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Abstract

In this paper, we propose a multimodal multi-stream

deep learning framework to tackle the egocentric activity

recognition problem, using both the video and sensor data.

First, we experiment and extend a multi-stream Convolu-

tional Neural Network to learn the spatial and temporal fea-

tures from egocentric videos. Second, we propose a multi-

stream Long Short-Term Memory architecture to learn the

features from multiple sensor streams (accelerometer, gyro-

scope, etc.). Third, we propose to use a two-level fusion

technique and experiment different pooling techniques to

compute the prediction results. Experimental results us-

ing a multimodal egocentric dataset show that our pro-

posed method can achieve very encouraging performance,

despite the constraint that the scale of the existing egocen-

tric datasets is still quite limited.

1. Introduction

The last several years has witnessed a fast-growing mar-

ket of wearable devices and there is an increasing interest

in understanding egocentric actions. The ever-increasing

adoption of those devices such as Google Glass, Microsoft

SenseCam, Apple Watch and Mi band enables low-cost, un-

obtrusiveness collection of rich egocentric or first-person

view activity data. This makes possible the monitoring of

all-day and any-place activities. Automated analyzing and

understanding of egocentric multimodal data (i.e., first per-

son videos, wristband sensors, etc.) is very important for

many applications ranging from military, security applica-

tions, health monitoring, lifestyle analysis, to stimulation

for memory rehabilitation for dementia patients.

Currently, research on automatic egocentric activity

recognition is mainly based on two broad categories of data:

low-dimensional sensor data and high-dimensional visual

data. Low-dimensional sensor data such as GPS, light, tem-

perature, direction or accelerometer data has been found to

Figure 1: Architecture of our proposed Multimodal Multi-

stream Deep Learning for Egocentric Activity Recognition.

be useful for activity recognition [17, 12, 7, 15, 11]. Low-

dimensional sensor data can be collected and stored easily,

and the computational complexity of the recognition is usu-

ally low. On the other hand, high-dimensional visual data is

information-rich, and egocentric activity recognition based

on visual data has achieved encouraging results using hand-

crafted video features that encode both appearance [16, 6]

and motion information [19].

During the last several years, deep learning has been

successfully applied to many problems from various ar-

eas, like image or video classification, speech recognition.

With deep learning approaches, multiple layers of feature

hierarchies can be learned and also high-level representa-

tions of raw inputs can be automatically built. Some suc-

cessful methods on video analysis include 3D ConvNets

[9], Deep ConvNets [10], Two-Stream ConvNets [18], C3D
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[22]. In order to take advantage of temporal information

and improve the accuracy, some existing works combine

Recurrent Neural Network with ConvNets [1, 4] to tackle

the activity recognition problem. These approaches aim to

automatically learn high-level semantic representation for

raw videos by utilizing deep architectures discriminatively

trained end-to-end in a supervised way.

To the best of our knowledge, there is only limited and

preliminary effort to study multimodal egocentric activity

recognition using the sensor and visual data simultaneously.

In [20], the authors proposed a novel approach for gener-

ating sensor feature representation using Fisher vector and

sliding window technique which also incorporates temporal

information by introducing temporal order into trajectory-

like sensor data. Furthermore, they also propose to apply

Fisher Kernel framework in order to fuse sensor and video

features for multimodal egocentric activity recognition.

In this paper, we propose a multi-stream deep architec-

ture (see Figure 1) to recognize activities from multimodal

egocentric data: video data and sensor data. In particular,

we make the following contributions:

• For video data, we extend the two-stream ConvNets

[18] to a three-stream ConvNets for spatial, optical

flow and stabilized optical flow data. Egocentric

videos captured from wearable devices usually contain

a significant amount of camera motion. We propose

to compute and analyze the stabilized optical flow ex-

tracted from the videos.

• For sensor data, we propose a new multi-stream Long

Short-Term Memory (LSTM) framework to analyze

multiple-axis sensor measurements: accelerometer,

gyroscope, magnetic field and rotation. We leverage

LSTM [1, 4] to capture long-term temporal informa-

tion in the sensor streams.

• To fuse the results of multiple streams (spatial, optical

flow and stabilized optical flow for video data, vari-

ous sensor measurements), we examine average pool-

ing and maximum pooling and a two-level fusion ap-

proach.

• We evaluate our proposed framework in detail on a

Multimodal Egocentric Activity dataset. We show that

our multimodal deep learning has comparable perfor-

mance with state-of-the-art hand-crafted feature ap-

proach, despite the constraint that the size of the ego-

centric dataset is quite limited.

The rest of this paper is organized as follows. In Section

2 we present related works on egocentric activity recogni-

tion and also some state-of-the-art deep architectures. In

Section 3 we discuss a Multimodal Egocentric Activity

dataset for experiment. The proposed multimodal multi-

stream deep learning framework is discussed in Section 4.

Figure 2: Sample frames of video data from Multimodal

Egocentric Activity Dataset

Experimental evaluation is presented in Section 5 and we

conclude the work in Section 6.

2. Related Work

For low-dimensional sensor data classification, [12] pro-

poses features for egocentric activity recognition computed

from cell-phone accelerometer data. They reported over

90% accuracy for 6 simple activities. [7] reported more than

80% accuracy for 9 activities with sensors located at two

legs. And more recently, there is a lot of interests to perform

egocentric activity recognition using high-dimensional vi-

sual streams recorded from individuals’ wearable cameras.

Compared to low-dimensional sensor data, visual data cap-

tures much richer information: scene details, people or ob-

jects the individual interacts, for example. Therefore, sev-

eral egocentric video datasets and approaches have been

proposed to recognize complex activities. Among them,

some previous works focus on extraction of egocentric se-

mantic features like object [16, 6], gestures [13] and object-

hand interactions [5] or discriminative features[14]. Re-

cently, trajectory-based approach [23] has been applied to

characterize ego-motion in egocentric videos, and encour-

aging results have been obtained for activity classification

[19].

Inspired by the breakthroughs from image domain, many

deep architectures for automatically learning video features

are proposed. Two-stream ConvNets [18] is one of the most

successful architecture. It matches the state-of-the-art per-

formance of trajectory based algorithm on large scale video

datasets like UCF101 and HMDB51. The two streams con-

sist of spatial and temporal networks. Spatial net is able
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Figure 3: Activity categories of Multimodal Egocentric Ac-

tivity dataset

to extract semantic features from static information. While

temporal net aims to learn motion features from stacking

optical flows. Our work in this paper is also inspired by

this two-stream architecture. C3D [22] propose a 3D con-

volution operation to learn spatial-temporal features which

utilizes 3D volume filters instead 2D filters. [1, 4] intro-

duce Recurrent Neural Network or Long-Short Term Mem-

ory to take advantage of long-term temporal information

since most of the existing ConvNets are incapable of cap-

turing long-term sequential information.

3. Dataset

The following types of sensor data are included: ac-

celerometer, gravity, gyroscope, linear acceleration, mag-

netic field and rotation vector. Each sensor signal has a du-

ration of 15 seconds and sampling rate of 10.

To evaluate the effectiveness of multimodal deep learn-

ing on egocentric activity recognition, we conduct experi-

ments on a Multimodal Egocentric Activity dataset [20]1.

The dataset contains 20 distinct life-logging activities per-

formed by different human subjects. The data is captured

using a Google Glass that records high-quality synchro-

nized video and sensor streams. The dataset has 200 se-

quences in total and each activity category has 10 sequences

of 15 seconds each. The categories of egocentric activity

are presented in Figure 3. Furthermore, the categories can

also be grouped into 4 top-level types: Ambulation, Daily

Activities, Office Work, Exercise.

The dataset has the following characteristics. Firstly, it

is the first life-logging activity dataset that contains both

1The dataset is publicly available at http://people.sutd.edu.

sg/˜1000892/dataset

(a) (b)

(c) (d)

Figure 4: (a) (b) Two successive frames of Running activ-

ity (c) Optical flow (horizontal) (d) Stabilized optical flow

(horizontal)

egocentric video and sensor data which are recorded simul-

taneously. The dataset enables evaluation of multimodal

approach. Secondly, the dataset is collected in various en-

vironment which contains large variability in background

and illumination. Egocentric videos are recorded both in-

door and outdoor with significant changes in the illumina-

tion conditions and from different human subjects. Thirdly,

the dataset has a taxonomy based on the categories as shown

in Figure 3. All 20 fine-grained activities can be grouped

into 4 top-level categories to allow evaluation of new visual

analysis approaches against different levels of life-logging

activity granularity.

4. Approach

In this section, we describe the deep learning framework

for multimodal egocentric activity recognition. Firstly, we

extend the multi-stream ConvNets for recognizing activities

in egocentric videos. Secondly, we propose a new multi-

stream Long Short-Term Memory (LSTM) for classifying

wearable sensor data. Finally, we experiment average pool-

ing and maximum pooling techniques to fuse the video and

sensor softmax scores to obtain the final predictions.

4.1. Multi­stream ConvNets on Egocentric Videos

Firstly, we review the original architecture of the two-

stream ConvNets that was proposed for third-person videos

[18]. Then we discuss how to use a small-scale egocentric

video dataset to fine-tune the two-stream ConvNets that was

pre-trained on a large third-person video dataset. We also

discuss how to extend the ConvNets model with stabilized

optical flows suitable for egocentric video recognition.

The original two-stream ConvNets consist of spatial
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Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 full6 full7 full8

size 7×7 3×3 5×5 3×3 3×3 3×3 3×3 3×3 - - -

stride 2 2 2 2 1 1 1 2 - - -

channel 96 96 256 256 512 512 512 512 4096 2048 101

receptive field 7×7 11×11 27×27 43×43 75×75 107×107 139×139 171×171 - - -

Table 1: Details about the pre-trained ConvNet model.

nets and temporal nets which are two separate ConvNets

streams. The spatial streams are similar with deep architec-

tures that used for image classification task. It is designed

for capturing scenes or objects information. The input of

spatial nets is single frame images of (224×224×3). While

temporal nets are built to extract dynamic motion informa-

tion with the input of stacking optical flow fields volumes

(224× 224× 2F , F is the number of stacking flows) with

horizontal and vertical components of the vector field.

Egocentric videos are usually captured by wearable de-

vices. Camera motions are usually prominent and pro-

nounced due to the movement of the subjects. These vary-

ing and unintended camera motions may not be the repre-

sentative of the motion present in an action. To capture the

foreground motion information, we extend the two-stream

ConvNets to three-stream ConvNets by introducing another

stream. This additional stream consists of stacking opti-

cal flows extracted from stabilized egocentric videos. From

Figure 4, we can see that the stabilized optical flow contains

less shaking compared to the original optical flow. Then

it can provide cleaner foreground information. In our ex-

periment, we use the same temporal pre-trained model for

stabilized optical flows.

The ConvNet architecture used is original from the Clar-

ifai networks. The detailed architecture of ConvNets is

shown in Table 1. A small modification is made to adapt

to action recognition with fewer filters in conv4 layer and

lower-dimensional full7 layer. We use the pre-trained

model for single frame images, optical flows and stabilized

optical flows. We fine-tune the last fully-connected layer

for three streams.

After that, we average the softmax class scores for

frames or optical flows extracted from the same video to be

the final score of prediction. Furthermore, to fuse the three

streams (spatial, optical flow and stabilized optical flow),

we apply average pooling and maximum pooling to predict

the labels of activities.

4.2. Multi­stream LSTM on Sensor data

In this section, we first describe an existing approach

based on Convolutional Neural Network as a benchmark.

Then we propose a new Multi-stream Long Short-Term

Memory (LSTM) framework for classifying multi-channel

sensor data which tackles the issue of missing temporal in-

formation and adopts the late fusion of prediction scores.

In [25], an approach inspired by CNN is used for clas-

sifying multi-channel time-series. Firstly, they use sliding

window strategy to segment the time-series into short pieces

of the signal. To be specific, each piece used by CNN is a

two-dimensional matrix containing r raw samples with D

channels. After that, 3 temporal convolution layers and 2

pooling layers are applied to learn the temporal features and

reduce the temporal dimensionality. In this way, the num-

ber of channels D keep unchanged until the last unification

layer which is a fully connected layer to fuse all channels

data. Finally, a pooling technique is utilized to determine

the label of the whole time-series by examining labels of all

segments.

One limitation of this CNN-based method is that it is in-

capable to capture the temporal relationship for a long time-

series data. Although CNN-based approach can learn some

short patterns through the learning process, it still lacks

long-term temporal information. Therefore, we propose our

own multi-stream LSTM for egocentric activity recognition

using different sensors (e.g., accelerometer, gyroscope, etc.)

We choose LSTM unit instead of traditional RNN in this

work. The basic RNN takes in sequential input and for each

data in the sequence, it calculates hidden states which take

part in predicting the next data in the sequence. In this way,

the RNN performs prediction or classification for a certain

data point by finding the temporal relationship from the pre-

vious data point in the sequence. The LSTM unit is a popu-

lar variant of the basic RNN unit. Recently, for most of the

problem, the LSTM is preferred because the gating mech-

anism of LSTM allows it to explicitly model long-term de-

pendencies. Also, the calculation of hidden states involves

adding previous hidden state information, rather than multi-

plying it which causes the values stored to blow up and the

gradients to vanish.

To exploit information from all sensors, we propose a

multi-stream LSTM which is inspired by the multi-stream

ConvNets work. A maximum pooling is adopted to choose

the maximum score of different sensor data as the prediction

of multiple sensors for egocentric activity recognition.

5. Experiments

In this section, we first describe the experiment setup

and implementation details for multi-stream ConvNets and
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LSTM for classifying egocentric videos and sensor data.

Then, we discuss the results of individual data modalities

and also the fusion of video and sensor data.

5.1. Experiment setup

In our experiment, we downsampled the egocentric

videos to the size of 454 × 256. We applied random crop-

ping to the video when fine-tuning multi-stream ConvNets.

The frame rate is 10 fps. And we selected 4 types of sen-

sor data from the dataset: accelerometer, gyroscope, mag-

netic field and rotation vector. The sampling rate is 10 Hz.

There are 10 splits in the dataset. The accuracy is obtained

by averaging precisions over 10 splits with Leave-One-Out

cross-validation (recall that there are 10 sequences in each

activity class).

5.2. Implementation details

Fine-tuning multi-stream ConvNets. Training deep

ConvNets is more challenging for egocentric activity recog-

nition as activity is more complex (considerable camera mo-

tion in addition to the object motion in the scene). Further-

more, the size of egocentric video dataset is extremely small

compared to the ImageNet dataset [3]. In addition, due to

the privacy concern, egocentric video samples are difficult

to collect and is scarce compared to traditional third-person

view videos. In this work, we choose to fine-tune the Con-

vNet model which is trained on UCF101 dataset, a large-

scale action recognition dataset. The pre-trained model is

provided in [24]. We use Torch library [2] to fine-tune the

last layer of the network with egocentric video data. The

batch size is set to 128, the number of units of last fully-

connected layer is set to 2048 and dropout is set to 0.8. Mo-

mentum is set to 0.9 and decay is set to 10−6 for stochastic

gradient descent (SGD). For single frame stream, we first

resize the frame by making smaller side to 256, and then

randomly crop a region of 224 × 224. The learning rate

is set as 10−2 initially and fine-tuning is stopped after 40

epochs. For both optical flow stream and stabilized opti-

cal flow stream, the input is 3D volumes of stacking optical

flows fields. TVL1 optical flow algorithm [26] is chosen

with OpenCV implementation, since it makes a good bal-

ance between efficiency and accuracy. We discretize the

floating number of optical flow fields into integers in 0−255
like color channels of images for fast computation. Specif-

ically, we stack 10 frames of optical flow fields of horizon-

tal and vertical direction. Then we also fine-tune the last

layer of the pre-trained temporal net which is provided in

[24]. The fine-tuning process of the temporal net is similar

with spatial net and a 224 × 224 × 20 volume is randomly

selected from training video and also flipped for augmen-

tation purpose. Video stabilization is done by using ffmpeg

vidstabdetect and vidstabtransform filters.

Training multi-stream LSTM. For training multi-

Algorithm Accuracy

Single frame 72.4%

Optical flow 48.9%

Stabilized optical flow 45.2%

average pooling 68.5%

maximum pooling 75.0%

Trajectory + Fisher Vector [20] 78.4%

Table 2: Result on egocentric videos using multi-stream

ConvNets.

stream LSTM using multi-channel sensor data, we train

from scratch using Torch library. A single-layer LSTM with

128 hidden units is used. Following the LSTM layers, a

softmax classifier makes a prediction. The dimensionality

of the sensor data is 3 or 4 which depends on the type of sen-

sor used. Four types of sensor data are used in our experi-

ment: accelerometer (3-axis), gyroscope (3-axis), magnetic

field (3-axis) and rotation vectors (3-axis and magnitude).

The batch size is set to 16 and RMSProp [21] is chosen as

the optimizer. Training is stopped after 100 epochs.

Based on the scores of different sensor data, a maximum

pooling is used to select the maximum score from all sen-

sors to make a more accurate prediction.

5.3. Results

In this section, we evaluate the performance of improved

multi-stream ConvNets on video data and proposed multi-

stream LSTM on sensor data. Then we apply late fusion for

our method and compare it to state-of-the-art result.

Result on egocentric videos Table 2 provides the results

of egocentric videos using multi-stream ConvNets. The

single frame, optical flow and stabilized optical flow are

the three streams that we use to classify egocentric videos.

From this table, we can observe the performance of individ-

ual streams and also fusion results using average and maxi-

mum pooling at the video level. Surprisingly, single frame

stream has the highest accuracy which is much higher than

the two optical flow streams. This is not expected since the

optical flow is considered to be important in recognizing ac-

tivities from first-person view videos. Also, from the previ-

ous work on third-person view videos, optical flow usually

has better performance than single frame stream [20, 18].

We believe the reason is that in our case, the pre-trained

model for learning optical flows feature is trained on third-

person view videos. Therefore, the filters are less meaning-

ful and useful for distinguishing egocentric videos, which

usually contain a large amount of shaking and noise.

Then, we evaluate two fusion techniques: average pool-

ing and maximum pooling. For average pooling, we sum up

all scores from three streams and the choose the maximum

score as the final prediction. For maximum pooling, we
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Figure 5: Confusion Matrices of (a) single frame stream (b) optical flow stream (c) stabilized optical flow stream (d) multi-

stream LSTM

directly choose the maximum score from all sensor scores

and take that score as the prediction. It turns out that max-

imum pooling has better performance. And we also com-

pare our result with methods using hand-craft features. The

trajectory-based approach outperforms our approach which

suggests that hand-craft features would still be useful when

the datasets are small.

Result on sensor data Result of the proposed multi-

stream LSTM is reported in Table 3. We have evaluated the

CNN-based approach from [25]. Our proposed approach

outperforms the CNN-based approach which proves that it

is beneficial to utilize temporal information with LSTM net-

work. By examining the confusion matrix of multi-stream

LSTM and video-based results in Figure 5, we can find that

they both perform well for Exercise activities which makes

sense since they are easily distinguished no matter from

Algorithm Accuracy

CNN-based [25] 47.8%

Proposed multi-stream LSTM 49.5%

Temporal enhanced FV [20] 69.0%

Table 3: Comparison of different approaches on sensor data.

video or sensor data. While, for activity sitting, eating and

drinking, multi-stream LSTM outperforms the video-based

results. And multi-stream ConvNet on egocentric video has

better performance for Office work activity since high-level

information is beneficial and also it is extremely hard to rec-

ognize activity like organizing files with sensor data only.

Fusion results After generating scores from multi-

stream ConvNets and LSTM model, we also need to fuse
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Algorithm Accuracy

Proposed method with average pooling 76.5%

Proposed method with maximum pooling 80.5%

Multimodal Fisher Vector [20] 83.7%

Table 4: Comparison of different approaches on all data.

them together. Similarly, we choose average pooling and

maximum pooling to evaluate. From Table 4, we can find

that maximum pooling achieves an accuracy of 80.5% and

outperforms average pooling by 4%.

As we have shown, a two-level fusion strategy is applied

in our experiment. We first fuse video and sensor result re-

spectively and then fuse their scores together. The reason

is that the three streams in video-based ConvNets provide

similar information, and the information is extremely dif-

ferent from the one learned from sensor data because of the

different modalities.

The performance of our multimodal deep learning ap-

proach is slightly worse compared to the Multimodal Fisher

Vector approach proposed in [20]. It is not unusual for

hand-crafted features to work better than learned represen-

tations when the amount of training data is small. Such ob-

servations have been reported in other domains like speech

recognition [8]. Tagging millions of egocentric videos is

challenging and might not be feasible. Future work will

focus on how the performance can be further improved by

combining the merits of different approaches, given limita-

tions in the size of the training data.

6. Conclusion

This paper proposed a new multimodal multi-stream

deep learning framework to recognize egocentric activities.

In our proposed framework, multi-stream ConvNets and

multi-stream LSTM architectures are utilized to learn dis-

criminative spatial and temporal features from the egocen-

tric video and sensor data respectively. Two different fusion

techniques are evaluated on two different levels. Our com-

parison with state-of-the-art results shows that our proposed

method achieves very encouraging performance, despite the

fact that we have only very limited egocentric activity sam-

ples for training. Future work investigates different data ar-

gumentation approaches to improve the networks.
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