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Abstract

Traditional image denoising algorithms always assume

the noise to be homogeneous white Gaussian distributed.

However, the noise on real images can be much more com-

plex empirically. This paper addresses this problem and

proposes a novel blind image denoising algorithm which

can cope with real-world noisy images even when the noise

model is not provided. It is realized by modeling image

noise with mixture of Gaussian distribution (MoG) which

can approximate large varieties of continuous distributions.

As the number of components for MoG is unknown practi-

cally, this work adopts Bayesian nonparametric technique

and proposes a novel Low-rank MoG filter (LR-MoG) to

recover clean signals (patches) from noisy ones contami-

nated by MoG noise. Based on LR-MoG, a novel blind im-

age denoising approach is developed. To test the proposed

method, this study conducts extensive experiments on syn-

thesis and real images. Our method achieves the state-of-

the-art performance consistently.

1. Introduction

Image denoising is an important problem in the area of

computer vision and image processing. It is not only a use-

ful low-level image processing tool to provide high-quality

image, but also an important pre-processing step for many

high-level visual problems including digital entertainment,

object recognition, image segmentation and remote sensing

imaging. It aims to recover the clean image X̂ from its noisy

observation X which is contaminated by noise E with

X = X̂ + E. (1)

Estimating X̂ from X is an inverse problem. Many algo-

rithms [11, 31, 36, 29, 30, 4, 8, 14, 9, 34, 18, 38] were pro-

posed in recent years to solve this problem with good per-

formance. Most of these approaches assume that the noise

E follows homogeneous white Gaussian distribution. This

assumption seems reasonable as some other noise can be

converted into Gaussian noise (e.g., Poisson noise can be

converted to white Gaussian noise via Anscombe transfor-

m [1]). However, in real camera systems, the noise has var-

ious sources (e.g., dark current noise, short noise, thermal

noise, quantization noise) and can be much more complex.

For example, Tsin [32], Liu [17] and Lebrun [15] stated

that the noise model of empirical noisy images captured by

CCD camera system can be spatial, signal and frequency

dependent, and even non-Gaussian empirically. As a result,

the noise model in real images can be much more complex

than the one-parameter homogeneous white Gaussian dis-

tribution. To cope with noisy images contaminated by noise

with various unknown noise models, it is important to de-

velop a robust “blind image denoising” algorithm which can

adaptively estimate the noise model from a noisy observa-

tion, as well as recover the clean image.

However, to our best knowledge, only a few approach-

es were proposed to address the blind image denoising.

Portilla [24, 25] generated the classical BLS-GSM denois-

ing method [26] which models patches at each scale in

the wavelet domain with a Gaussian scale mixture (GSM).

Instead of assuming that the noise is homogeneous white

Gaussian distributed, this method estimates the noise on

each wavelet subband with a zero-mean correlated Gaussian

model. Portilla proposed a method to estimate the covari-

ance matrix of noise and applied Bayesian least square to

recover the clean image. Liu [17] proposed a segmentation-

based blind image denoising algorithm for JPEG images.

This method assumes the noise to be intensity dependen-

t Gaussian distributed. Taking the advantage that natural

image is piecewise-constant, this approach first segments

an input noisy image into small piecewise-constant areas,

then introduces a so-called “noise level function” (NLF)

to model the relation between the intensity of a pixel and

the noise level associated with it. After the noise mod-

el is estimated, the method recovers the clean image with

a conditional random field. Recently, Lebrun [15] intro-

duced a new approach called “multiscale image blind de-
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Figure 1. From left to right: an old photo “Pele” with noise; the denoising result of [15] and ours. Zoom in for better visualization.

noising”. This algorithm is an adaption of the Non-local

Bayes approach (NL-Bayes) [14] which achieves good per-

formance on image denoising with known homogeneous

white Gaussian noise. Different from the NL-Bayes algo-

rithm, the noise model of each patch and its nearby patches

is assumed to be zero-mean correlated Gaussian distributed

instead of white Gaussian with known intensity. This ex-

tension is quite similar to Portilla’s one [24, 25]. The noise

covariance matrix of the patches around each given patch is

estimated by [7] which is an intensity-frequency dependent

noise estimation algorithm for JPEG images.

All of the above mentioned algorithms are the conjunc-

tion of a thorough method to estimate the noise model fol-

lowed by an adapted denoising method. Specifically, these

approaches all first divide patches (or pixels) into group-

s. They further assume that the noise on each group is

homogeneous Gaussian distributed. After that, they pro-

pose different noise estimation method to obtain the Gaus-

sian parameters for each group and recover the clean im-

age with adaptive denoising methods. The noise models

of these approaches are much more general than the homo-

geneous white Gaussian distribution. However, when the

camera information and the image capture environments are

unknown, the dependency relation between the image and

noise is not explicit and can be very complex. And the noise

can be heterogeneous and even non-Gaussian for empirical

noisy images. It can be very difficult to propose an opti-

mal patch (or pixel) grouping scheme to ensure the noise on

each group to be homogeneous Gaussian distributed. Thus,

conventional noise models can still fail to handle empirical

noise. Fig. 1 demonstrates the performance of [15] on an

old photo “Pele”. Due to the lack of flexibility of the noise

model, [15] can only eliminate some but not complete noise

in some areas (e.g., within the red boxes) and over-smooth

details in some other areas (e.g., within the blue boxes).

To tackle the above mentioned problem, this paper pro-

poses a novel non-local blind image denoising algorithm.

Similar to conventional approaches, the method also divides

the patches into groups. Differently, our approach relax-

es the assumption that the noise of certain group of patches

are homogeneous Gaussian distributed by proposing a mod-

el that is more general for empirical noise on noisy images.

As the noise on an image can be heterogeneous and even

non-Gaussian distributed, the noise model should be flexi-

ble enough to cover large varieties of distributions. Thus,

this work introduces mixture of Gaussian (MoG) [20] to

model the noise for each group of patches. Since MoG

can not only approximate any continuous distribution ef-

ficiently [2], but also model multi-modal data, it is more

general and capable of adapting the empirical noise on real-

world noisy images. Similar noise modeling strategy can

also be found in [37, 21]. Taking the advantage that natu-

ral signals (e.g., clean image patches) are low-rank repre-

sentable [6, 12, 35, 33], we assume the clean patches with-

in each group are low-rank representable. To recover the

clean patches from noisy one, this study further proposes

Low Rank MoG filter (LR-MoG filter) to decompose MoG

noise from low-rank representable signals. As the complex-

ity of each MoG noise (number of components for MoG) is

usually unknown, this work introduces Bayesian nonpara-

metric techniques to build LR-MoG filter. This work treats

LR-MoG filter in fully-Bayesian way and infers both the

complexity of noise and the clean signals with variation-

al Bayesian method [3]. Fig. 1 shows the performance of

our algorithm on “Pele” compared with the state-of-the-art

blind denoising approach [15]. Our algorithm can eliminate

the noise efficiently and preserve the detailed features. We

further conduct extensive experiments to test our method on

more real and synthesized noisy images with different noise

model. Compared with other state-of-the-art approaches,

our method achieves superior performance consistently.

2. Background

This section introduces the background information of

Dirichlet process and its construction, which will be used to

construct the LR-MoG filter.

2.1. Dirichlet Process

The Dirichlet process (DP) is a distribution over distribu-

tions, i.e., each draw from a DP is itself a distribution. The

DP is parameterized by a base distribution H and a concen-

tration parameter α. A nice feature favored by DP is that a

drawnG from a DP is discrete with probability one [10] and

the dimension of G is potentially infinite. Since DP gener-

ates discrete distributions on continuous parameter space, it
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is usually used as prior to construct nonparametric mixture

models which is represented as the convex combination of

component distributions and the number of components can

be decided by data.

2.2. Stickbreaking Construction

AsH is diffuse, the representations ofG at the granulari-

ty DP must be represented via construction methods, which

is necessary for inference.

The stick-breaking construction [28] is one of these

methods to explicitly represent draws from DP. With a stick-

breaking construction, one can directly work with G be-

fore drawing θ. Sethuraman proved that a draw G from

DP (α,H) can be described as

vi ∼ Beta(1, α), πi ∼ vi
∏i−1

j=1
,

θi ∼ H, G =
∑∞

i=1
πiδθi .

(2)

Here, Beta(a, b) is a Beta distribution with parameters a
and b. And δθi is the Dirac probability measure concen-

trated at θi. π are the stick lengths, and it is almost sure that∑∞
i=1

πi = 1. The stick-breaking construction indicates the

discreteness of G as well.

3. LR-MoG Filter

This section introduces the LR-MoG filter to recover

low-rank signals from noisy ones contaminated by MoG

noise. Mathematically, let X = [x1 · · ·xn] be a d × n ma-

trix and xi ∈ Rd, i ∈ {1, · · · , n}, be a noisy signal. And

X can be decomposed as

X = X̂ + E. (3)

Here, X̂ = [x̂1 · · · x̂n], where x̂i is the underlying clean

signal of the noisy one x̂i and X̂ is low-rank representable.

E = [e1 · · · en], where ei is the noise on xi and follows a

MoG distribution. LR-MoG is proposed to recover X̂ from

observed X . To decompose the signal from noise, we intro-

duce Bayesian approach by introducing priors on X̂ and E.

Then the signal is recovered via variational inference.

3.1. Modeling Lowrank Component

We first model the low-rank component X̂ . We decom-

pose each vector x̂i, where i ∈ {1, · · · , n}, with x̂i =
Aŷi + u. A is a d × d matrix and u is the mean vector of

{x̂i}
n
i=1. Similar decomposition methods can also be found

in the area of dimensional reduction [2]. Thus, the matrix

X̂ can be decomposed with

X̂ = AŶ T + U, (4)

where Ŷ = [ŷ1 · · · ŷn]
T , U = [u · · ·u] and the column vec-

tors in matrix AŶ are zero mean. Let rank(M) be the rank

of a matrix M . We introduce the Gaussian prior on u with

u ∼ N (·|u0,K0). (5)

Here, N (·|µ,Σ) is a normal distribution with mean µ and

covariance Σ. To model the low-rank property of X̂ , it is

intuitive to let matrix AŶ T be low-rank representable, be-

cause rank(U) = 1 and rank(X̂) = rank(AŶ T + U) ≤
rank(AŶ ) + 1.

To model the low-rank property of AŶ T , a simple way

is to introduce the trace-norm prior [6, 5] on it which can

be well approximated by the ARD [27]. Here, we adopt the

soft trace-norm prior on AŶ T with

p(A) ∝ exp(−
1

2
tr(AC−1

A AT )) (6)

p(Ŷ ) ∝ exp(−
1

2
tr(Ŷ C−1

Ŷ
Ŷ T )), (7)

where tr(·) represents the trace of a matrix. CA and CŶ are

set to be diagonal positive semidefinite with

CA = diagd{c
2
a1
, · · · , c2ad

} (8)

CŶ = diagd{c
2
y1
, · · · , c2yd

}. (9)

Here, diagd{c
2
1, · · · , c

2
n} represents a d× d diagonal matrix

with diagonal items c21, · · · , c
2
n. Let âj be the jth row vector

of matrix A, we can derive the specific formula of Eq. (6)

with

p(A) ∝ exp(−
1

2
tr(AC−1

A AT )) (10)

∝
d∏

j=1

exp(−
1

2c2aj

âTj âj) (11)

=
d∏

j=1

N (âj |0, c
2
aj
I). (12)

Eq. (12) is derived via Gaussian integral. Similarly, Eq. (7)

can be derived with p(Ŷ ) =
∏d

j=1
N (ŷj |0, c

2
yj
I).

3.2. Modeling MoG Noise

To model the complex noise on practical noisy images,

we propose MoG distribution for noise modeling. Since the

number of components is not provided, we use Bayesian

nonparametric technique and introduce the Dirichlet pro-

cess prior to the MoG. Each Gaussian component is repre-

sented by N (·|µi,Σi) with mean vector µi and covariance

matrix Σi.

For the base distributionH , we introduce conjugate prior

over µi and Σi with

µi ∼ N (·|µ0,Ω0) (13)

Σi ∼ iWishart(·|a0, B0). (14)
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Here, iWishart(·|a0, B0) is the inverse-Wishart distribution

with a0 as the degree of freedom and B0 as scale matrix.

The DP mixture is built via stick-breaking construction in

Eq. (2) and generative process of ei is as follows

1. Draw vt ∼ Beta(1, α), for t = {1, 2, · · · } and πt =

vt
∏t−1

j=1
(1− vj)

2. Draw µt ∼ N (·|µ0,Ω0) and Σt ∼ iWishart(·|a0, B0)

3. For each ei:

(a) Draw zi ∼ Mult(π)

(b) Draw ei ∼ N (·|µzi ,Σzi).

Following the setting in previous works [17, 15, 4], we

set the noise to be zero mean. Note that, we only con-

strain that the marginal mean of all Gaussian components

for the MoG noise is zero and the mean of each component

is unconstrained. This noise model can well approximate

all continuous distributions even when they are heteroge-

neous and non-Gaussian distributed. Thus, the proposed

noise model is still much more general than conventional

ones [15, 4, 17, 26, 24].

3.3. Remarks on LRMoG

There are other algorithms which were proposed to de-

compose low-rank signals from MoG noise including [21]

and [37]. However, our approach is different in three folds.

Firstly, our method is the only approach to adopt Bayesian

nonparametric technique with DP prior to learn the num-

ber of components for MoG automatically. In contrast,

[21] tunes the component number manually and [37] uses

Dirichlet distribution prior and choose the component num-

ber with a heuristic scheme. Secondly, [21] and [37] al-

l assume each noise component to be white Gaussian dis-

tributed which is relaxed in LR-MoG. Thirdly, the low-rank

component modeling for these approaches are different as

well.

3.4. Variational Inference and Signal Recovery

Let Θ be all the parameters in the above model including

A, Ŷ and parameters of Gaussian components for noise;

and ∆ = {u0,K0, CA, CŶ , µ0,Ω0, a0, B0} be the hyper-

parameters of the priors on Θ. With the observed matrix X ,

the posterior distribution of Θ given X and ∆ is

p(Θ|X,∆) =
p(X|Θ,∆)p(Θ|∆)

p(X|∆)
. (15)

Empirically, the analytical form of p(Θ|X,∆) is very com-

plex and can be even computationally intractable. Thus, we

propose Variational Bayesian (VB) inference technique to

obtain a tight approximation of the posterior. Mathemat-

ically, the VB seeks a distribution q(Θ) to minimize the

variational function as follows,

EV B =

∫
q(Θ) ln

q(Θ)

p(X|θ)p(θ|∆)
dΘ (16)

= KL(q(Θ)||p(Θ|X,∆))− ln p(X|∆). (17)

Here, the first term of Eq. (17) is the KL divergence between

q(Θ) and p(Θ|X,∆); the second term is a constant with

respect to Θ.

With the model built in Sec. 3.1 and 3.2, the prior on Θ
is given as:

p(Θ|∆) = p(Z|V )p(V |α)p(A|CA)p(Ŷ |CŶ )

p(u|u0,K0)

T∏
t=1

p(µt|µ0,Ω0)p(Σt|a0, B0).
(18)

Here, Z = {z1, · · · , zn}, V = {v1, · · · , vT }, where T
is the number of components for MoG noise, which is

inferred with truncation of DP [13]. And the likelihood

p(X|Θ,∆) =
∏n

i=1
p(xi|Θ,∆). Here, we adopt the mean

field VB [3] to factorize q(Θ) as

q(Θ) = q(Z)q(V )q(u)q(A)q(Ŷ )

T∏
t=1

q(µt)q(Υt), (19)

where q(Z) =
∏n

i=1
q(zi) and q(V ) =

∏T

t=1
q(vt). To

simplify the notations, q(zi = t) is denoted as qi(t) and

〈g(x)〉 denotes the expectation of g(x) over x. Then the

posterior of all parameters in Θ can be approximated with

VB by iteratively updating parameters with Sec. 3.4.2 and

Sec. 3.4.1.

3.4.1 MoG Noise Inference

To infer the noise component in Eq. (3), we need to approx-

imate the posterior of {Z, V } ∪ {µt,Σt}
T
t=1 with the prior

distributions in Eq. (18).

Let ξt =
∑n

i=1
qi(t). For each vt ∈ V , the posterior

distribution is still Beta distributed with Beta(αt, βt), where

αt = ξt + 1, βt = α+
∑T

j=t+1
ξj . (20)

For updating the posterior of Z, we have

qi(t) =
ρi(t)∑T

j=1
ρi(j)

, (21)
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Figure 2. Denoising results of ‘43033’ from BSDS 500 and ‘I13’ from TID 500. From left to right: clean images, noisy observations with

σ = 40, results of K-SVD, SURE-GMM, BM3D, NL-Bayes and ours. Our approach can better preserve details marked by the boxes.

Zoom in for better visualization.

where ρi(j) = exp(τ ij,1 + τ ij,2) with

τ ij,1 = ψ(αj) + ψ(βj)

τ ij,2 = −
1

2
tr{〈Σ−1

j 〉[〈uuT 〉+ 2〈µj〉〈u
T 〉+ 〈µjµ

T
j 〉+ xix

T
i

+ 〈yiy
T
i 〉〈A

TA〉 − 2〈A〉〈yi〉(xi − 〈u〉 − 〈µj〉)
T

− 2xi(〈u〉+ 〈µj〉)
T ] + 〈ln|Σt|〉}.

(22)

Here, ψ(·) denotes the digamma function.

With the Eq. (21), we can infer the posterior of µt and

Σt for t ∈ {1, · · · , T}. For µt, the posterior q(µt) is still

Gaussian distributed with:

〈µt〉 = [Σ−1

0 +

n∑
i=1

qi(t)〈Σ
−1
t 〉]−1[Σ−1

0 µ0

+

n∑
i=1

qi(t)〈Σ
−1
t 〉(xi − 〈u〉 − 〈A〉〈yi〉)]

〈µµT
t 〉 = [Σ−1

0 +

n∑
i=1

qi(t)〈Σ
−1
t 〉]−1 + 〈µt〉〈µt〉

T .

(23)

And the posterior of Σt is still inverse-Wishart distributed

as iWishart(·|at, Bt) with parameters

at = a0 + ξt

Bt = B0 +
1

2

n∑
i=1

qi(t)(〈uu
T 〉+ 2〈µt〉〈u〉

T + 〈µtµ
T
t 〉

+ xix
T
i + 〈yiy

T
i 〉〈A

TA〉 − 2(xi − u− µt)
T 〈A〉〈yi〉

− 2(〈u〉+ 〈µt〉)
Txi).

(24)

With the properties of inverse-Wishart distribution, we have

〈Σ−1
t 〉 = at(Bt)

−1

〈ln|Σt|〉 =
1

ψ(at/2) + d ln 2 + ln|B−1
t |

.
(25)

3.4.2 Low-rank Component Inference

To infer the low-rank component in Eq. (3), we need to esti-

mate the posterior of u, A and Ŷ with the prior distributions

in Eq. (18).

We first solve the posterior of the mean vector u. Since

the noise is assumed to be zero mean marginally, u cor-

responds to the mean vector of the observed signals. The

posterior of u is still Gaussian distributed with

〈u〉 = [K−1

0 +
N∑
i=1

T∑
t=1

qi(t)〈Σ
−1
t 〉]−1[K−1

0 u0

+

N∑
i=1

T∑
t=1

qi(t)〈Σ
−1
t 〉(xi − 〈µt〉 − 〈A〉〈yi〉)]

〈uuT 〉 = [K−1

0 +
N∑
i=1

T∑
t=1

qi(t)〈Σ
−1
t 〉]−1 + 〈u〉〈u〉T .

(26)

We turn to infer the posterior of A and write A =
[â1 · · · âd], where each âj ∈ Rd, j ∈ {1, · · · , n} can be

considered as the jth basis of A. Let yi,j be the jth compo-

nent of vector yi, the posterior distribution overAt satisfies:

〈A〉 = [〈â1〉, . . . , 〈âd〉],

〈âj〉 = [
1

c2aj

I+
n∑

i=1

T∑
t=1

qi(t)〈Σ
−1
t 〉〈yi,j〉

2]−1[
n∑

i=1

T∑
t=1

qi(t)〈Σ
−1
t 〉〈yi,j〉(xi − 〈µt〉 − 〈u〉 −

d∑
v 6=j

〈yi,v〉〈âv〉)]

〈âTj âj〉 = [
1

c2aj

I+
n∑

i=1

T∑
t=1

qi(t)〈Σ
−1
t 〉〈yi,j〉

2]−1 + 〈âj〉
T 〈âj〉.

(27)

And 〈ATA〉 is a d × d matrix whose element 〈ATA〉i,j is

〈âTi âj〉 when i = j, and 〈âi〉
T 〈âj〉 when i 6= j. The infer-

ence of Ŷ is very similar with that of A, which is omitted in

this paper.
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3.5. Signal Recovery

With noisy observations X , the parameters of LR-MoG

filter can be efficiently estimated with the variational infer-

ence in Sec. 3.4. And a clean signal x̂i can be recovered

with

x̂i = 〈A〉〈yi〉+ 〈u〉. (28)

4. Blind Image Denoising with LR-MoG

Based on the LR-MoG filter discussed in Sec. 3, we pro-

pose a novel scheme for blind image denoisnig. Specifical-

ly, an input noisy image is divided into overlapping patches

and each patch xi is treated as a noisy signal. For each patch

xi, we search its similar patches non-locally with nearest

neighbor search [2]. This step is the same as conventional

non-local means algorithms [4, 8, 14].

We combine xi and its nearby patches to a matrix X as

in Eq. (3). Then we use the LR-MoG to recover the clean

patches (signals) within X . When all the patches are pro-

cessed, we aggregate the denoised patches into the clean

image with the same scheme as in [8].

5. Experiments

To test the proposed method, we conduct extensive ex-

periments on both synthesized and real noisy images with

comparison of state-of-the-art methods. Our algorithm

achieves best performance in all the experiments.

5.1. Parameter Setting

We implement the proposed method in Matlab 2014b

with the parameters set as follows through this work (with-

out tunning): the patch size is set to be 8 × 8 and when

searching similar patches, we use the ǫ-nearest neighbor

scheme with ǫ = 4000. For the hyper-parameters for

LR-MoG filtering, we adopt non-informative manner [2]

to minimize their influence on the posterior distributions.

Specifically, we set K0, CA, CŶ ,Ω0, B0 to be I, u0, µ0 to

be zero vector, and a0 to be 64.

5.2. Synthesis Noisy Image

We first test our method on synthesized noisy images be-

cause the ground truth is available for objective evaluation-

s. We use the images from two datasets: TID 2008 [23]

and BSDS 500 [19]. We use the code or executable codes

released by the authors of competitive methods. The per-

formance is measured by peak signal to noise ratio (PSNR)

and the structural similarity (SSIM) [35].

5.2.1 AWGN Noise

We first test our method on noisy images contaminated by

homogeneous white Gaussian noise, which has been stud-

Figure 3. Comparison of proposed method and [15] on ‘I21’ in

TID 2008. From left to write: noisy images (Uniform: s = 30,

Gaussian: σ = 30, Laplacian: σ = 30, Dependent: b = 4),

results of [15] and our approach. Our method can better eliminate

noise while [15] cannot eliminate noise completely as marked by

red boxes. Zoom in for better visualization.

ied for decades in the problem of non-blind Image denois-

ing. As the white Gaussian noise is also a special case of

our noise model, our approach can handle these images ef-

ficiently. We compare the proposed method with 4 state-

of-the-art methods: K-SVD [9], SURE-guided GMM [34],

BM3D [8] and NL-Bayes [14] on images contaminated by

noise with intensity from 10 to 100. As these methods are

non-blind, we provide the real noise intensity to them while

let our method to learn the noise model automatically. Ta-

ble 1 shows the average quantitative performance of the

methods on the two datasets. Our approach has better per-

formance when the noise is high (σ > 30) and the results

are competitive when σ ≤ 30. Fig. 2 shows the denoising

results on two noisy images with σ = 40 of all the methods.

It can be observed that our method can well eliminate the

noise and better preserve the details (grasses in ’43033’ and

trees in ’I13’). It shows that our method can well cope with

images contaminated by AWGN with different intensity.
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Table 1. Performance of different approaches on noisy images with homogeneous white Gaussian noise with different deviation.

σ 10 20 30 40 50 60 70 80 90 100

Dataset Method PSNR

TID2008

K-SVD 34.74 30.87 28.97 27.89 26.04 24.92 24.45 23.80 23.33 22.84

SURE-GMM 34.79 31.22 29.23 27.91 26.53 24.89 24.78 23.81 23.70 23.04

BM3D 35.17 31.46 29.28 28.02 26.66 25.39 25.14 24.66 24.11 23.26

NL-Bayes 35.06 31.51 29.31 28.04 26.67 25.43 25.11 24.51 23.84 23.30

Ours 35.09 31.39 29.24 28.06 26.71 25.41 25.22 24.69 24.21 23.31

BSDS500

K-SVD 34.24 30.69 28.66 27.69 25.93 25.10 24.22 23.46 23.12 22.67

SURE-GMM 34.22 31.01 29.02 27.68 26.23 25.22 24.56 23.58 23.53 22.97

BM3D 34.72 31.19 29.11 27.51 26.56 25.68 24.92 24.39 23.97 23.02

NL-Bayes 34.69 31.09 29.09 27.53 26.48 25.66 24.79 24.41 23.68 23.07

Ours 34.68 31.13 29.10 27.81 26.63 25.61 24.95 24.44 23.97 23.11

SSIM

TID2008

K-SVD 0.947 0.930 0.900 0.861 0.841 0.817 0.798 0.775 0.764 0.743

SURE-GMM 0.944 0.935 0.904 0.868 0.848 0.818 0.807 0.787 0.770 0.747

BM3D 0.968 0.938 0.912 0.874 0.856 0.828 0.816 0.800 0.781 0.764

NL-Bayes 0.962 0.934 0.916 0.875 0.860 0.827 0.818 0.794 0.779 0.761

Ours 0.954 0.931 0.913 0.876 0.860 0.830 0.814 0.803 0.784 0.768

BSDS500

K-SVD 0.938 0.925 0.897 0.856 0.830 0.822 0.790 0.766 0.762 0.741

SURE-GMM 0.939 0.923 0.899 0.859 0.833 0.827 0.793 0.774 0.768 0.746

BM3D 0.961 0.931 0.907 0.867 0.848 0.835 0.806 0.792 0.777 0.763

NL-Bayes 0.953 0.926 0.908 0.866 0.849 0.834 0.810 0.793 0.772 0.764

Ours 0.954 0.926 0.912 0.863 0.849 0.838 0.812 0.801 0.781 0.764

5.2.2 Complex Noise

Practically, the noise model can be much more complex

than the AWGN model. Thus, we further test our method

on synthesis data with other types of noise. We add the

following types of zero-mean noise to clean images to for-

m synthesis noisy images: (1) AWGN noise with σ =
15, 30, 45; (2) intensity dependent Gaussian noise with σ =
1

s
xi,j , where xi,j is the pixel intensities, with b = 3, 4, 5;

(3) Laplacian noise with σ = 15, 30, 45; (4) uniform noise

of [−s, s] with s = 15, 30, 45; (5) combined noise: we di-

vide an image into four parts: left up, right up, left down,

right down. Four parts are contaminated by uniform noise

with s = 15, Gaussian noise with σ = 30, Laplacian noise

with σ = 30 and intensity dependent Gaussian noise with

b = 4 respectively, resulting in spatial dependent noise.

We compare our method with the state-of-the-art multi-

scale blind image denoising method [15]1 with the code re-

leased by the author. Table 2 shows the quantitative results

of the two methods. It is clear that our method outperform-

s [15] by a significant margin. Fig. 3 shows an example

of denoising result for comparison. Our method can well

eliminate noise and preserve details while [15] cannot elim-

inate noise efficiently. It shows that our noise model is more

flexible to cope with images with different noise model.

1We only compare our method with [15] because it is the only blind

image denoising approach with released code or executable file. And it

achieves the state-of-the-art performance.

Figure 4. From left to right: Two noisy images from [16]; denois-

ing results of [15] and the proposed method; crops of the denoised

result for comparison, left of red line: [15], right of red line: pro-

posed method. Zoom in for better visualization.

5.3. Real Noisy Images

We further test our method on real noisy images cap-

tured by real camera systems, with comparison of [15]. We

first test our method on real images in [22, 16], which were

captured by CCD camera. Examples of the denoising re-

sults of two methods are shown in Fig. 4. Our method can

well eliminate the noise on these images and achieve better

results visually. As a comparison, [15] can also eliminate

some noise, but not completely. The denoising results for

more images can be found in the supplementary files.

We further apply our methods on the application of old

photo recovery. The noise on these images is with large

grain generally, which is very challenging for denoising.

Fig. 5 shows the denoising results of an old photos on s-
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Table 2. Performance of the multiscale approach and ours on images contaminated by five different types of noise.

Gaussian Heterogeneous Laplace Uniform Comb.

15 30 45 3 4 5 15 30 45 15 30 45

Dataset Method PSNR

TID2008
Multiscale 30.27 27.02 25.14 24.07 25.54 26.16 29.78 26.87 24.97 34.22 31.77 28.97 22.12

Ours 33.14 29.18 27.09 27.58 28.84 29.89 33.13 28.84 27.06 36.18 35.25 32.13 29.83

BSDS500
Multiscale 29.47 26.83 25.00 23.87 25.12 25.47 29.63 26.53 24.29 34.22 30.54 28.24 21.82

Ours 32.69 28.36 29.23 26.84 28.03 30.02 32.13 28.02 26.10 35.22 34.64 30.76 29.27

SSIM

TID2008
Multiscale 0.913 0.871 0.831 0.782 0.841 0.836 0.918 0.868 0.831 0.952 0.943 0.922 0.802

Ours 0.944 0.903 0.858 0.861 0.878 0.912 0.944 0.886 0.874 0.971 0.945 0.921 0.889

BSDS500
Multiscale 0.912 0.868 0.826 0.778 0.840 0.829 0.912 0.859 0.836 0.952 0.944 0.909 0.802

Ours 0.934 0.902 0.847 0.859 0.877 0.902 0.932 0.893 0.844 0.964 0.955 0.916 0.887

Figure 5. Two noisy old images and crops of denoising results with

different methods. Left of red line: [15]; right of red line: pro-

posed method. Zoom in for better visualization.

Figure 6. From left to right: old photos ‘young Einstein’ and

‘Hilbert’; the denoising results of [15] and ours and crops for bet-

ter visualization (left of the red lines are [15] and right are ours).

Zoom in for better visualization.

ports 2. Our method can better eliminate noise while pre-

serve the details. Fig. 6 and 7 show the denoising results

of old photos ‘young Einstein’, ‘Hilbert’ and ’Einstein met

Tagore’ 3. Still, our method can better eliminate the noise

while [15] can only remove some of them. Here, we only

show the crops of denoising results in Fig. 5 and 7 for better

visualization. It can be observed that our method achieves

better visual performance. It shows that our noise model

can better cope with noise on real images and our method is

2downloaded from www.nba.com
3downloaded from https://www.brainpickings.org/

Figure 7. From left to right: an old photo ‘Einstein met Tagore’;

the crops of denoising results. Left of the red line are [15] and the

right are ours. Zoom in for better visualization.

a better candidate for real-world denoising problems.

6. Conclusion

We propose a novel blind image denoising algorithm

which can efficiently recover real noisy images whose noise

model is complex and unavailable. We assume the clean

image patches are low-rank representable and we model

the unknown noise with MoG due to its flexibility in ap-

proximating different distributions. To recover the clean

images and eliminate noise, we develop the LR-MoG fil-

tering which can learn the noise model automatically with

Bayesian nonparametric technique and recover the laten-

t low-rank signals efficiently. And the blind denoising

scheme is developed based on the LR-MoG. To test our

method, we conduct extensive experiments on synthesis and

real images. Our method achieves the best performance

consistently. It shows that our approach can cope with real-

world noisy image recovery tasks efficiently.
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