
Embedded Vision System for Atmospheric Turbulence Mitigation

Ajinkya Deshmukh1, Gaurav Bhosale, Swarup Medasani2, Karthik Reddy,

Hemanthakumar P, Chandrasekhar A, Kirankumar P, Vijayasagar K

Uurmi Systems Pvt. Ltd., Hyderabad, India

{1ajinkyad,2shanti}@uurmi.com

Abstract

Outdoor surveillance systems that involve farfield opera-

tions often encounter atmospheric turbulence perturbations

due to a series of randomized reflections and refraction ef-

fecting incoming light rays. The resulting distortions make

it hard to discriminate between true moving objects and tur-

bulence induced motion. Current algorithms are not effec-

tive in detecting true moving objects in the scene and also

rely on computationally complex warping methods. In this

paper, we describe a real time embedded solution connected

with traditional cameras to both rectify turbulence distor-

tions and reliably detect and track true moving targets. Our

comparisons with other methods shows better turbulence

rectification with less false and miss detections. FPGA-

DSP based embedded realization of our algorithm achieves

nearly 15x speed-up along with lesser memory requirement

over a quad core PC implementation. The proposed system

is suitable for persistence surveillance systems and optical

sight devices.

1. Introduction

Long-range surveillance systems with high zoom factors

often suffer from the effects of atmospheric turbulence. At-

mospheric turbulence is a spatio-temporal phenomenon in-

duced from random fluctuations of the light ray alongs its

path to the image sensor. This introduces geometric dis-

tortions as well as local scene blurriness. Standard single

image de-blurring and de-convolution method can correct

only blur but not the distorted geometry. Fundamental tur-

bulence rectification approaches discussed in the literature

are multi-frame image reconstruction methods [1–4]. These

methods are sequential consisting of some combination of

deformable registration, local image fusion and image de-

blurring. Although these methods result in detail preser-

vation and turbulence rectification they operate with high

computational load, latency, and memory requirement and

are mostly suited for static scenes with less focus on pre-

serving the details of moving targets. The complex wavelet

transform based registration and fusion approach in [4] re-

quires many past and future frames for processing along

with a need for manual selection of moving object regions.

The method by Fishbain et al. [5] attempts to preserves real

object motion while eliminating turbulence using complex

registration, optical flow, and fuzzy logic rules to integrate

moving objects. Though this method produces an output

sequence that preserves moving objects, there is still resid-

ual turbulent motion left in the scene and the turbulence ef-

fects on objects are also not rectified. Another drawback of

this method is that it presents a higher computational burden

when the area occupied by the moving objects is high.

Recently, Oreifej et al. [6] proposed a variant of robust

principal component analysis based method to recover the

stable background and moving objects simultaneously. Op-

tical flow based weighting cues are used to separate out true

objects from turbulent motion. The authors report good re-

sults for a few datasets, where the levels of turbulence were

decreased by multi-frame averaging. This pre-processing

step clearly presents a problem when there are medium or

fast moving objects in the scene. This method is computa-

tionally intensive, cannot handle high levels of turbulence,

has high memory requirements and relies heavily on the

output of optical flow methods, which are found to be un-

reliable for this particular application [15]. Another joint

video sharpening and temporal diffusion in FFT domain

was proposed to mitigate turbulence [7]. Here, individual

frames were sharpened using Sobelov gradient filter and

then these frames were used to remove temporal distortions

using a Laplacian temporal diffusion filter. The authors

show improved results at the cost of using a lot of frames

thus introducing a latency into the system operation. An-

other system described in [8] use GPU-based software sys-

tem for real time turbulence mitigation at 30-60Hz for HD

quality. Although turbulence rectification is good the abil-

ity to handle moving targets is unknown. However most of

real-time application demands stand-alone, low power sys-

tems for remote operation.

Tracking moving objects in less chaotic scenes has been

widely investigated [9, 10]. Most of the methods however,

1 43

Figure 1: Functional block diagram of RESTORE system

do not consider the influence of turbulence induced distor-

tions. The authors in [11] compared state-of-the-art track-

ing methods for a variety of scenarios. Among them, a

method named SubSENSE [12] secured the top position

for the turbulence category. This method improves upon

Vibe [13] and PBAS [14] by including texture LBSP fea-

ture. Computation of these texture features is expensive

making real time implementation challenging. In summary,

under turbulent conditions, background subtraction meth-

ods alone cannot be relied upon to detect the moving targets

reliably. Therefore there is a need a less complex system

with minimum latency and memory requirement.

In this paper, we fill this gap by presenting an embed-

ded approach for both turbulence rectification and moving

target detection under varying degrees of turbulence. We

abbreviate our system as ‘RESTORE’(atmospheRic turbu-

lEnce diStorTiOn REctification). Turbulence rectification is

achieved by leveraging an important observation that most

of turbulence distortions are visible at image structures. Tar-

get detection and tracking is done by analyzing blobs over-

lap with edges as well as statistical properties of blobs. Us-

ing a heterogeneous architecture with FPGA and a DSP

where the FPGA is used for modeling the background and

foreground and the DSP is used for edge detection, fore-

ground pre-processing, and blob analysis. The entire sys-

tem is controlled by serial processor (ARM Cortex A8). The

block diagram of our hardware system is shown in Figure

1. This paper includes following contributions:

1. Real-time atmospheric turbulence mitigation with

moving object preservation that exceeds the perfor-

mance of methods in the literature

2. Modified detection and tracking of moving objects in

turbulence for real-time application that has not been

shown earlier to the same extent

3. FPGA-DSP based hybrid implementation to realize a

complex algorithm in hardware

4. Hardware design, development with separate process-

ing and IO functionalities for enabling a real-time em-

bedded version of the system

The rest of the paper is organized as follows. Section

2 describes proposed system architecture with FPGA and

DSP implementations along with serial controlling. In addi-

tion, heterogeneous acceleration platform selection and re-

quirement is also discussed. In section 3, results analysis is

given. Section 4 concludes our work with discussion about

future enhancements.

2. Proposed System Architecture

Our system works in two independent modes and uses

a composite FPGA-DSP architecture. First mode is Tur-

bulence Rectification (TR) mode and second mode is Tar-

get Tracking (TT) mode. TR mode rectifies turbulence dis-

tortions without harming real moving objects whereas TT

mode detects and tracks the true moving objects in tur-

bulence. The system takes analog input (PAL resolution)

from the camera and core algorithm processing takes place

to give processed PAL output to display as shown in Fig-

ure 1. Both the TR and TT modes require foreground and

background images for separating turbulence blobs from

real moving blobs. So these common background estima-

tion and foreground generation modules are implemented

on FPGA closer to the decoded input video stream. Other

modules such as edge detection, turbulence rectification and

target tracking modules are developed on DSP to achieve

better throughput and balance the computational load.

2.1. Heterogeneous DSP-FPGA Platform

We proposed to use the hybrid architecture (shown in

Figure 2) to accommodate for memory, precise floating

44

point operations and achieve real-time performance. This

base architecture includes ARM enabling of PAL decoder

for capturing analog input, FPGA decoding of data, FPGA-

DSP data transfer, video output driver for PAL and output

routing to analog video display.

Figure 2: Heterogeneous DSP-FPGA architecture of RE-

STORE system

FPGA is used because of its inherent parallel architec-

ture. In addition, because our system uses spatio-temporal

analysis and needs more memory for storing temporal

frames. To avoid the DDR accessing penalty we had to

choose Kintex 7-XC7K410T because it has sufficient block

RAMs for storing of five frames (It,It−1,It−2,Bt,CbCrt)
which are used for foreground refinement calculations.

For the DSP processor, we used the TMS320DM8148

DaVinci video processor which also has a co-located dual

ARM cortex A8 processor. This ARM cortex A8 processor

is used for streaming application and any other controlling

software. We leveraged the fixed and floating point opera-

tions, single instruction multiple data architecture helps in

pipelining and vectorization, and cacheable DDR memory

access strengths of the DM8148 platform. We have also

leveraged the onboard optimized image and video libraries

such as VLIB (ex. Blob analysis), IMGLIB(ex. Median

filter), MATHLIB (ex. angle calculations) as well as some

c-callable intrinsic assembly functions for performing float-

ing point operations.

Our processing flow diagram can be explained using Fig-

ure 3 which shows that many parallel step are incorporated

to achieve better throughput. Initially after vertical blank

(start of active video signal) we will get actual data stream

which will be separated and stored into memory. By us-

ing ping pong operation that completes in 40ms for every

frame, Y data will be stored in true data port memories

TDP1 andTDP2 (as shown in Figure 4). Thereafter FPGA

processing and transfer to DSP takes place as explained in

section 2.2. The entire FPGA processing and transfer takes

approximately 35ms. The FPGA does the following tasks

in parallel, namely sending CbCr data to DSP-ARM shared

memory, new frame capturing, foreground and background

estimation, foreground bits packing, and transferring fore-

ground and background images to shared memory. Once

the data is available median filtering and dilation process-

ing foreground and canny edge detection on background is

performed. Note that, edge detection is performed on ev-

ery frame for turbulence rectification and one in five frames

for target tracking. Then foreground image blobs are ex-

tracted and target detection and tracking is completed. The

resulting output is copied into shared memory first and then

into display buffer which takes around 1.5msec. The com-

plete DSP processing takes nearly 35msec. Although both

FPGA and DSP are taking less than 40msec time ARM has

to wait till completion of 40msec interval (in parallel) to

maintain overall synchronization of the system. General

Purpose Memory Controller (GPMC) interface is used for

data transfer from FPGA to ARM/DSP. This parallel inter-

face is highly preferred for image processing applications

as burst data (ex. complete image) can be transferred in

quick time. The line by line or pixel-wise data transfer from

FPGA to DSP-ARM shared memory is not feasible as de-

lay in establishing data or control route using GPMC will

be high enough than transferring of the pixel.

The hardware of our system is designed using stacked

multi-layer PCB’s. This stacking of board helps in reduc-

tion of overall size (120mm × 90mm) of the system. The

advantage of separating processing board from peripheral

interface board is to support various sensor interfaces and

input/output formats without interrupting core algorithm

processing. Processing board includes FPGA, DSP and

ARM functionalities along with various memories whereas

peripheral interface board includes PAL capture, PAL out-

put, Ethernet streaming to remote PC, LCD, keypad, power

supply etc. (refer Figure 2). We now go into more details

on the FPGA and DSP implementation details.

2.2. FPGA Implementation Details

A block diagram description of the FPGA implemen-

tation block is shown in Figure 4. FPGA logic captures

streamed data from PAL decoder using various synchro-

nization signals. This data is in CbY 0CrY 1 interlaced

YUV422 format, so it is separated into Y and CbCr as tur-

bulence is intensity distortion and not color distortion [1].

This Y is used to estimate the moving average background.

Moving average background estimation is used over tempo-

ral frame averaging or temporal median filtering [5] to avoid

latency and extra memory requirement. Further, standard

background subtraction techniques are also not used as they

use complex techniques such as histograms of background

and images, LBSP features, etc. [12–15] and need extra

memory as well as logic for storing and updating back-

ground model. Our aim is to get an approximate version

of the background that will coarsely model the scene [15].

For every input It(intensity image at time step t, Y), the

background Bt is updated as follows:

45

Figure 3: Pipelining approach for RESTORE system. Mentioned timings are for 50MHz FPGA Clock and 500MHz DSP

Clock. Dashed vertical lines represent different time steps (not necessary to the scale).

Figure 4: Background and foreground estimation-FPGA

implementation

Bt = (1− 1

f
)Bt−1 +

It
f

(1)

Where, f is the frame number and acts as a weighting

coefficient. This implies that background gets initialized as

first input frame and slowly adapted to the current frame

over time. After fixed set of frames (say 256) the weight-

ing coefficient is fixed to avoid register bit width overflows.

This also helps us in learning background quickly in the

initial phase of the system. This calculated approximate

background will be stored in FPGA on-chip memory for

update. The important assumption made here is that for a

static camera the background can change slowly over time.

Sudden changes like environment lightning effects may not

change background provided that it is not at an initial level.

Further for cases where background objects start moving

or foreground objects are merged into background, back-

ground may have some false signature of objects for few

frames (if objects are moving with slow or medium veloc-

ity) that will eventually disappear after some frames. The

common way of estimation of foreground is frame differ-

encing. Some authors use concepts like signed differences

to get the pattern of motion [16]. Similarly, we have used a

two-level foreground exaction concept as shown below:

D1
t = |It −Bt|

D2
t =

|It − 0.5 ∗Bt − 0.25 ∗ It − 0.125 ∗ It−1 − 0.125 ∗ It−2|
Dt =

∣

∣D1
t −D2

t

∣

∣

(2)

Due to coarse background estimation, D1
t will help us

to get difference image having true object blobs along with

false turbulence blobs whereas D2
t leads to difference im-

46

age with mostly turbulence blobs (without real moving ob-

ject blobs). All coefficients in the expression for D2
t are se-

lected in such a way that it will lead to bit-wise shifting on

FPGA. All the three input frames (It, It−1, It−2) are taken

from processing memories. In addition, the shifting mod-

ule is used for shifting the data between three processing

memories for every start of frame SOF signal (refer Figure

4). The final difference image Dt leads to minimum num-

ber of false blobs. For initial two frames, input image is

replicated twice to avoid initial latency of two frames.The

background and difference calculation is done in parallel as

previous stored background is used in difference image cal-

culation module. Further, the threshold is calculated using

the variance of this difference image and used to generate

foreground image. We found that image variance is an ef-

fective measure to model the foreground intensity distribu-

tion. So outliers are rejected here and image binarization

(Ft) is done as follows:

Ft =

{

1, Dt < Tt

0, Otherwise
(3)

Where, Tt = 9 ∗ vd + ǫ ∗Dmax
t where vd variance of Dt

frame and ǫ ∗ Dmax
t is a small constant to suppress noise

and compression artifacts. Dmax
t is set to 255 to avoid max-

imum value calculations in FPGA. Here, for ease of FPGA

implementation, Tt is approximated with its equivalent 8-

bit fixed point value without compromising foreground re-

sult. Small foreground pixel errors will be eliminated in

foreground post-processing step of DSP. Further, Tt is used

from previous frame to avoid the delay of traversing all pix-

els to estimate the mean and then variance.

Then It, Bt, and Ft along with CbCrt memory are

transferred to shared memory between ARM and DSP via

GPMC interface. As Ft is binary mask it is packed as 64

bits and appended at the end of It to improve the transfer

time. Then ARM based control logic transfers the shared

memory address location details to DSP for further process-

ing. Thereafter in DSP edge detection, turbulence rectifica-

tion and turbulence tracking functionalities will be carried

out.

2.3. DSP Implementation Details

In the DSP as a first step, based on provided shared

memory address and fixed known image offsets, the data

is retrieved. The advantage of moving average based back-

ground image is that there is absence of moving object. So

if we find the edges of this image and compare with un-

packed foreground image then we can separate out most of

the false turbulence blobs based on the overlap criterion.

We used canny edge detector over other edge operators due

to its ability to suppress the non-edge noise. The standard

canny edge method extracts edges Et from background Bt

as

Et = canny(Bt) (4)

In foreground processing, pixel level thresholding was

used (in Section 2.2) so, foreground image may contain

spurious turbulence pixel level distortions as well as there

might be some holes in the estimated foreground blobs. So

median filter and dilation is applied sequentially to suppress

small blobs that are false detections and fill the missing ar-

eas of the true detected blobs. Once refined foreground (Ft),

structured background (Et) and frame history (It, ... It−k2)

is available then atmospheric turbulence rectification (St)

can be done using:

St =











(It + · · ·+ It−k1+1)/k1, Ft = 1 ∧ Et = 0

(It + · · ·+ It−k2+1)/k2, Ft = 1 ∧ Et = 1

Bt otherwise

(5)

Note that here k2 > k1 for suppression of false turbu-

lence blobs. The first criteria will reduce real moving object

turbulence, whereas last will reduce overall non-object tur-

bulence. Middle criterion preserves object boundaries over-

lapped with edges. This will also lead to smooth recon-

struction at boundaries. We have found that k1 = 2; k2 = 4
for low and medium level of turbulence. For severe cases,

k1 = 4; k2 = 8 is sufficient for stabilizing most of the dom-

inant turbulence. All other previous frames are stored in

available DDR memories with DSP and shifted accordingly

with kth2 frame discarded from memory. Spatial gradient fil-

ter is applied on generated St to remove blur caused due to

temporal averaging. Here note that geometric distortions of

turbulence effects will be eliminated by temporal filtering

and local blur will be suppressed by gradient filtering [1].

This intensity output is combined back with the correspond-

ing CbCrt memory to preserve color information. Then this

output St(in Y CbCr format) is written into shared memory

making it available for ARM to send to the display buffer.

The process flow on the DSP side described thus far, is de-

picted in a block diagram in Figure 5.

Figure 5: DSP-ARM shared memory architecture for faster

communication from FPGA to DSP and DSP to display

47

For reducing canny edge detection computations, we

have used background frame as half-sized image for canny

edge detection processing. Advantage of using half-sized

canny edge processing on background image is that dila-

tion step can be avoided when edge image is interpolated to

full size. The edges should be broad to account for small

edge variations due to turbulence. This will reduce com-

putational requirement of our system by atleast two folds.

Further, this half-sized canny edge detection will operate

once in the five frames as there is not much change in the

background per frame. In addition, we will not process

tracking algorithm for canny edge processed frame, instead,

we output the previous track. DSP support for intrinsic im-

age/video libraries (discussed in Section 2.1) also helped us

in reducing the processing times for many of the functions

as shown in Figure 6. Further, this graph indicates that we

are able to achieve 5 to 15 times speed-up over C and DSP

non-optimized versions for different modules.

Figure 6: Module-wise DSP optimization analysis for com-

putationally intensive functions. Graph is truncated to

150msec for better visualization

In target detection and tracking mode, blob features such

as area, centroid, bounding box and label matrix are ex-

tracted from post-processed foreground image. The max-

imum number of blobs is set to 20 as this will help keep

computations to a minimum as our tracking algorithm is

dependent on the blob analysis step. Median filtering step

of foreground pre-processing helps eliminate small blobs

present in the foreground. This is followed by a statistical

analysis of size, intensity, displacement vectors, and dis-

tance measures across frames to give weights to the blobs.

These weights are used to find similarity between blobs at

different time steps allowing for them to be reliably tracked.

The cumulative effect of these weights leads to term simi-

larity weight Wsim. As demonstrated in [15], turbulence is

most predominant near edges; many of the false blobs are

located around the edges in the image. So we have also

used edge overlap weight Weo that penalizes blobs that are

located near the true edges in the image. Finally, a weight

is assigned to the map from blobs in the current frame (the

most recent frame which has been completely processed) to

their potential correspondences in the next frame (the most

recent frame that needs to be processed) is given by

W (pk(i) → N j(pk(i))) = exp

(−djnext√
M2 +N2

)

∗

[(1− α)Weo(pk(i)) + αWsim(N j(pk(i)))] (6)

Where pk(i) is ith blob in current frame of size M ×N ,

N j(pk(i)) is jth nearest neighbor from next frame, j ∈
[1, 5]. α is a predefined constant learning rate to balance

weights between edge overlapped real objects and false tur-

bulence blobs. djnext is Euclidean distance between current

blob and its jth neighbor in next frame. An exponential

factor is added to further penalize distant blobs. Finally, the

likelihood of this weight over few frames is observed before

a detection decision is made. For detailed description of the

equation (6), refer to our previous work[15]. Tracking al-

gorithm used for DSP implementation is a modified version

of method explained in [15]. A functional description of

the weight estimation process is described in Figure 7. Al-

though sometimes true object blobs may get penalized by

edge overlap weight but similarity weight will differentiate

it from false blobs. This shows that we have incorporated

multiple criteria for validating real object motion.

The software libraries (intrinsic functionality) pro-

vided by Texas Instruments are used for foreground post-

processing including median filter, dilation and blob anal-

ysis. Further, dilation and blob analysis is processed using

packed 32-bit binary data for better optimization. In calcu-

lation of blob weights, the refined foreground is processed

at locations where blobs are present. This minimizes the

processing load and improves overall speed. Restriction on

the processing of number blobs maintains processing time

below the required frame rate. ARM based logic is then

used for direct transfer of either turbulence rectification re-

sult or tracking results to display buffer.

3. Results and Discussion

The performance of our implementation for PAL reso-

lution (720 × 576) with FPGA operating at 50MHz clock,

DSP at 500MHz clock results in 25FPS frame rate for low to

severe turbulence while tracking up to 20 moving objects.

The overall latency of our system is three frames making

it suitable for real-time surveillance systems. In our PC

based implementation of algorithm with configuration of

Intel core i3, 3.4 GHz, 8 GB memory the turbulence recti-

fication system runs at 2FPS, and target detection while the

tracking system runs at 1.5FPS. Comparatively, our dedi-

cated embedded system achieves up to 15x speed-up. The

resource utilization for FPGA is given in Table 1 and shows

48

Figure 7: Function diagram of blob weight analysis in DSP

that sufficient block rams have been exploited to avoid DDR

access penalties.

Table 1: Background estimation and foreground estimation

FPGA resource utilization

Kintex 7 Occupied Available Percentage

XC7K410T FPGA Utilization

BIockRAMS 715 795 89.94 %

LUTS 8842 254200 3.48 %

DSP Slices 4 1540 0.26 %

Flip-flops 1783 508400 0.35 %

In addition, DSP/ARM utilization (Table 2) shows effi-

cient usage of memories without overburdening the system.

Table 2: DSP resource utilization for RESTORE system

TMS320DM8148 Occupied Available Percentage

(MB) (MB) Utilization

DSP Data Memory 56.41 80 70.00 %

DSP Program Memory 0.174

ARM Data Memory 0.610 80 0.87 %

ARM Program Memory 0.085

Shared Memory 0.881 16 5.5 %

We have used the following edge based no-reference

turbulence measurement (EBTM) metric for performance

evaluation of our algorithm. This metric calculates amount

of turbulence present in the video based on root mean square

error (RMSE) between two adjacent frames on the dilated

Table 3: RESTORE system TR Mode performance evalua-

tion and comparison with method [7]

Datasets EBTM (Vin) EBTM (Vout) Percentage Percentage

Rectification Rectification

RESTORE [7]

turbulence0 0.55 0.13 76% 75%

turbulence1 0.63 0.12 81% 77%

turbulence2 0.39 0.11 71% 78%

turbulence3 0.39 0.11 72% 82%

edges without using any reference image.

EBTM(Vin) =
K
∑

k=2

‖ fr(k)− fr(k − 1) ‖2
‖ 0.5 ∗ (fr(k) + fr(k − 1)) ‖2

(7)

Here Vin is the input video under test and K is the total

number of frames of the Vin. fr(k) is dilated edge binary

image of kth frame. Further, 0.5 constant indicates that the

final quantity is normalized to yield a consistent measure for

all images. Although this metric is sensitive for large sized

moving objects it works well for a variety of natural scenes

and has good coherence to human subjective scores. Ana-

lytical results given in Table 3 shows that proposed system

stabilizes turbulence from low to severe levels of turbulence

(low = EBTM < 0.25; severe = EBTM > 0.50). Here,

EBTM (Vin) indicates the amount of turbulence present in

input video while EBTM (Vout) shows the amount of turbu-

lence present in output video obtained from proposed recti-

fication method. Qualitative results are also given in Figure

8. The comparison with [7] in Table 3 shows better tur-

bulence rectification without harming real objects. Further,

results for turbulence3 dataset are biased by large fast mov-

49

Input Turbulence Rectification Target Detection Ground Truth

Figure 8: Qualitative analysis of RESTORE system algorithms.

ing objects.

Further, the potential blobs that survived after weight and

temporal consistency analysis are binarized and compared

with ground truth measurement given in [11]. We have

compared all the datasets of turbulence category as given

in Table 4 with [12] and found that our results are compa-

rable in detecting real moving objects with ease of porting

onto embedded platform.

Table 4: RESTORE system TT Mode performance eval-

uation and comparison with method [12]. All values are

multiplied with factor 1000.

Measures Datasets (×10−3)
turbu- turbu- turbu- turbu- Avg. Avg.

lence0 lence1 lence2 lence3 RESTORE [12]

Recall 579.0 366.0 840.2 385.2 542.6 805.0

Specficity 999.9 999.8 1000.0 999.4 999.77 999.4

FPR 0.07 0.18 0.02 0.63 0.225 0.6

FNR 421.0 634.0 159.8 614.8 457.4 195.0

PWC 87.1 259.5 8.3 1052.0 351.72 152.7

F-1 714.6 517.4 881.4 541.0 656.85 779.2

For an ideal tracking system, Recall, Specificity and F-

Measure should be high whereas FPR, FNR, and PWC

should be low [11]. Further comparison of tracking algo-

rithm performance with recent methods is given in our pre-

vious work [15]. As our algorithms are independent of sen-

sor type (visible or IR) and resolution, we assume similar

performance for digital camera (with and without compres-

sion). For comparison video results refer supplementary

material provided with the paper.

4. Conclusion and Future Work

An efficient heterogeneous platform based real-time im-

plementation of our RESTORE system mitigates the atmo-

spheric turbulence distortions while reliably detecting and

tracking true moving objects. We have exploited the preva-

lence of turbulence distortions near scene structures for both

turbulence mitigation as well as moving target detection.

Algorithmic comparison of our approach with existing lit-

erature has shown improved performance in accuracy, min-

imum latency, and fewer memory requirements.

We are working towards development of similar system

on reduced form factor hardware so that it can be directly

embedded into smart surveillance cameras and optical sight

devices.

50

References

[1] X. Zhu and P. Milanfar. Removing atmospheric

turbulence via space-invariant deconvolution. IEEE

Trans.Pattern Anal. Mach. Intell., 35(157-170):14,

2013 1, 3, 5

[2] D. Gong, Y. Zhang ; S. Dang ; J. Sun. Neighbor com-

bination for atmospheric turbulence image reconstruc-

tion. In The IEEE International Conference on Image

Processing (ICIP), 2013 1

[3] C. S. Huebner and C. Scheifling. Software-based mit-

igation of image degradation due to atmospheric tur-

bulence. Proc. SPIE, 7828:78280N-78280N-12, 2010

1

[4] N.Anantrasirichai, A.Achim, N. Kingsbury, D.Bull.

Atmospheric turbulence mitigation using complex

wavelet-based fusion. Image Processing, IEEE Trans-

actions on, 2013 1

[5] B. Fishbain, L. P. Yaroslavsky, and I. A. Ideses.

Real time stabilization of long range observation sys-

tem turbulent video. J. Real-Time Image Processing,

2(1):11-22, 2007 1, 3

[6] O. Oreifej, X. Li, and M. Shah. Simultaneous video

stabilization and moving object detection in turbu-

lence.IEEE Trans. Pattern Anal. Mach. Intell., 35(2),

2013 1

[7] Y. Lou, S. Kang, S. Soatto and A. Bertozzi. Video Sta-

bilization of Atmospheric Turbulence Distortion. In-

verse Problems in Imaging, Special Issue in honor of

Tony Chan, 7(3), pp. 839 - 861, August 2013. 1, 7

[8] Atmospheric Turbulence Mitigation System. [online],

Available: http://www.atcomimaging.com/

turbulence-mitigation (Date last accessed on

Mar. 18, 2016) 1

[9] G. Baldini, P. Campadelli, D. Cozzi, and R. Lan-

zarotti.A simple and robust method for moving target

tracking. In Proc. of the IASTED International Con-

ference on Signal Processing, Pattern Recognition and

Applications (SPPRA), pages 108-112, 2012. 1

[10] B. Benfold and I. Reid. Stable multi-target tracking

in real-time surveillance video. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pages 3457-3464, 2011. 1

[11] N. Goyette, P. Jodoin, F.Porikli, J. Konrad, and P.

Ishwar. changedetection.net: A new change detection

benchmark dataset. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Work-

shops, pages 1-8, 2012. 2, 7, 8

[12] P. St-Charles, G. Bilodeau, and R. Bergevin. Flexible

background subtraction with self-balanced local sen-

sitivity. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2014. 2,

3, 8

[13] O. Barnich and M. V. Droogenbroeck. Vibe: a uni-

versal background subtraction algorithm for video

sequences.IEEE Transactions on Image Processing,

20(6):1709-1724, 2011. 2, 3

[14] M. Hofmann, P. Tiefenbacher, and G. Rigoll. Back-

ground segmentation with feedback: The pixel-based

adaptive segmenter. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Work-

shops, pages 38-43, 2012. 2, 3

[15] A. Apuroop, A. Deshmukh, and S. Medasani, Ro-

bust Tracking of Objects through Turbulence, In the

Proceedings of the ACM 2014 Indian Conference

on Computer Vision Graphics and Image Process-

ing,pages 29,2014 1, 3, 6, 8

[16] Y. Yoo, T. Park. A Moving Object Detection Al-

gorithm for Smart Cameras. In the IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW ’08), pages 1-8,

2008 4

51

http://www.atcomimaging.com/turbulence-mitigation
http://www.atcomimaging.com/turbulence-mitigation

