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Abstract

We propose a notion of affordance that takes into ac-

count physical quantities generated when the human body

interacts with real-world objects, and introduce a learning

framework that incorporates the concept of human utilities,

which in our opinion provides a deeper and finer-grained

account not only of object affordance but also of people’s

interaction with objects. Rather than defining affordance

in terms of the geometric compatibility between body poses

and 3D objects, we devise algorithms that employ physics-

based simulation to infer the relevant forces/pressures act-

ing on body parts. By observing the choices people make in

videos (particularly in selecting a chair in which to sit) our

system learns the comfort intervals of the forces exerted on

body parts (while sitting). We account for people’s prefer-

ences in terms of human utilities, which transcend comfort

intervals to account also for meaningful tasks within scenes

and spatiotemporal constraints in motion planning, such as

for the purposes of robot task planning.

1. Introduction

In recent years, there has been growing interest in study-

ing object affordance in computer vision and graphics.

As many object classes, especially man-made objects and

scene layouts, are designed primarily to serve human pur-

poses, the latest studies on object affordance include rea-

soning about geometry and function, thereby achieving bet-

ter generalizations to unseen instances than conventional

appearance-based machine learning approaches. In particu-

lar, Grabner et al. [19] designed an “affordance detector” for

chairs by fitting typical human sitting poses to 3D objects.

In this paper, we propose to go beyond visible geomet-

ric compatibility to infer, through physics-based simulation,

the forces/pressures on various body parts (hip, back, head,

neck, arm, leg, etc.) as people interact with objects. By
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Figure 1. Examples of sitting activities in (a) an office and (b)

a meeting room. In addition to geometry and appearance, peo-

ple also consider other important factors including comfortability,

reaching cost, and social goals when choosing a chair. The his-

tograms indicate human preferences for different candidate chairs.

observing people’s choices in videos—for example, in se-

lecting a specific chair in which to sit among the many

chairs available in a scene (Fig. 1)—we can learn the com-

fort intervals of the pressures on body parts as well as hu-

man preferences in distributing these pressures among body

parts. Thus, our system is able to “feel”, in numerical terms,

discomfort when the forces/pressures on body parts exceed

comfort intervals. We argue that this is an important step

in representing human utilities—the pleasure and satisfac-

tion defined in economics and ethics (e.g., by the philoso-

pher Jeremy Benthem) that drives human activities at all

levels. In our work, human utilities explain why people

choose one chair over others in a scene and how they ad-

just their poses to sit more comfortably, providing a deeper

and finer-grained account not only of object affordance but

also of people’s behaviors observed in videos.

In addition to comfort intervals for body pressures, our

notion of human utilities also takes into consideration: (i)

the tasks observed in a scene—for example, students con-

versing with a professor in an office (Fig. 1(a)) or participat-

ing in a teleconference in a lab (Fig. 1(b))—where people

must attend to other objects and humans, and (ii) the space

constraints in a planned motion—e.g., the cost to reach a

chair at a distance. In a full-blown application, we demon-

strate that human utilities can be used to analyze human ac-

tivities, such as in the context of robot task planning.
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1.1. Related Work

Modeling affordances: The concept of affordance

was first introduced by Gibson [18]. Hermans et al. [24]

and Fritz et al. [15] predicted action maps for autonomous

robots. Later, researchers incorporated affordance cues in

shape recognition by observing people interacting with 3D

scenes [11, 14, 64]. Adding geometric constraints, several

researchers computed alignments of a small set of discrete

poses [19, 20, 32]. By searching a continuous pose pa-

rameter space of shapes, Kim et al. [37] obtained accurate

alignments between shapes and human skeletons. More

recently, Savva et al. [53] predicted regions in 3D scenes

where actions may take place. Applications that use affor-

dance in scene labeling and object placement are reported in

[31, 30, 29]. A closely related topic is to infer the stability

and the supporting relations in a scene [28, 70, 41].

Inferring forces from videos: For pose tracking,

Brubaker et al. [5, 7, 6] estimate contact forces and internal

joint torques using a mass-spring system. More recently,

Zhu et al. and Pham et al. [72, 51] use numerical differenti-

ation methods to estimate hand manipulation forces. These

methods are either limited to rigid body problems or em-

ploy oversimplified volumetric human models inadequate

in simulating detailed human interactions with arbitrary 3D

objects in scenes. In computer graphics, soft body simula-

tion has been used to jointly track human hands and calcu-

late contact forces from videos [67, 63].

Task planning in robotics: Robotics has a rich his-

tory in seeking to understand human motion through syn-

thesized trajectories. Hierarchical task planning through 2D

human motion synthesis is explored in [73], but these mod-

els are constrained to 2D motion plans and relatively sim-

plistic location-oriented goals. More complex models such

as [36] seek to understand task-oriented human motion on a

musculoskeletal level, but they do not take into account the

context of an entire 3D environment. To synthesize logical

trajectories, we rely on robust planning algorithms devel-

oped for robotics control applications (e.g. [17]) and we ap-

ply these forward planning engines to scene understanding

by synthesizing rational human trajectories, a well-studied

robotics problem [38].

Physics-based human simulation in graphics: Phys-

ics-based techniques for simulating deformable objects

have been widely employed in computer graphics after the

pioneering work on the topic [61, 60]. Popular methods

for simulating elastoplastic material include mass-spring-

damper systems [45, 62], the Finite Element Method (FEM)

[59, 27, 44, 23], and the Material Point Method (MPM)

[56, 57]. We adopt the FEM as it is physically accurate,

robust, and computationally efficient. Among various de-

formable solids, the human body has received much atten-

tion due to its importance in character animation for movies

and games. Significant prior work models human anatomi-

cal structure as a biomechanical musculoskeletal system in-

cluding adipose tissues [39, 40, 54, 52]. For efficiency, our

human body model is simply a single isotropic elastic body.

This enables us to run a large number of simulations in a

reasonable time limit and still achieve useful results.

1.2. Contributions

This paper makes five major contributions:

1. We incorporate physics-based, soft body simulations to

infer the invisible physical quantities—e.g., forces and

pressures—during human-object interactions. To our

knowledge, this is the first paper to adopt state-of-the-

art, physically accurate simulations to scene understand-

ing. A major advantage of our method is its robustness

in inferring both the forces and pressures acting on the

entire human body as our model, which is comprised of

more than 2,000 vertices, deforms in a realistic manner.

2. Given a static scene acquired by RGB-D sensors, our

proposed framework reasons about the relevant physics

in order to synthesize creative, physically stable ways of

sitting on objects.

3. By incorporating a conventional robotics path planner,

our proposed framework can generalize a static sitting

pose to extend over a dynamic moving sequence.

4. From human demonstrations, our system learns to gener-

ate the force histograms of each human body part, which

essentially defines human utilities, such as comfortabil-

ity, in terms of the force acting on each body part.

5. We propose a method to robustly generate volumetric

human models from the widely-used stick-man mod-

els acquired using Kinect sensors [50], and introduce a

pipeline to reconstruct watertight 3D scenes with well-

defined interior and exterior regions, which are critical to

the success of physics-based scene understanding using

advanced simulations.

1.3. Overview

The remainder of this paper is organized as follows: In

Sec. 2, we introduce our representation, which incorporates

physical quantities into the spatiotemporal spaces of inter-

est. In Sec. 3, we describe the pipeline for calculating the

relevant physical quantities, which makes use of the Finite

Element Method (FEM). In Sec. 4, we formulate the prob-

lem as a ranking task, and introduce a learning and inference

algorithm under the assumption of rational choice. Sec. 5

demonstrates that our proposed framework can be easily

generalized to challenging new situations. Sec. 6 concludes

the paper by discussing limitations and future work.

2. Representation

2.1. Spatial Entities and Relations in 3D Spaces

We represent sitting behaviors and associated relations in

a parse graph G, which includes (i) spatial entities—objects

23824



Figure 2. (a) We collect a set of human poses and cluster them

into 7 average poses. (b) Various chairs extracted from scanned

scenes. (c) Each human pose is decomposed into 14 body parts.

When a human interacts with a chair, we infer the forces on each

body part using FEM simulations. (d) Examples illustrating hu-

man preferences; green indicates a comfortable sitting activity, red

an uncomfortable one.

and human poses extracted from 3D scenes—and (ii) spatial

relations—object-object and human-object relations.

Spatial entities: For each frame of the input video, the

parse graph G is first decomposed into a static scene and a

human pose. The static scene is further decomposed into a

set of 3D objects, including chairs (Fig. 2(b)). In this pa-

per we consider only human poses related to sitting. We

collect typical sitting poses using a Kinect sensor, and align

and cluster them into 7 average poses (Fig. 2(a)). For each

average pose, we first convert the Kinect stick-man models

(Fig. 3(a)) into tetrahedralized human models (Fig. 3(b)).

These are then discretized into 14 pre-defined human body

parts (Fig. 3(c)) for simulations, as shown in Fig. 3(d).

Spatial relations: Pairs of objects extracted from 3D

scenes form object-object relations, and each object and hu-

man pose pair forms a human-object relation. Figs. 6(d)(e)

show an example of spatial relations. For the purposes of

this paper, we define these two spatial relations as spatial

features φs(G) that encode the relative spatial distances and

orientations. At a higher level, human-object relations also

encode visual attention and social goals.

2.2. Physical Quantities of Human Utilities

To date, researchers have mostly generated affordance

maps by evaluating the geometric compatibility between

people and objects [37, 30, 14, 29, 53, 64]. We employ a

more meaningful and quantifiable metric—forces (includ-

Figure 3. The stick-man model (a) captured using a Kinect is con-

verted into a tetrahedralized human model (b) and then segmented

into 14 body parts (c). Using FEM simulation the physical quan-

tities φp(G) are estimated at each vertex of the FEM mesh; the

forces at each vertex are visualized in (d).

ing pressures) as physical quantities φp(G) produced dur-

ing human-object interactions. The forces acting on each

body part essentially determines the comfortability of a per-

son interacting with the scene. People tend to choose more

comfortable chairs that will apparently provide better distri-

butions of supporting forces at each body part (Fig. 2(d)).

Deploying our physically simulated volumetric human

models in the reconstructed scenes, we can estimate fine-

grained external forces at each vertex of the human model,

as shown in Fig. 3(d). In this paper, we use the FEM to

compute forces. The force acting on each body part can be

estimated by summing up vertex-wise force contributions.

A major advantage of using physical concepts is their ability

to generalize to new situations.

2.3. Human Utilities in Time

To model the human utility, a plan cost φt(G) is incor-

porated into our proposed framework. This is defined as

a body pose sequence from a given initial state to a goal

state, which encodes people’s intentions and task planning

through time. Compared to prior work, adding plan cost

extends the solution space from a static human pose to dy-

namic pose sequences.

To simplify the problem, we use the Probabilistic

Roadmap (PRM) planner [35] to calculate the plan cost.

Viewed from above, we project the 3D scene to create a

planar map, and use a 2D PRM to calculate the plan cost.

However, our proposed framework does not preclude the

use of more sophisticated planning methods in 3D space.

3. Estimating the Forces in 3D Scenes

3.1. Dataset of 3D Scenes and Human Models

Our dataset includes reconstructed watertight 3D scenes,

3D objects (including chairs) extracted from the scenes,

tracked human skeletons and volumetric human poses. The

skeletons and volumetric human poses are registered in the

reconstructed scenes.

The most distinguishing feature of our dataset relative to

previous ones (e.g., [9, 21, 66, 53]) is the watertight prop-

erty of our reconstructed scenes. This is crucial for physics-

based simulation methods such as the FEM. Furthermore,

our dataset includes much larger variations of chair-shaped
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Figure 4. From a reconstructed 3D indoor scene (a) [9, 53], we uni-

formly sample vertices in the input mesh with Poisson disk sam-

pling (b) [4], then convert them into a watertight mesh [43, 47]

with well-defined interior and exterior regions. Differences (c)

between the input mesh and the converted watertight mesh. By

adding a ground geometry, we obtain a detailed, watertight recon-

struction (d) of the 3D scene, which is inputted to the simulation.

objects and human poses, as shown in Fig. 2(a)(b), as well

as more challenging and cluttered scenes.

3.2. Reconstructing Watertight Scenes

Reconstructing closed-loop scenes: Reconstruction

methods that use purely geometric registration [48, 34, 49,

65] suffer from aliasing of fine geometric details and an in-

ability to disambiguate different locations based on local

geometry. Such problems are compounded when attempt-

ing to register loop closure fragments with low overlap. In

our work, we reconstruct 3D scenes with global optimiza-

tion based on line processes [9], resulting in detailed recon-

structions with loop closures, as shown in Fig. 4(a).

Converting to watertight scenes: Collision detection

and resolution in the simulation requires a watertight scene

mesh. We first use Poisson disk sampling [4] to generate

uniformly distributed vertices from the input triangle mesh,

as illustrated in Fig. 4(b). Each vertex is then replaced with

a fixed-radius sphere level set [47]. Subsequently, the Con-

structive Solid Geometry (CSG) union operation is applied

to this level set and a ground level set to produce a complete

scene with a filled-in floor. Finally, the Marching Cubes al-

gorithm [43] is applied to the level set in order to generate

the watertight surface, as shown in Fig.4(d). The resulting

scene has the well-defined interior and exterior regions re-

quired by the simulation.

3.3. Modeling Volumetric Human Pose

Skeleton alignment and clustering: The resting

poses of human skeletons acquired using the Kinect are

aligned by solving the absolute orientation problem using

Horn’s quaternion-based method [26]; i.e., finding the op-

timal rotation and translation that maps one collection of

vertices to another in a least squares sense:

min
∑
i

||RA(:, i) + t−B(:, i)||2, (1)

where A and B are a 3×N matrices whose columns com-

prise the coordinates of the N source vertices and N target

vertices, respectively. Presently, we have N = 3 (left shoul-

der, right shoulder, and spine base) for skeleton alignment.

The K-means clustering algorithm [8, 58, 12] is then ap-

plied to cluster the resting poses into 7 categories, as shown

in Fig. 2(a).

Skeleton skinning: Human skeleton data comprise

joints, segments, and their orientations. For simplicity, an

analytic geometric primitive is assigned to each body part.

The primitives include ellipsoids (including spheres), hex-

ahedra, and cylinders. The parameters of the primitives

are chosen such that they best fit the body parts. A high-

resolution level set is then applied to wrap around the union

of all the primitives [47]; its zero isocontour approximates

the skin [43].

Volumetric discretization: Although the Marching

Cubes algorithm suffices to extract a triangulated skin mesh

from the level set, our simulation requires a full discretiza-

tion of the volume bounded by the skin. To achieve this, we

embed the skin level set into a body-centered cubic tetra-

hedral lattice as in [46]. This results in a tetrahedralized

human shape geometry as shown in Fig. 3(b).

3.4. Simulating Human Interactions With Scenes

As stated earlier, we chose the FEM to simulate hu-

man tissue dynamics. Our simulation requires only recon-

structed watertight scenes and volumetric human poses as

inputs. The outputs of the simulation are the relevant phys-

ical quantities φp(G); e.g., forces and pressures.

Elasticity: The human body is modeled as an elastic

material. The total elastic potential energy is defined as

ΦE(x) =

∫
Ω

ΨE(x)dx ≈
∑
e

V 0
e Ψ

E(F(x)), (2)

where Ω is the simulation domain defined by the tetrahedral

body mesh, x denotes the deformed vertex positions, and

V 0
e is the initial undeformed volume of tetrahedral element

e. The hyperelastic energy density function ΨE is defined

in terms of the deformation gradient F = ∂x
∂X , where X

denotes the undeformed vertex positions. We use the fixed

corotated elasticity model [55] for ΨE due to its robustness

in handling large deformations.

Contact forces: To model contact forces, we need to

penalize penetrations of the human body mesh into the

scene mesh. This requires a differentiable volumetric de-

scription of the scene geometry. With watertight scenes, the

level set reconstruction is performed by directly computing

signed distances from level set vertices to the mesh surface.

In each simulation timestep, all human mesh vertices are

checked against the scene level set. If a penetration is de-

tected for vertex i, a collision energy ΦC(xi) that penalizes

the penetration distance in the normal direction is assigned

to the corresponding vertex:

ΦC(xi) =
1

2
kc(xi − P(xi))

2, (3)
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Figure 5. Given an initial human pose in a 3D scene subject to

gravity (a), without adequate damping (b) the human body is too

energetic and produces unnaturally bouncy motion. With proper

damping, the simulation converges to a physically stable rest pose

(c) in a small number of timesteps.

Table 1. Physical simulation parameters
Timestep: Density: Young’s modulus: Poisson’s ratio:

1 × 10
−3s 1000kg/m3

0.15kPa 0.3

Collision stiffness: Friction coeff: Damping coeff: Gravity:

1 × 10
4kg/s2 1 × 10

−3
50kg/s 9.81m/s2

where kc is a penalty stiffness constant and P(xi) projects

xi onto the closest point on the level set zero isocontour

along its normal direction. To prevent free sliding along

the collision geometry, we further introduce a friction force

that slightly damps the tangential velocity for vertices in

collision.
Dynamics integration: Backward Euler time integra-

tion is used to solve the momentum equation. From time n
to n+ 1, the nonlinear system to solve is

M
v
n+1 − v

n

∆t
= f(xn+1

,v
n+1) +Mg, (4)

f(xn+1
,v

n+1) = f
E(xn+1) + f

C(xn+1) + f
D(vn+1), (5)

x
n+1 − x

n = v
n+1∆t. (6)

Here M is the mass matrix, x denotes position, v denotes

velocity, fE = −∂ΦE

∂x is the elastic force, fC = −∂ΦC

∂x is

the contact force, g = 9.8m/s is gravity, and f
D = −νv is

an additional force to dampen the velocities, where ν is the

damping coefficient. Fig. 5(b) shows that without the damp-

ing force, the deformable human body model is too ener-

getic and may produce unnaturally bouncy motion. While

there exist more accurate viscoelastic material models of

human tissue, our simple damping force is easy to imple-

ment and achieves similar behaviors for the simulation re-

sults. We solve the above nonlinear system for positions

x
n+1 and velocities vn+1 using Newton’s method [16].

Simulation outputs: When the simulation comes to

rest, v = 0 and the damping forces vanish. The elastic,

contact, and gravity forces sum to zero everywhere over the

mesh. As the output of the simulation, we export the com-

puted contact forces acting on the skin surface.

4. Learning and Inferring Human Utilities

4.1. Extracting Features

We craft features φ(G) of three types: (i) spatial fea-

tures φs(G) encoding spatial relations, (ii) temporal features

Figure 6. Data pre-processing. Given a reconstructed 3D scene

(a), we project it down onto a planar map (b), and segment 3D ob-

jects from the scene (c). (d) visualizes 3D object positions (green

dots), human head position (blue dot), and orientation (blue line).

(e) Spatial features φs(G) are defined as human-object (red lines)

and object-object (green lines) relative distances and orientations.

(f) Temporal features φt(G) are defined as the plan cost from a

given initial position to a goal position. (g)(h) Two solutions gen-

erated by the PRM planner using graphs with different numbers of

nodes (more nodes yield finer-grained plans at higher cost).

φt(G) associated with plan cost, and (iii) physical quantities

φp(G) produced during human interactions with scenes.

Data pre-processing is illustrated in Fig. 6(a)-(c). Given

a reconstructed watertight scene, we remove the ground

plane by setting a 0.05 m depth threshold and projecting it

down onto a planar map. 3D objects in the scene are first

segmented into primitives [1] and then grouped into object

segments as in [68, 69]. Some manual labeling and pro-

cessing is needed for certain cluttered scenes. Finally, a

semantic label is manually assigned to each object; e.g., a

desk with a monitor, a door, etc.

Spatial features φs(G) are defined as human-object /

object-object relative distances and orientations as shown

in Fig. 6(d)(e). For each object, the geometric center is ob-

tained by averaging over all the vertices. The human head

position and orientation is acquired with the Kinect.

Temporal features φt(G) are defined as the plan cost

from a given initial position to a goal position. To simplify

the problem, we project the 3D scene down onto a planar

map. We build a binary obstacle map where the free spaces

devoid of objects have unit costs, whereas the spaces oc-

cupied by objects have infinite costs. We use a 2D PRM

planner to calculate the costs using 2D human positions and

head orientations. Thus the planner constructs a probabilis-

tic roadmap to approximate the possible motions. Finally,

the optimal path is obtained using Dijkstra’s shortest path

algorithm [13]. Fig. 6(f)–(h) show two solutions using dif-

ferent numbers of nodes in the planner graph.

Physical quantities φp(G) produced by people interact-

ing with scenes are computed using the FEM. Currently,

we consider only the forces and pressures acting on 14

body parts of the tetrahedralized human model, as shown

in Fig. 2(c). The net force on each body part is obtained by

summing up the forces at all its vertices. The net force di-
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Figure 7. In the learning phase, based on rational choice theory,

we assume that the observed demonstration is optimal, and there-

fore regard it a positive example. (a) In this example, a person is

sitting on an armchair facing a desk with a monitor. The learn-

ing algorithm then imagines different configurations {Gi} in the

solution space by initializing with different human poses Pa, (b)

translations Tb, and (c) orientations Oc. The imagined randomly

generated configurations {Gi} are regarded negative examples. In

the inference phase, the inference algorithm performs the same

sampling process (b)(c), and finds the optimal configuration G⋆

with the highest score.

vided by the number of contributing vertices yields the local

pressure. Fig. 3(d) illustrates a force heatmap for sitting.

4.2. Learning Human Utilities

The goal in the learning phase is to find the proper coeffi-

cient vector ω of the feature space φ(G) that best separates

the positive examples of people interacting with the scenes

from the negative examples.

Rational choice assumption: We assume that in in-

teracting with a 3D scene, the observed person makes near-

optimal choices to minimize the cost of certain tasks. This

is known as rational choice theory [2, 3, 22, 42]. More con-

cretely, the person tries to optimize one or more of the fol-

lowing factors: (i) the human-object and object-object ori-

entations and distances defined as φs(G), (ii) the plan cost

from the current position to a goal position φt(G), and (iii)

the physical quantities φp(G) that quantify the comfortabil-

ity of interactions with the scenes.

In accordance with rational choice theory, for an ob-

served person choosing an object (e.g., an armchair) on

which to sit, their choice G⋆ is assumed to be optimal;

hence, this is regarded a positive example. If we imagine

the same person making random choices {Gi} by randomly

sitting on other objects (e.g., the ground), the rational choice

assumption implies that the costs of the imagined configu-

rations {Gi} should be higher; hence, these should be re-

garded negative examples.

Let us consider a simplified scenario as an example: Sup-

pose the ground-truth factors that best explain the observed

demonstration are that the object is comfortable to sit on

and that it faces the blackboard. Then, other objects in the

imagined configurations should fall into one of the follow-

ing three categories: they (i) may be more comfortable, but

have less desirable orientations relative to the blackboard,

or (ii) may have better orientations with the blackboard, but

Figure 8. (a) The final force histograms of 6 (out of 14) body parts.

The x axis indicates the magnitudes of the forces, the y axis their

frequencies and potential energy. Histogram areas reflect the num-

ber of cases with non-zero forces. (b) The average forces of each

body part normalized and remapped to a T pose.

be less comfortable, or (iii) may be less comfortable and

have worse orientations.

To summarize, under the rational choice assumption, we

consider the observed rational person interacting with the

scenes G⋆ a positive example, and the imagined random

configurations {Gi} as negative examples. However, the

random generated configurations {Gi} may be similar or

even identical to the observed optimal configuration G⋆. To

avoid this problem, we remove random configurations that

are too similar to observed configurations before applying

the learning algorithm.

Ranking function: Based on the rational choice as-

sumption, it is natural to formulate the learning phase as a

ranking problem [33]—the observed rational person inter-

action G⋆ should have lower cost than any imagined random

configurations {Gi} with respect to the correct coefficient

vector ω of φ(G), which includes spatial relations φs(G),
plan cost φt(G), and physical quantities φp(G). Each coeffi-

cient ωi reflects the importance of its corresponding feature.

The ranking function is defined as

R(G) = 〈ω,φ(G)〉. (7)

Learning the ranking function is equivalent to finding the

coefficient vector ω such that the maximum number of the

following inequalities are satisfied:

〈ω,φ(G⋆)〉 > 〈ω,φ(Gi)〉, ∀i ∈ {1, 2, · · · , n}, (8)

which corresponds to the rational choice assumption that

the observed person’s choice is near-optimal.

To approximate the solution to the above NP-hard prob-

lem [25], we introduce non-negative slack variables ξi [10]:

min
1

2
〈ω,ω〉+ λ

n∑
i

ξ2i , ∀i ∈ {1, · · · , n} (9)

s.t. ξi ≥ 0, 〈ω,φ(G⋆)〉 − 〈ω,φ(Gi)〉 > 1− ξ2i , (10)

where λ is the trade-off parameter between maximizing the

margin and satisfying the pairwise relative constraints.
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Figure 9. (a) The top 7 human poses using physical quantities φp(G). The algorithm seeks physically comfortable sitting poses, resulting

in casual sitting styles; e.g., lying on the desk. (b) Improved results after adding spatial features φs(G) to restrict the human-object relative

orientations and distances. Further including temporal features φt(G) yields the most natural poses (c). The yellow bounding box indicates

the door, the initial position for the path planner. Samples generated near the 3D chair labeled with a red bounding box do not produce

high scores as forces apply on the arms of the person in the observed demonstration (Fig. 7(a)). The lack of chair arms leads to low scores.

4.3. Inferring the Optimal Affordance

Given a static scene, the goal in the inference phase is

to find, among all the imagined configurations {Gi} in the

solution space, the best configuration G⋆ that receives the

highest score:

G⋆ = argmax
Gi

〈ω,φ(Gi)〉. (11)

4.4. Sampling the Solution Space

Without observing a human interacting with the scenes,

the inference algorithm must sample the solution space by

imagining different configurations {Gi}. The same sam-

pling process is also required in the learning phase to gen-

erate negative examples.

We first quantize the human poses into the 7 categories

shown in Fig. 2(a). The imagined configurations of the hu-

man model are initialized with different poses Pa, transla-

tions Tb, and orientations Oc, as shown in Fig. 7(b)(c). The

tuple (Pa, Tb, Oc) specifies a unique human configuration.

Given such a tuple, the simulation will impose gravity and

the simulated human model will reach its rest state. The

methods described in Sec. 4.1 are then used to extract the

features φ(Gi).
In the learning phase, the φ(Gi) are then used to learn the

ranking function(7). In the inference phase, the extracted

features are then evaluated by (11). The configuration with

the highest score is taken as the optimal configuration G⋆.

5. Experiments

5.1. Learning Human Utilities From Demos

A set of demonstrations of people sitting in the scene

were collected using RGB-D sensors, as shown in Fig. 7(a).

The observed demonstrations were then used as positive

training examples. For each 3D scene, we further gener-

ated over 4,000 different configurations Gi by enumerat-

ing all poses and randomly sampling different initial human

translations and rotations in the solution space, as shown in

Fig. 7(b)(c). The synthesized configurations that are simi-

lar to the human demonstrations were pruned. The remain-

ing configurations were used as negative examples. The

learning algorithm (7) learned the coefficient vector ω of

the ranking function under three different settings: (i) phys-

ical quantities φp(G), (ii) with additional spatial relations

φs(G), and (iii) with all features φp(G), φs(G), and φt(G).
Fig. 8(a) shows the final force histograms of 6 (out of

14) body parts. Unsurprisingly when sitting, forces act on

the hip in almost all cases, upper legs and lower arms also

tend to be subject to relatively large magnitude forces, up-

per arms and heads are much less likely to interact with the

scene, and the feet contact the scene in many cases, but with

overall small force magnitudes. The heat map of the average

forces acting on each human body part over all the collected

human sitting activities is shown in Fig. 8(b).

5.2. Inferring Optimal Affordance in Static Scenes

Next, we tested the learned models on our dataset as well

as on prior 3D datasets [53, 9] in three different scenarios:

(i) canonical scenarios with chair-shaped objects, (ii) clut-

tered scenarios with severe object overlaps, and (iii) novel

scenarios extremely different from the training data.

The first testing was done in the same scene as the train-

ing. Fig. 9 shows examples of the top ranked human poses.

Although using physical quantities φp(G) produced physi-

cally plausible sitting poses (Fig. 9(a)), some of the results

do not look like sitting poses (e.g., lying poses and upside-

down poses). Such diverse results are caused by the lack of

spatial and temporal constraints.

Including the spatial features φs(G), the relative orienta-

tions and distances between the human model and objects

in the scene, improved the results, as shown in Fig. 9(b).

Intuitively, the top poses become more natural because they

share similar human attentions and social goals to those in

the observed demonstrations. For the case shown in Fig. 9,
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Figure 10. Top 3 poses in (a)(b) canonical scenarios, (c) cluttered

scenarios, and (d)(e) novel scenarios. All the features φ(G) are

used in (a) and (b). Both physical quantities φp(G) and plan costs

φt(G) are used in (c)–(e). The initial position for the path planner

is indicated by the yellow bounding box.

the relative orientation between the human model and the

desk with monitor prunes the configurations for which the

human poses are not facing towards the monitor. The laying

poses and upside-down poses are also pruned.

Integrating the temporal features φt(G) also takes into

consideration the plan cost, which prunes the poses with

large plan cost differences compared to the observed person

demonstrations. Note that the plan cost used in temporal

features enables our system to output a dynamic moving

sequence, which extends the static sitting poses in previous

work.

Additional results including canonical, cluttered, and

novel scenarios from our dataset and other datasets [53, 66,

9, 71] are shown in Fig. 10.

Evaluations: We asked 4 subjects to rank the highest-

scored sitting poses. Fig. 11 plots the correlations between

their rankings and our system’s output.

6. Discussion and Future Work

The current stream of studies on object affordance [11,

14, 64, 19, 20, 32, 37, 53, 72] have attracted increasing in-

terest on geometry-based methods, which offer more gen-

Figure 11. Correlations of the ranking by human subjects (x-axis)

and our system’s output (y-axis). The closer the plotted points fall

to the diagonal lines the better our proposed method matches the

performance of the human subjects. Plots (a)–(e) correspond to

Fig. 10(a)–(e). Plot (f) corresponds to Fig. 9(c).

eralization power than the prevailing appearance-based ma-

chine learning approach. We have taken a step further by in-

ferring the invisible physical quantities and learning human

utilities based on rational human behaviors and choices ob-

served in videos. Physics-based simulation is more general

than geometric compatibility, as suggested by the various

“lazy/casual seated poses” that are typically not observed

in public videos. We argue that human utilities provide a

deeper and finer-grained account for object affordance as

well as for human behaviors. Incorporating spatial con-

text features, temporal plan costs, and physical quantities

computed during simulated human-object interactions, we

demonstrated that our framework is general enough to han-

dle novel cases using models trained from canonical cases.

Our current work has several limitations that we will ad-

dress in future research: First, we have assumed a rigid

scene. We shall consider various material properties of ob-

jects and allow two-way causal interactions between the ob-

jects and human models. This promises to enable deeper

scene understanding with the help of more sophisticated hi-

erarchical task planners. Second, currently we model the

anatomically complex human body simply as a homoge-

neous elastodynamic material. We believe that a more real-

istic biomechanical human model with articulated bones ac-

tuated by muscles surrounded by other soft tissues (see, e.g.,

[39, 54]) could enable our framework to yield more refined

solutions. Optimal motor controllers could also be em-

ployed within the human simulation to support fine-grained

motor planning, thus going beyond task planning, although

this will increase computational complexity.

By solving these problems, we will be a step closer to

consolidating several different research streams and associ-

ated methods in vision, graphics, cognition, and robotics.
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