost [12] algo-

rithm is used to obtain 100 boosted weak classifiers, where

each weak classifier is a decision tree [8] with three decision

nodes.

For training, the positive samples centred around each

annotated head location were used, with the negative sam-

ples obtained from unannotated areas. Since the negative

space is much larger than the positive space, we employ the

negative mining technique of [11].

2.2.3 Crowd Region Detection

The boosted weak classifier is used to classify each sliding-

window on each strip as crowd or non-crowd with a confi-

dence score. Each sliding-window Ws in the strip Sk has

a corresponding window W in the original-resolution video

frame. The scores are accumulated at the original video

frame resolution using the correspondence window W . The

Figure 5: The accumulated crowd classification score image C is

thresholded to identify crowd regions Ĉ (shown in red).

accumulated score image C is thresholded to obtain the

crowd region detection image Ĉ (Fig. 5).

2.3. Crowd Counting

Given the crowd region detection results, we now em-

ploy a linear regression approach to crowd counting using

HoMG. We assume that the cumulative scale-normalized

moving gradient magnitudes in the crowd regions are lin-

early related to the number of people in the video frame.

While this is not strictly true due to occlusions and camera

angles, we will show that this approach works very well in

comparison to state-of-the-art.

2.3.1 Crowd-Region HoMG

Based on the aforementioned linear relationship assump-

tion, we introduce a cumulative HoMG for the crowd count-

ing feature R, where only one histogram bin is used (i.e.,

moving gradient orientation is ignored):

R =
∑

Sk∈S

1

hk

∑

p∈Sk

δ(p)E(p) (7)

where Sk ∈ S are all the scale-normalized strips in the

frame, hk is the height of the kth strip after scale normal-

ization, p ∈ Sk are all the pixels in stripe Sk, E(p) is the

moving edge magnitude at pixel p, and δ(p) = {0, 1} is the

crowd detection result at pixel p. This results in a single

one-dimensional feature which is proportional to the num-

ber of people in the frame.

2.3.2 Regression

We use linear support vector regression (SVR) [5] as our re-

gression method for crowd counting. Linear SVR was cho-

sen for two reasons: i) its robust nature when fitting a line

to the data, and ii) low computation complexity at run time,

which is critical for real-time embedded crowd counting.

Furthermore, our assumption is that there is a linear rela-

tionship between moving gradient magnitude and the num-

ber of people in the video frame; as such it stands to rea-

son that when the moving gradient magnitude approaches

zero, the estimated number of people in the frame should

approach zero. Therefore, we assume the bias term in our

linear SVR model is zero.
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Figure 6: Scenes from the proposed new dataset: comprising of

public datasets (scenes 4-13) and 3 new scenes (scenes 1-3).

3. Evaluation Setup

To quantitatively evaluate the proposed crowd counting

method, which we will refer to as HoMG, we introduce a

new multi-scene dataset, which has almost double the num-

ber of scenes as previously-used datasets. Competing meth-

ods used for evaluation as well as evaluation metrics used

are all described below.

3.1. Dataset

We introduce a new dataset for scene invariant crowd

counting which brings together existing crowd detection

datasets [19, 22], tracking datasets [3] as well as a num-

ber of new videos, all with a consistent annotation format.

Furthermore, for each scene, we provide coarse camera cal-

ibration information as discussed in Section 3.4. The pro-

posed dataset has 13 different scenes (Fig. 6): 1-3 are new

videos, 4 is the Mall dataset [19], 5 is the City Center

dataset [3], 6 is chosen from the i-LIDS dataset [15], and

7-13 are from the PETS and QUT dataset previously used

for crowd counting in [22].

All evaluations are based on a leave-one-out framework

(same as [22]) where one scene is used for testing, while

remaining scenes are used for training. To balance the data

and be consistent with the previous works ([22]) only the

first 50 annotated frames from each scene are used for train-

ing.

3.2. Competing Methods

The proposed HoMG method is compared quantitatively

with two state-of-the-art frameworks (note that the compar-

ison methods were not implemented on the embedded ar-

chitecture and are only used for accuracy comparisons):

Single Camera Crowd Counting (S3C) Several types

of features including segments, edges, GLCM, and LBP

are extracted from video sequence, and a kernel ridge

regression (KRR) [19] is utilized to estimate the crowd

count of the scene. This method originally was used in the

situation when training and test videos are from the same

scene. However, this method is compared here in a scene

invariant scenario.

Scene Invariant Multi Camera Crowd Counting

(SIM3C) This method [22] is the state-of-the-art approach

in scene invariant crowd counting that doesn’t require any

adaptation to the scene being tested. SIM3C obtains several

types of features including size, shape, edge, and key-points

extracted using SURF [2], and feeds these features into

a non-linear Gaussian process regression framework to

estimate the crowd count.

3.3. Evaluation Metric

Crowd counting performance is evaluated using three

different quantitative metrics: Mean Absolute Error

(MAE) [19], Mean Square Error (MSE) [19] and Mean De-

viation Error (MDE) [6].

MAE =
1

N

N
∑

i=1

|yn − ŷn| (8) MSE =
1

N

N
∑

i=1

(yn − ŷn)
2 (9)

MDE =
1

N

N
∑

i=1

|yn − ŷn|

yn
(10)

where N represents the number of testing frames, and yn
and ŷn denote the actual count and the estimated count of

frame n, respectively.

3.4. Algorithm Setup

As with other crowd counting methods [22, 19], a cam-

era calibration model is needed for our HoMG method.

In [19], a very simple perspective model is used which

does not account for the non-linear behaviour of perspec-

tive models. In [22], a full calibration model is used; how-

ever, this is often unavailable in industry surveillance ap-

plications. Therefore, we instead employ a model currently

employed in industry that acts as a compromise between

[19] and [22]. Here, we use the interactive camera calibra-

tion model used commercially in the Aimetis Symphony [1]

surveillance software package, where an approximate cali-

bration model is obtained by having the users select calibra-

tion parameters that matches the model’s estimated person

sizes to the person sizes in the video.

Using this calibration model, we set the scaled person

width (wp), from Section 2.1.1 to wp = 8 pixels. We select

8 pixels as a value small enough to detect crowds far from

camera but at the same time is large enough to learn features

to describe individuals and crowds.

Similar to [22, 19], which requires parameters for back-

ground subtraction algorithms used to obtain moving blobs,

the HoMG algorithm requires the temporal scale A =
{1,K, 2K, . . . , lK} (Section 2.1.2) to be defined for com-

puting HoMG features. A temporal scale of 120 seconds

was used to determine moving gradients, where keyframes
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are set 30 seconds apart (i.e., l = 4 and K = 30). The

scale of 120 seconds was chosen as it is long enough to en-

sure people who exhibit slight motions be identified, while

still being computationally tractable. As a result of our

keyframe based frame differencing only 5 frames must be

kept in memory to do frame differencing over 120 seconds,

greatly reducing the memory requirements.

For crowd region detection (Section 2.2.2), we use the

AdaBoost classifier implemented in MATLAB [21], with a

3-node decision tree as the weak classifier. All other learn-

ing parameters were left to the default values. For crowd

counting (Section 2.3.2), we use the LIBLINEAR [10] im-

plementation of linear SVR with default learning parame-

ters. The resulting boosted classifier and SVR weights are

ported to the embedded environment, thus illustrating the

efficacy of the proposed method for real-time, embedded

crowd counting.

3.5. Algorithm Implementation

There are many camera manufacturers with open plat-

forms for developing embedded applications; however,

Axis cameras and their 3rd party development platform is

among the most popular and mature platforms currently

available in the surveillance industry. Their latest cam-

eras are available with Axis’ ARTPEC-5 chip-set (MIPS

1004Kc V2.12 CPU model) running a striped down ver-

sion of Linux. Their older generation cameras utilize the

Axis’ ARTPEC-4 chip-set (MIPS 34Kc V5.0 CPU model).

To support the widest range of available platforms, we im-

plement our algorithms on both ARTPEC-4 and ARTPEC-

5 chip-set cameras. While our implementation will work

on any Axis camera that supports embedded development

and has either the ARTPEC-5 or ARTPEC-4 chip-set, we

test our algorithms on the Q1614 and Q1615 cameras, with

the Q1614 camera having an ARTPEC-4 chip-set and the

Q1615 camera having an ARTPEC-5 chip-set.

The proposed HoMG approach was implemented using

C++ and compiled with the Axis development SDK. One of

the most computational intensive part of our algorithm is the

atan2 computation in Eq. 4. To avoid the associated com-

putational complexity, we perform the atan2 computation

using a lookup table.

4. Crowd Counting Results

Performance analysis of HoMG for crowd counting is

carried out on the 13 scene dataset (Section 4.1). Further-

more, to allow for direction comparison with state-of-the-

art [22], HoMG is also tested on a 7 scene subset of the

dataset, which contains only the scenes used by [22].

4.1. Full Dataset

The crowd counting results are shown in Table 1 and

Fig. 7. The proposed HoMG method achieved relatively

Figure 7: The ground truth (GT) and predicted counts for all

annotated frames, from the leave-one-out testing.

Scenes 1 2 3 4 5 6 7 8 9 10 11 12 13 Avg.

M
A

E HoMG 4.92 2.09 1.33 5.34 1.53 3.86 1.82 1.41 0.31 0.49 1.75 0.85 0.33 2.00

S3C 15.0 17.9 7.9 23.7 15.5 4.0 9.1 7.8 1.5 2.5 2.8 1.7 1.6 7.9

M
S

E HoMG 35.1 6.9 3.0 38.8 3.7 24.4 1.7 3.5 0.3 0.5 6.2 1.3 0.2 9.9

S3C 62 339 83 608 234 25 99 95 4 10 15 5 4 122

M
D

E HoMG 0.35 0.23 0.37 0.18 0.11 0.49 0.12 0.25 0.35 0.28 0.26 0.24 0.20 0.27

S3C 1.0 2.1 3.6 0.8 0.9 0.9 0.5 3.3 47.8 203 0.5 0.7 1.7 20.5

Table 1: Crowd counting results on the full dataset

low average error across all scenes with respect to both

MSE and MAE. In comparison to S3C, which is a baseline

comparison, HoMG achieves almost four times lower MAE

rate and over twelve times lower MSE rate. However, as

previously stated in Section 3.2, S3C was not originally de-

signed as a scene invariant approach; nevertheless, we treat

it as such because it does have a very coarse perspective

normalization.

To illustrate that the crowd-region HoMG feature is lin-

early related to the people count, we plot the crowd-region

HoMG feature vs number of people in the frame in Fig. 8.

The 13 regression lines (Fig. 8b) – obtained from leave-one-

out testing – are almost identical, indicating this is a highly-

effective and consistent scene invariant feature. The average

slope of the 13 lines is 3.5E-3 with a standard deviation of

9.9E-5. However, even with this small deviation in the fit-
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(a) 13 Scenes All Data (b) 13 Scenes Training Data

Figure 8: (a) crowd-region HoMG feature vs number of people

in the scene. (b) plots only the data used for training (first 50

frames) as well as all linear SVR lines obtained during leave-one-

out testing on the sceans.

Scenes 7 8 9 10 11 12 13 Avg.

MAE

HoMG 1.741 1.534 0.303 0.493 1.749 0.849 0.330 0.926

SIM3C 1.321 3.365 0.405 1.574 0.886 1.448 0.487 1.355

S3C 6.84 4.74 1.51 15.55 4.26 2.03 1.65 5.23

MSE

HoMG 3.893 3.956 0.294 0.469 4.031 1.158 0.182 1.997

SIM3C 4.250 17.514 0.495 3.506 1.524 3.625 0.441 4.479

S3C 76.77 38.154 5.52 3.91 50.06 6.61 3.79 26.40

MDE

HoMG 0.123 0.284 0.363 0.263 0.186 0.204 0.191 0.231

SIM3C 0.103 0.096 0.250 0.140 0.122 0.182 0.222 0.159

S3C 0.72 1.99 31.82 44.23 0.45 0.69 1.82 11.67

Table 2: Crowd counting results on 7 Scenes subset used in [22].

ted line there are two outliers, which we take a closer look

in Fig. 9. From Fig. 9 we can see that for Scene 1 there is a

fairly consistent over-estimation of the people count, while

there is an under-estimation of the people count in Scene 4.

On closer examination of Scene 1, we find that the store

front glass displays are acting as a mirror (Fig. 9), reflect-

ing people as they walk by. The reflections are classified as

crowd regions by HoMG and are thus included in our re-

gression estimation, resulting in an over-estimation of the

people count.

On closer examination of Scene 4 we find that there are

missed detections due to people sitting down and people

standing where only their heads are visible (Fig. 9). Seated

people are very stationary for long periods of time, and as

such our moving gradient based approach to crowd segmen-

tation will tend to miss them. Our HoMG block for crowd

segmentation covers a person’s torso (Fig. 4) and as such

when only an individual’s head is visible, HoMG will not

be as effective.

4.2. Comparison to StateOfTheArt (7 Sceans)

We compare HoMG to the state-of-the-art results re-

ported by Ryan et al. [22] (SIM3C) on the same 7 Scenes

used by Ryan et al. For a fair comparison, we train both the

proposed crowd segmentation and regression methods only

on the 7 Scenes used in SIM3C [22]. The results of the

crowd counting are shown in Table 2.

HoMG, on average, achieved 1.5 times lower MAE and

2.25 times lower MSE than SIM3C. This result is achieved

even though we use a single feature (HoMG) in compari-

son to SIM3C which use multiple features such as moving

blob shape features, edge features, and key point descrip-

tors. However, HoMG exhibited a 1.4 times higher MDE

than SIM3C, due to the variation of data from the line fit

seen in Fig. 8a, especially when the number of people in the

frame is low.

5. Runtime Analysis

Our HoMG algorithm was able to run on the Axis Q1615

(ARTPEC-5 chip-set) with a run-time of about 500 ms for

a 640 by 480 video frame. On the older Axis Q1614

(ARTPEC-4 chip-set) it took about 600 ms to process a 640

by 480 video frame. This results in a processing speed of

only 1 to 2 FPS. However, since crowd behaviour is slow to

evolve over time, processing one frame per second is more

than sufficient for the purpose of real-time crowd counting.

In fact, many of the existing work on crowd counting [19]

are designed and tested for processing video at 1 FPS. This

level of run-time performance on these two videos illustrate

the efficacy of the proposed algorithm for real-time, embed-

ded crowd counting.

Using the same C++ implementation, we run our algo-

rithm on an Intel Core i7-2720QM processor at 2.2GHz. It

takes about 20 ms to process a 640 by 480 frame which

results in a processing speed of 50 FPS. As can be seen,

the embedded environments on modern surveillance cam-

eras are 25 to 30 times slower than modern computers. Even

on these low computation systems our algorithm is still ca-

pable of real-time crowd counting.

6. Conclusions

In this paper, a novel, low-complexity scale-normalized

histogram of moving gradients (HoMG) feature is intro-

duced for robust and real-time embedded scene invari-

ant crowd counting. Experimental results using an ex-

isting multi-scene dataset demonstrate that the proposed

crowd counting method using HoMG can outperform state-

of-the-art approaches while being able to process 1 FPS

stream embedded directly on modern surveillance cam-

eras. Furthermore, we also introduce an expanded dataset

with 13 scenes featuring a greater variety of camera angles

to demonstrate the performance of the proposed method

for crowd counting. Based on the existing and expanded

datasets, we show that the proposed method using HoMG

facilitates robust, real-time, embedded crowd analysis,

which is important for widespread industrial adoption.
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