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Abstract

We propose a system that finds text in natural scenes us-

ing a variety of cues. Our novel data-driven method incor-

porates coarse-to-fine detection of character pixels using

convolutional features (Text-Conv), followed by extracting

connected components (CCs) from characters using edge

and color features, and finally performing a graph-based

segmentation of CCs into words (Word-Graph). For Text-

Conv, the initial detection is based on convolutional feature

maps similar to those used in Convolutional Neural Net-

works (CNNs), but learned using Convolutional k-means.

Convolution masks defined by local and neighboring patch

features are used to improve detection accuracy. The Word-

Graph algorithm uses contextual information to both im-

prove word segmentation and prune false character/word

detections. Different definitions for foreground (text) re-

gions are used to train the detection stages, some based on

bounding box intersection, and others on bounding box and

pixel intersection. Our system obtains pixel, character, and

word detection f-measures of 93.14%, 90.26%, and 86.77%

respectively for the ICDAR 2015 Robust Reading Focused

Scene Text dataset, out-performing state-of-the-art systems.

This approach may work for other detection targets with

homogenous color in natural scenes.

1. Introduction

In natural scenes, text detection is made difficult by high

variation in character color, font, size, and orientation. In

addition, light sources introduce highlight, shadow, reflec-

tion and color offset in images, while cameras introduce ad-

ditional noise, blurring, and viewing angle distortion. In

the past, many text detection systems addressed this us-

ing strong prior knowledge and carefully engineered fea-

tures [24]. More recently, machine learning methods are

preferred over heuristic rules, with parameters and thresh-

olds inferred automatically from training data. This requires

less human intervention, and generally increases the accu-

racy and robustness of text detection.

As described by Ye et al. [24], step-wise text detection

is composed of different components, including localiza-

tion, verification, segmentation and sometimes recognition.

‘Holistic’ methods combine results from different stages,

often applying OCR results for use in lexicon matching.

In this paper, we present a highly accurate text detection

system for natural scenes utilizing only visual features.1

Our system is composed of the Text-Conv algorithm for

character patch detection, region growing to obtain Con-

nected Components (CCs) corresponding to characters, and

then word segmentation using the Word-Graph algorithm.

Contributions. The contributions of this work include:

(1) defining ground truth character patches differently for

coarse vs. fine character detection, first using constraints

on bounding box intersection, and then bounding box and

foreground pixel intersection; (2) using ‘contextual’ detec-

tion windows to improve discrimination based on adjacent

and/or missing characters; (3) multi-stage generation and

validation of character detections using convolutional, ge-

ometric and contextual features. Our system also obtains

state-of-the-art performance for the challenging 2015 IC-

DAR Robust Reading Focused Scene Text dataset [12].

In Section 2, we briefly review state-of-the-art text de-

tection systems, and the ICDAR Robust Reading Competi-

tion. In Section 3, we describe our system. In Section 4 we

present experimental results, and then conclude and identify

ways to accelerate and improve our system in Section 5.

2. Previous Work

In recent years, new discriminative features have been

proposed for text detection, including the Stroke Width

Transform (SWT) [7] and Maximal Stable Extremal Re-

gions (MSER) [14], both of which have been used widely.

Most characters have a narrow and uniform stroke width,

1Source code:

https://www.cs.rit.edu/˜dprl/Software.html.
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along with clear edges and homogeneous colors. SWT and

MSER are designed to capture these properties.

A variety of machine learning techniques have been used

for text detection, including unsupervised feature learn-

ing, Convolutional Neural Networks [13], deformable part-

based models [8], belief propagation [9], and Conditional

Random Fields [19]. Bai et al. [1] identify text regions us-

ing gradient local-correlation to find edge pairs and estimate

stroke width. The relationship between different CCs, col-

ors and shapes are fed into SVM classifiers to detect text.

Closely related to our own work, Coates et al. [5] pro-

posed convolutional feature-based algorithms for text de-

tection and recognition, and increased recognition rates rel-

ative to previous state-of-art systems. Wang et al. [22] ex-

tend this convolution-based approach with a lexicon model,

which further increases text detection and recognition accu-

racy. Our text detection algorithm is based on this work; to

increase accuracy, we modify the sliding window detector

by varying the sliding window shape, rotation and aspect

ratio.

2.1. ICDAR Robust Reading Competitions

Over the last two decades, a number of text recognition

competitions have been held as part of the International

Conference of Document Analysis and Recognition (IC-

DAR) [12]. In 2015, the task data sets are categorized into:

Digital Born, Focused Scene, Text in Videos and Incidental

Scene Texts. Each group contains three tasks: localization,

segmentation and recognition, and end-to-end performance

is also measured. We focus here on the scene text data set.

At ICDAR 2015, the StradVision corporation obtained

the strongest detection results for the Focused Scene Text

task. This system is closed, but from the company’s web

page appears to be based on active (‘agile’) learning.2

He et al. [10] placed second, using two main improve-

ments over earlier MSER-based text detection methods.

First, they introduce Text-CNN, where a multi-class clas-

sifier is defined instead of a conventional binary (text/non-

text) classifier. In each layer of a Convolutional Neural

Network, specific labels and locations for text pixels de-

fine targets alongside binary foreground/background labels.

The trained classifier is adapted to specific text types, and

achieves higher accuracy as a result. Objects like bricks,

windows and bars that can be easily confused with text may

be filtered, as they tend not to have a high classification con-

fidence for a character class. Second, Contrast-Enhanced

MSER is proposed to find text regions, using a data-driven

contrast enhancement method before MSER, allowing text

regions to be extracted in complex backgrounds and uneven

lighting conditions.

Jaderberg et al. [11] placed third. To train their system, a

large corpus of labeled text images is generated using a font

2http://www.stradvision.com/

rendering engine. Noise and variations are added, includ-

ing border, color, composition, distortion, and background

blending, mimicking texts in natural scenes. For detection,

they use a deep Neural Network with three different encod-

ings, including dictionary, character sequence and bag-of-

N-gram encodings. The dictionary encoding method pro-

vides the best performance, as lexical constraints improve

precision by pruning invalid word detections.

For the 2013 ICDAR Robust Reading task,

USTB TexStar developed by Yin et al. [25] obtained

1st place [26, 27]. This system introduces an MSER

pruning algorithm to improve precision, with single-link

clustering to group candidate regions instead of empirically

selecting a threshold, and character classification used to

filter non-text candidates in the final step. In second place,

Neumann et al. used an MSER-based algorithm [15].

In [16], they compared filtering methods considering iso-

lated CCs, CC pairs, and CC triples, and find the additional

context available in features extracted from CC triples

provide the best performance. In follow-on work [17]

they propose cascaded filtering of MSER regions. Simple

features are computed at first to remove easily detected

backgrounds, after which more complex features are used

with an AdaBoost classifier. In [18], multiple recognition

and character sequence candidates are used to improve

recall, along with improved handling for varying character

sizes using a Gaussian scale-space pyramid.

In our work we use a modified Convolutional k-means-

based sliding window detection performed in two passes,

using first a coarse resolution, and then regions of interest

with higher resolution matching and variations in the rota-

tion and aspect ratio of the detection window. We consider

multiple scales using direct subsampling of the input image,

to which we apply convolution masks for detection. Char-

acter hypotheses are formed from the ‘fine’ (higher resolu-

tion) detectors, and then regions are grown based on color

gradients, with multiple edge hypotheses used to generate

character candidates which are then validated. Characters

are then both merged into words and validated again in a fi-

nal pass, using the complete graph over detected characters.

Details of our approach are described in the next section.

3. Methodology

An illustration of our system is shown in Figure 1, and

example outputs from each stage are shown in Figure 2.

The system is a cascade, with each step designed to address

a specific aspect of natural scene text, initially generating

and then validating hypotheses passed on to the next step.

Similar to a design strategy used in the Viola-Jones face de-

tector [21], recall in the coarse detector, fine detector and

region growing steps is kept high by choosing a threshold

producing a fixed level of recall in the training data (possi-

bly sacrificing precision to some degree), in order to avoid
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Figure 1: System Architecture. The main stages localize

text pixels, generate and verify connected components as

characters, and finally segment words.

Figure 2: Detection Examples. From left-to-right inputs are

shown followed by their results for: i) coarse detection, ii)

fine detection and region growing, and iii) word segmen-

tation. In word detection results, words are in blue boxes,

and characters in green boxes. For simplicity, we represent

word segmentation results using a Minimum Spanning Tree

(MST) over character pairs (yellow lines) defining character

merges (blue lines) and word separations (red lines). In ac-

tual fact, all character pairs are labeled as ‘merge’ or ‘split.’

false negatives.

3.1. Text­Conv Detection System

We propose a feature learning-based convolutional de-

tector called Text-Conv. It is composed of a coarse-to-fine

two step scanning scheme, mimicking glancing and focused

attention by the human visual system.

3.1.1 Feature Learning Using Convolutional K-means

Feature learning algorithms were developed using restricted

Boltzmann machines (rBM) [6] or auto-encoders [20], etc.

However, these algorithms are computationally expensive

and not suitable for large images or real-time applications.

Coates et al. [5] proposed the convolutional k-means feature

learning algorithm, using simple k-means clustering to learn

feature banks. Convolutional k-means considers the angu-

lar distance between training sample patches, and generates

cluster center vectors (i.e. convolution masks) through it-

erative learning. The cluster centers represent typical pat-

terns, including horizontal and vertical bars, corners, slop-

ing bars, zebra textures etc. These patterns are learned auto-

matically from data, without elaborate modeling. The only

hyperparameter that needs tuning is the number of clusters.

These learned features are very similar to those acquired by

an auto-encoder or rBM, and lead to very similar perfor-

mance [6].

For sample matrix X containing m samples with n fea-

tures, we make the matrix size n × m. Each column is

a sample vector, and each row corresponds to a feature,

X ∈ R
n×m. For initialization, we randomly pick k samples

(initial cluster centers) from the sample matrix X and then

normalize each vector, so cluster center matrix D ∈ R
n×k.

Our goal is to minimize Equation 1 (see Coates et al. [5]):

∑

i

||Dsi − xi||2 (1)

Each column of D is the normalized basis vector. si is a

bit vector (hot encoding) with exactly one non-zero element

representing the cluster center (column of D) training sam-

ple xi belongs to. Its magnitude is the dot product between

the sample and closest cluster center. To find a matrix D
that minimizes the total distance from samples to cluster

centers, we alternatively minimize D and si.
In our experiments, k = 1000 convolution masks (clus-

ter centers) are learned for both the coarse and fine detec-

tors. We found empirically that fewer than 1000 masks re-

duce accuracy, while additional masks lead to only minor

improvements in accuracy.

3.1.2 Coarse-to-Fine Character Detection

Conventionally in a CNN, the system is trained using

algorithms such as back-propagation. Instead, we use

confidence-rated AdaBoost to classify patches as fore-

ground (text) and background (non-text). Unlike the orig-

inal AdaBoost which provides discrete labels in {−1, 1},

a confidence-weighted AdaBoost classifier produces both

a label and confidence value. Applying our detector to

windows across the image, we obtain a detection hotmap

(saliency map). This is computationally very expensive. To

reduce computation, we implement a coarse-to-fine scan.

The Text-Conv system is trained and applied to testing

images after color Sobel edge detection has been applied.

Edge images are used so that the influence of luminance in-

homogeneity can be reduced. Our coarse-to-fine scanning

divides the raster scanning patch generation and classifi-

cation into two stages. In the coarse stage, the image is

scanned using a larger step size, i.e. with lower resolution
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but faster execution. The saliency map of the coarse detec-

tor will then be used as a reference for fine detection. In the

fine scan, only regions of interest found by the coarse de-

tector are considered. The fine scan uses a very small step

size (1 pixel) to ensure high recall.

The coarse detector patch size is 32 by 32 pixels, with a

step size of 16 pixels. Therefore, two consecutive patches

have 50% area overlap. We found that using a standard

window such as shown in Figure 3(a) to capture local in-

formation gives poor performance. However, neighboring

pixels provide discriminative information (see Figure 3 (c)-

(f)). To consider neighboring patches during detection, we

design the image patch as shown in Figure 3(b). The cen-

ter block contains a 3 × 3 grid containing the target region

at center. The eight neighboring blocks around the center

block provide contextual information.

Coarse detection produces a hotmap representing the

likelihood of text. An example of a coarse detection hotmap

with and without contextual features is shown in Figure 4.

As seen in the example, a substantial increase in discrim-

inative power is provided by the surrounding blocks. To

define regions of interest for the fine detector, the hotmap is

thresholded. The threshold is defined as the value obtaining

the highest f-measure on a validation sample taken from the

training data, as shown in Figure 5(a).

For fine-grained character detection, the scan step size is

reduced to 1 pixel, and so it is less important to consider par-

tial overlap with characters, and surrounding pixels are ig-

nored. The fine detector is trained using patches containing

fully overlapped characters as foreground. To handle differ-

ent text aspect ratios caused by perspective transformations

and improve detection for very narrow and wide characters,

we compute multiple window aspect ratios and image rota-

tion angles. A grid search is performed over aspect ratios

and rotational angles, with output values maximal pooled.

We compute aspect ratios from 0.6 to 1.4, using step size

0.2. We also consider small rotations from −6◦ to 6◦, using

a step size of 2◦.

These transformations and a smaller scan step size make

fine detection much more computationally expensive. How-

ever, these computations are performed only in regions of

interest. The fine hotmap is then thresholded to maximize

the f-measure (see Figure 5(b)). Surviving pixels provide

seeds for the subsequent region growing step.

Scales. In order to catch texts in different sizes, the

coarse detector considers multiple scales. However, for fine

detection, only scales containing regions of interest remain-

ing after thresholding the coarse detection are considered,

along with the next-largest and next-smallest scales. We

iteratively decrease the image size by 10%, obtaining 30

different scales. The detector will cover texts with a size

variation of about 23.59 times. The definition of character

bounding box overlap for foreground patches is based upon

(a) (b) (c) (d) (e) (f)

Figure 3: Local 3x3 (a) and Contextual 9x9 (b) detection

windows. Contextual windows are a standard 3x3 window

surrounded by features from an 8 neighborhood. Panels (c)-

(f) illustrate resolving ambiguous local features by context.

(a) Input (b) Local 3x3 (c) Contextual 9x9

Figure 4: For the ICDAR 2015 test image in (a), differences

in coarse character detection maps for a standard 3x3 sliding

window (b) vs. a contextual 9x9 widow (c) are shown.

(a) Coarse Detection (b) Fine Detection (c) Verification

Figure 5: Recall, Precision and F-Measures at Different

Classification Confidence Thresholds for (a) Coarse Detec-

tion, (b) Fine Detection and (c) Verification. Training image

samples are divided into 80% training and 20% validation.

Validation set results are shown.

the scanning step size and scale ratio. If a patch is less than

10% smaller in width or height of a character bounding box,

and the overlapping area is greater than 0.752 = 0.56, then

it is considered a foreground patch. This defines a mini-

mal target overlap, to help insure detections only when a

substantial portion of a character is seen in the detection

window.

3.2. Region Growing

The thresholded fine detection saliency map provides

seeds for a flood-filling type of region growing, in order

to form CCs. For each position that was classified as text

from Text-Conv, we start to grow regions iteratively until

they reach an edge or a large shift in color. Some small

false CCs might appear, due to small homogeneous regions

around character edges. We implement a surrounding sup-

pression technique to remove these easy negative regions.

When a text region is detected, its surrounding area is sup-

pressed. The surrounding area is defined as 5 pixels in our
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experiments.

Consider image I as a mapping: D ∈ Z2 → S. Re-

gion growing will add new pixels into foreground regions

iteratively by considering two criteria: 1) the edge intensity

along the growing direction is small, and 2) the color differ-

ence between a newly added pixel and a region seed pixel

is small.

If q = (iq, jq) is a pixel immediately adjacent to the

contour of CC Q (while not in Q), and p = (ip, jp) a pixel in

Q, then the growing direction is defined as Θ = atan2(iq−
ip, jq − jp). If multiple pixels p1, p2, ..., pn ∈ Q in D are

adjacent to q, the growing direction is defined as the average

of all directions for p1, p2, ..., pn ∈ Q.

Edge images are computed from the intensity gradient in

each color channel, in the horizontal and vertical directions.

For three color channels R,G,B, the color gradient map of

the image can be computed by the Laplacian Matrix L:

L = DTD,where D =







∂R
∂x

∂R
∂y

∂G
∂x

∂G
∂y

∂B
∂x

∂B
∂y






(2)

The gradient amplitude can be computed using the largest

eigenvalues of the Laplacian matrix λ, and gradient direc-

tion can be computed using the eigenvector correspond-

ing to λ. Intensities of the gradient, ∂R
∂x

etc. are com-

puted discretely using Sobel kernels. The angle between

the growing direction and gradient direction is computed by

δΘ = Θe − Θg , where Θe is the gradient (edge) direction

and Θg is the growing direction. Notice that δΘ is regu-

larized, therefore its range is between (−π/2, π/2). The

region growing criterion C is as follows:

C = cos(δΘ) λ+

∑

c∈R,G,B(|Ic,q − Ic,seed|)
Z

(3)

where the first term represents the edge intensity along the

growing direction, and the second term represents the color

difference between boundary pixel q and the region’s seed

pixel. Z is a normalization factor. Regions grow from seeds

iteratively, adding valid boundary pixels into the foreground

region based on C.

Initially, seed pixels and region boundaries are labeled

as foreground/background respectively. Unlabeled pixels

with minimal cost are labeled iteratively. Region growing

stops when no unlabeled pixels exist between foreground

and background.

Validating Character CCs. After growing candidate

CCs for characters, an AdaBoost classifier is trained to

prune CCs that are invalid. To accommodate the high vari-

ation in colors and intensities in natural scenes, using the

input image we generate multiple Canny edge maps, by us-

ing multiple Gaussian smoothing kernels with sizes from

3 to 11 pixels, with variance equal to half the kernel size.

Edge point thresholds are defined from 50% up to 90% of

the maximum gradient value.

We train the verification classifier using the pixel level

ground truth provided in the ICDAR data set. We count

overlapping pixels between generated CCs and true char-

acters, and use CCs whose area overlapping area is greater

than 90% as foreground. The fine-grained AdaBoost de-

tector used for Text-Conv is applied. Precision and recall

values can be tuned by choosing different cut-off thresh-

olds. As we need to keep as many true positives as possible

for later processing, we select the threshold so that recall is

higher than 95% (see Figure 5(c)). A similar thresholding

technique was used in the Viola-Jones face detector [21].

In a cascaded system, hypotheses are eliminated stage

by stage. To keep final recall within a reasonable range, re-

call in each stage should be kept high. However, precision

in each stage may be relatively low. As false positive sam-

ples are filtered in cascaded stages, the final precision of the

system may also be high.

3.3. Word­Graph

Characters within a word usually have similar color and

size, with relatively small and equally distributed distances.

For English, natural scene text usually appears in horizontal

text lines with small rotation, with some exceptions. For ex-

ample, isolated characters may be a word (e.g. ‘a’), and text

lines might not be straight, or may be curved. Objects with

regular textures like windows and bricks share some pat-

terns with text, making it difficult for them to be removed

using spatial relationship information alone. And so, to re-

liably merge characters into words, one needs to group CCs

based on both their appearance and spatial relationships.

The Word-Graph algorithm groups detected character

CCs into words, and then uses context to prune false pos-

itive CCs. It uses a graph model G(V,E), where characters

are vertices V and their relationships are edges E. Two

Random Forest classifiers are used in Word-Graph; the first

for character merge/split classification, and the second fil-

ters invalid characters after forming words. Instead of de-

signing features and predefined thresholds for linking char-

acters as in [23], Word-Graph is data-driven, with little hu-

man intervention.

Twenty-nine features are defined for Word-Graph edges,

including greyscale intensity differences and seven bound-

ing box features: three centroid distances (horizontal, ver-

tical, and Euclidean), the smallest bounding box vertical or

horizontal distance, differences in width and height, and the

angle of the main axis orientation (via PCA). Raw bound-

ing box features are used along with three normalizations

(by minimum, maximum, and mean). For example, mini-

mum normalization of center distance in the x direction for
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CCs i and j is given by:

|xc,i − xc,j |
min(widthi, widthj)

(4)

When merging characters into words, challenges include

distant characters belonging to the same word, and adja-

cent characters belonging to separate words. One strategy

for tackling this problem is to examine only neighboring

characters for word segmentation. In the training data, a

minimum spanning tree based on spatial distance is used

to select training edges. This insures that only edges be-

tween neighboring characters are used to define positive

(merge) and negative (split) examples, increasing training

speed, and increasing the separability of the classes (vs. us-

ing all pairs of characters).

To increase recall, words are located by applying the

Random Forest classifier to all edges in the complete graph

over detected character CCs. A transitive relation over

‘merge’ edges is then used to locate words.

Second Stage Character Validation. A second random

forest is used to remove spurious ‘characters’ from the word

graph. Visual features for characters are combined with fea-

tures on edges (see above) connected to a character in the

word graph. CCs are characterized by 900 convolutional

features generated on a 3× 3 spatial pooling grid using 100

codebooks learned by convolutional k-means. Along with

this, we include features from the highest and lowest con-

fidence edges, along with average feature values for 1) all

connected edges, and 2) connected MST edges. Charac-

ters from ground truth are used to define complete and MST

graphs over characters, and these ideal graphs are then used

in training the random forest.

4. Experiments

We tested our system using the ICDAR 2015 Focused

Scene Text dataset (Challenge 2, Task 1), containing 258

training images and 251 testing images. The evaluation

metric checks the overlapping area for each word detection

with ground truth and computes the final precision, recall

and f-measure based on the total number of words that are

correctly detected. To be considered a valid detection, the

bounding box of a word hypothesis must have a precision

of 40% and a recall of 80%. Many-to-one and one-to-many

matching is implemented to accommodate merged and split

words, using a 20% accuracy scaling as a penalty [12].

4.1. Training

Coarse-to-Fine Character Pixel Detection. The set of

1000 cluster centers (convolution masks) obtained via Con-

volutional k-means are learned from training images, with

each feature 8×8 in size. These features are then convolved

with the image to form 32 × 32 patches. For coarse detec-

tion, each 32 × 32 patch is spatial pooled into 3 × 3 grids.

Figure 6: Correct Word Detections.

(a) (b) (c)

(d) (e) (f)

Figure 7: Word Detection Errors. Red boxes are false pos-

itives, yellow boxes are under-segmented words, and blue

boxes are over-segmented words.

Including context blocks, 9 × 9 grids are generated. In to-

tal, 72588 (36294 foreground and 36294 background) train-

ing samples are generated using ICDAR training images for

coarse detection. To train the fine detector, 50,000 ran-

domly selected foreground images from Wang’s synthetic

dataset [22] are used, along with 50,000 randomly selected

background samples generated from ICDAR images. The

AdaBoost classifier is trained towards minimum error, but

by utilizing the confidence-rated classifier, we can select a

final threshold confidence value to maximize the f-measure.

This is crucial when foreground and background samples

are highly unbalanced. Precision, recall and f-measures are

provided in Figure 5a and 5b, where we pick the maximal f-

measure point as the threshold to finally cut the foreground

regions. Examples of coarse detection after thresholding are

shown in Figure 2 column 2.

Comparing the hotmap we have generated to Coates’

et al.’s results for the ICDAR 2013 dataset [5], we have

achieved higher performance in patch level in terms of Area

Under Curve of Precision / Recall. Our detection hotmap

has 71.2% AUC, while Coates et. al obtain 62%.

Region Growing. In total, 4721 foreground and 7835

background samples are used for training. To tune the final

threshold for the confidence-rated classifier, we focus on

higher recall rather than precision. The highest f-measure

point for this classifier has a recall value less than 95% on

our validation set. This is lower than we would prefer, and

so we set the threshold to the point where we obtain 96%

recall (see Figure 5c). Experiments show that this configu-
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ration produces the highest accuracy for the entire system.

Some examples of region growing results after verification

are shown in Figure 2 column 3.

Word-Graph Figure 2 column 4 shows examples of

edge classification results for segmentation. To train the

Random Forest classifier for edges, an important issue is

that the foreground and background training samples are

unbalanced. Experiments show that balancing samples is

very important for reliable segmentation and character ver-

ification (increasing f-measure from 95% without balanc-

ing to 99% with balancing). As non-neighboring edges

are removed from the training set, within-word edge sam-

ples are far fewer than between-word samples. To deal

with the class imbalance, we considered different sampling

methods, including using the original distribution, over-

sampling to balance the classes (using SMOTE [4]) and

random subsampling. Surprisingly, we found that subsam-

pling could produce better accuracy for testing samples than

over-sampling. We were able to train an accurate segmenter

using just 4557 foreground and 4557 background samples.

929 features are used to train the random forest with 100

trees and a maximum depth of 10, and each node split con-

sidering
√
929 ≈ 30 features.

After Word-Graph has completed our text detector has

finished, and word bounding box coordinates are extracted

and saved into a text file.

4.2. Results

We evaluated our system using the ICDAR 2015 Robust

Reading evaluation website, by uploading our word coor-

dinate files onto their system. Examples of correct detec-

tions are shown in Figure 6. The online evaluation sys-

tem checks the overlapping area for each detection with

ground truth and computes the final precision, recall and

f-measure based on the total number of words that are cor-

rectly detected. In the competition, systems were compared

based on their word detection results; our system obtained

stronger recall, precision and f-measure than the winning

system from StradVision Corporation, as shown in Table 1.

It is worth noting that including differing rotations and

aspect ratios during fine-grained character detection had a

dramatic effect on accuracy. Without these, the f-measure

for word detection decreases from 86.77% to 64.72%.

Although our system achieved state-of-the-art perfor-

mance for word detection, there is still room for improve-

ment. The system failed to deal with some overlapped text

lines properly, missing words in some images as shown in

Figure 7a and 7b. Isolated characters are more likely to be

missed by our detector. Some words have large within-word

distance between characters (see Figure 7c). Some specu-

lar highlights wash out characters, and there is no way to

retrieve the information using image data alone, as in Fig-

ure 7d. Some handwritten characters are also missed due to

Table 1: ICDAR 2015 Focused Scene Text Results.

Recall (%) Precision (%) F-Score (%)

StradV. (Word-bb) [12] 80.15 90.93 85.20

Our System

Word-bb 81.02 93.39 86.77

Char-bb 87.51 93.20 90.26

Pixels 92.75 93.53 93.14

Table 2: Mean Execution Time (seconds/image). System:

Intel Xenon CPU w. 24 processors (2.93GHz), 96GB RAM,

GeForce GTX 480 w. 1GB GPU memory.

CPU GPU

Convolution 503.4 77.3

Coarse Detection 10.9 2.7

Fine Detection 744.2 55.7

Region Growing 15.1 10.9

Word Seg. 2.3 2.611

TOTAL 1275.9 149.3

lack of training data, in Figure 7e. In some cases, we found

valid words, but they were recognized as false positives. For

example in Figure 7f, the red regions contain digits (0/1),

but they are considered to be background decorations of the

book cover in ground truth.

As seen in Table 1, character bounding box level accu-

racy is higher than word bounding box accuracy (f-measure

of 90.26%), suggesting that word segmentation rates may

be increased through improving Word-Graph. Pixel level

accuracy is even higher, with an f-measure greater than

93%. As seen in Figure 2, our system often creates pixel-

accurate masks for characters, even in complex scenes.

Our system is implemented in Python. As seen in Ta-

ble 2, convolutional feature generation and fine detection

consume most of the execution time. This is because we

apply convolution at different scales and use a grid search

over aspect ratios and rotation angles for fine detection, re-

quiring a very large number of convolutions. Convolution

and AdaBoost classification may both be accelerated utiliz-

ing a GPU. Using Theano [2, 3], average execution time is

reduced from about 20 minutes to 2.5 minutes.

5. Conclusion

We have proposed a relatively simple cascaded text de-

tection system that is accurate at the pixel, character and

word levels, and produces state-of-the-art performance on

a challenging dataset. Contextual features, a coarse-to-fine

detection strategy, and using greater visual detail to define

targets in later stages help improve sliding window-based

character detection. Character detection is cascaded with

multiple validation steps, culminating in detected words

providing contextual constraints at the final detection stage.

Faster execution can be obtained by re-implementing in

C and using multiple GPUs or dedicated hardware for con-

volution. Over-segmenting input images into ‘super-pixels’
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based on color and edge information could also significantly

reduce the number of detection windows we need to con-

sider, at which point the system might even run in real-time.

It is important to note that we obtain high accuracy using

only visual features, without the use of a language model or

dictionary. However, detection can probably be improved

by integrating character recognition and models for a spec-

ified language.
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