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Abstract

Knowing how hands move and what object is being ma-

nipulated are two key sub-tasks for analyzing first-person

(egocentric) action. However, lack of fully annotated hand

data as well as imprecise foreground segmentation make ei-

ther sub-task challenging. This work aims to explicitly ad-

dress these two issues via introducing a cascaded interac-

tional targeting (i.e., infer both hand and active object re-

gions) deep neural network. Firstly, a novel EM-like learn-

ing framework is proposed to train the pixel-level deep con-

volutional neural network (DCNN) by seamlessly integrat-

ing weakly supervised data (i.e., massive bounding box an-

notations) with a small set of strongly supervised data (i.e.,

fully annotated hand segmentation maps) to achieve state-

of-the-art hand segmentation performance. Secondly, the

resulting high-quality hand segmentation maps are further

paired with the corresponding motion maps and object fea-

ture maps, in order to explore the contextual information

among object, motion and hand to generate interactional

foreground regions (operated objects). The resulting inter-

actional target maps (hand + active object) from our cas-

caded DCNN are further utilized to form discriminative ac-

tion representation. Experiments show that our framework

has achieved the state-of-the-art egocentric action recog-

nition performance on the benchmark dataset Activities of

Daily Living (ADL).

1. Introduction

Recent years have witnessed the emergence of first-

person (egocentric) action analysis due to its various ap-

plications in assisted daily living, medical surveillance and

smart home [11, 38]. Daily living egocentric videos involve

a large amount of manipulation actions. The key challenges

are irrelevant objects-of-interest and the noisy background

motions. Therefore, the key of addressing these issues is

to successfully segment out hand region and active region

(i.e., the objects-of-interest region).

Prior art [34, 25] in egocentric action analysis have paid

the most attention to these sub-tasks. Ren et al. [34] quanti-

tatively analyzed the feasibilities and challenges of the ego-

centric recognition of handled objects. It was pointed out

that hand and motion information are the keys to solve the

egocentric video recognition problem. Pirsiavash et al. [31]

used a temporal pyramid for both passive and active objects

as the action representation, and they suggested that the

daily living egocentric video understanding are “all about

the objects being interacted with”. McCandless et al. [25]

applied an “object-centric” scheme to automatically select

some representative spatio-temporal partitions from a pool

of pre-detected partitions.

However, there are two major difficulties in hand and

foreground object segmentation. Firstly, in egocentric

videos, the segmentation map for a non-rigid object like

hand is more helpful in later processing (e.g., motion fea-

ture pooling) than object bounding box information. Unfor-

tunately, previous methods for hand detection in egocentric

video analysis mainly adopt the hand detection method (i.e.,

bounding box detection) [26, 16, 15], which is not precise

enough to model hand movements. This is mainly due to the

lack of pixel-level hand annotations for training good hand

segmentation models. In fact, it is not feasible to get a large

scale per-pixel annotated hand dataset because it requires

intensive human labor. Moreover, pixel-level hand detec-

tion/segmentation is challenging due to large illumination

changes and hand deformations. Secondly, most of previous

works separately model the hands, foreground objects and

motion information. Due to the noisy background motion,

highly frequent occlusion, and object deformation, jointly

detecting/segmenting these objects is hard. We find the rich

contextual information could be explored to enhance the de-

tection/segmentation. Two important observations are that

the hand information are helpful for localizing the hand-

manipulated objects, and the motion information are useful

for detecting the foreground objects. Motivated by these ob-

servations, we propose a hybrid/cascaded end-to-end deep
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convolutional neural network to jointly infer the hand maps

and manipulated foreground object maps.

On one hand, we propose a novel end-to-end trainable

semantic parsing network for hand segmentation. In order

to tackle the problem of insufficient fully annotated (i.e.,

per-pixel annotated) hand maps, we develop an EM-like

training method to augment the semi-supervised data, i.e.,

a small set of fully annotated hand segmentation data and a

large number of hand bounding box data. In particular, in

the E-step, we firstly generate a number of hand map pro-

posals by the traditional hand segmentation method such

as [5, 14, 13]. Then we use our trained deep semantic pars-

ing neural network [24, 4] to select the best hand candidate,

(i.e., the hand candidate has the largest overlap with the pre-

dicted hand segmentation map). In the M-step, the selected

hand candidates are considered as new ground truth which

are utilized to further fine-tune the hand segmentation neu-

ral network. The converged network model parameters are

used as the ultimate hand segmentation model. We eval-

uate our approach on the Georgia Tech Egocentric Activ-

ity (GTEA) [9] dataset. In the experiments, we show that

our proposed pixel-level hand detection could handle some

difficult cases such as large illumination changes, or hand

deformations in egocentric videos.

On the other hand, we propose a second end-to-end deep

convolutional network to maximally utilize the contextual

information among hand, foreground object, and motion

for interactional foreground object detection. More specif-

ically, the network inputs are the strongest object feature

maps from the convolutional layer of AlexNet [18], the

hand segmentation maps detected by our proposed end-to-

end semantic parsing network, and the optical flow motion

maps. The convolutional filters connected to each pair of

the three types of maps are learned to explore the contextual

information and generate the interactional foreground ob-

ject maps. Finally, based on the detected foreground object

maps, we pack both object-centric features and the locally

pooled motion features into one unified action representa-

tion, which is used for the action classification task. The

action recognition framework is extensively evaluated on

the egocentric video benchmark dataset Activities of Daily

Living (ADL) [31]. We show that our proposed framework

significantly outperforms the state-of-the-art algorithms in

terms of action classification performance.

We summarize our contributions as two-fold: 1) we pro-

pose a novel iterative training scheme for a pixel-to-pixel

hand segmentation DCNN. Our work transforms the weakly

supervised hand bounding boxes into the strongly super-

vised hand segmentations, which saves a large amount of

human labor for per-pixel annotation; 2) contextual infor-

mation among the corresponding hand segmentation map,

object feature map, and motion map are jointly explored

in a DCNN architecture to generate accurate interactional

foreground regions, i.e., the area of manipulated objects.

2. Related Work
2.1. Pixel­level Hand Detection

The approaches to generate pixel-level detections of

hand regions mainly fall into the following three categories:

(1) the appearance based methods [40, 2, 17, 20, 13] use the

appearance features such as color or texture to detect static

and dynamic appearance of skin; (2) the global appearance-

based models [33, 19, 42, 29] detect hands by matching

against the global hand templates under different configura-

tions; (3) the motion-based approaches [39, 12, 9] explicitly

take into account the ego-motion of the camera by assuming

that hands (foreground) and the background have different

motion or appearance statistics. The focus of our work is

different, i.e., to design an effective training scheme that

can utilize weakly supervised hand bounding box data (eas-

ily obtainable) with a small set of strongly supervised hand

segmentation map data (expensive) to facilitate the pixel-to-

pixel hand segmentation DCNN training.

2.2. Egocentric Action Recognition

Currently, there are mainly four types of methods focus-

ing on the egocentric action recognition. First of all, the

objects manipulated by human hands in egocentric videos

are modeled [6, 31, 25]. Secondly, it is suggested that

gaze location is an important cue for egocentric activity

recognition [8, 21], but this fine-grained information is dif-

ficult for detection. Thirdly, human-human interaction or

human-object-human interaction [7, 36] is important for

egocentric action recognition. For example, Ryoo et al. [36]

integrated global and local motion information to model

interaction-level human activities. Finally, motion features

also play an important role in egocentric action analysis

[27, 32, 37], which is consistent with the general third-

person action recognition scenario [23, 43, 44, 45, 30]. Ying

et al. [22] combines multiple cues including object, motion,

head movement, hand and gaze information to achieve the

state-of-the-art, which is a sound work for egocentric infor-

mation fusion. However, these information are not always

feasible from pure wearable camera. We focus on the prob-

lem of recognizing single-human activities of daily living,

where there is a large amount of manipulation actions. In

such case, neither gaze information nor human-human in-

teraction modeling could well solve the problem. We argue

that it is necessary to detect foreground interactional (ma-

nipulated) objects, and combine both object cue and motion

cue for action representation.

3. Cascaded Interactional Targeting Network
Two key difficulties that prevent the egocentric action

recognition from higher accuracy are the deficiency in seg-

menting/identifying hand and interactional foreground ob-

ject. Therefore, the key idea of this work is two cas-

caded end-to-end DCNNs which identify both hand regions
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Figure 1: The cascaded neural network to collaboratively infer the hand segmentation maps and manipulated foreground

objects. It includes the hand segmentation network CNN1 and the active object detection network CNN2.

and foreground (active) object regions to facilitate egocen-

tric action analysis. The cascaded DCNN infrastructure

is shown in Figure 1, where the resulting hand segmenta-

tion maps from the first DCNN (called pixel-to-pixel hand

segmentation sub-network, i.e., CNN1 in Figure 1) are in-

put to the second DCNN (called active/interactional ob-

ject detection sub-network, i.e., CNN2 in Figure 1) to in-

fer the interactional foreground region. Outputs of both

sub-networks are further utilized to form the active object

histogram and locally pooled motion histogram (on interac-

tional foreground regions) for action representation.

3.1. Pixel­level Hand Segmentation

Detecting and segmenting hand regions up to pixel-level

precision is challenging [39, 13, 9, 20]. This is partly due

to the fact that ground-truth images with pixel-level hand

segmentations are rare. However, bounding box based hand

annotations are easily obtainable, and rich in public avail-

able datasets such as GTEA [9]. Inspired by these observa-

tions, we propose an expectation-maximization style algo-

rithm to train a pixel-to-pixel hand segmentation network by

fully utilizing the weakly supervised data (i.e., hand bound-

ing boxes). This algorithm starts from a small set of fully

annotated hand segmentation maps, and iteratively selects

and adds good hypothesized hand maps (augmented from

the weakly supervised hand data) to gradually refine the

end-to-end hand segmentation network, in an expectation-

maximization manner.

Network Architecture. To generate hand segmentation

maps based on image input, we adopt the DeconvNet deep

network [28] for semantic parsing. This model improves the

prior FCN model [24] (i.e., using coarse bilinear interpola-

tion as deconvolution procedure) with more sophisticated

deconvolution and un-pooling layers. Specifically, we em-

ploy the VGG-16 net [41] as our baseline convolutional net-

work, and we initialize this network with 1500 fully anno-

tated hand images (pixel-level annotations) from the GTEA

dataset [9]. The network parameter set is denoted by θ. The

network is illustrated in Figure 2. This network contains

two symmetric parts of the VGG-16 net, i.e., local-to-global

convolutional network and the mirroring global-to-local de-

convolutional network. More details of the network can be

seen in [28].

Figure 2: We use the end-to-end DeconvNet [28] as our

baseline semantic parsing network for hand segmentation.

The network outputs the hand probability score map, the

brightness indicates the likelihood of hand region.

Our algorithm to learn the above network is as follows:

firstly, we use the fully annotated hand image samples to ini-

tialize the DCNN, we fine-tune the weights in the convolu-

tional layers using VGG-16 model pre-trained on ILSVRC

dataset, while the weights in the de-convolutional network

are initialized with zero-mean Gaussians. Then we employ

an expectation-maximization style training procedure, to al-

ternate the following two steps: 1) with the network param-

eters θ fixed, we seek the best hand map proposals for the

weakly supervised data; and 2) we augment the fully anno-

tated dataset with the newly identified hand maps from the

weakly supervised data, and refine the model parameter set
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θ. Each step is detailed as follows. Our iterative network

training procedure is also elaborated in Algorithm 1.

E-Step: Seek the Best Hand Map Proposal. With

the network parameters θ fixed, we generate a set of hand

map/mask hypotheses from each weakly supervised hand

image (i.e., with bounding box), then search the best hy-

pothesis/proposal for next iteration of hand segmentation

network training. In particular, we firstly apply super-pixel

segmentation using SLIC [1] onto each bounding box im-

age In. We then represent each super-pixel with a concate-

nated feature vector consisting of HSV color histogram and

Gabor filter texture histogram. A linear support vector ma-

chine classifier is trained and applied to calculate the hand

detection scores for each super-pixel. We build our train-

ing object patch (super-pixel) dataset by randomly annotat-

ing 50000 hand super-pixels and 80000 background super-

pixels. After that, we generate different versions of hand

map proposals by applying the thresholded Grabcut [35] al-

gorithm. Namely, we apply the Grabcut onto the hand de-

tection score maps with different parameter settings w.r.t. to

sure foreground, sure background, possible foreground, and

possible background. A set of Ns (Ns = 24) proposals (de-

noted as a proposal set Pn, |Pn| = Ns) are generated for

each weakly supervised image In.

To seek the best hand segmentation hypothesis sn for

each weakly supervised hand bounding box image In, we

describe the measurement criteria (indication of a good hy-

pothesis) as:

εs (θ, sn) =
1

N

N∑

n=1

(1− κ (h(In|θ), l (In|sn))), sn ∈ Pn,

(1)

where h(In|θ) is the pixel-level prediction for image In
from the hand segmentation DCNN h with parameters θ,

l (In|sn) is the pixel-level hand segmentation map from

the hand map proposal sn, sn ∈ Pn. To compute the

overlap ratio between h(In|θ) and l (In|sn), we define

κ (h(In|θ), l(In|sn)) as:

κ (h(In|θ), l(In|sn)) =
h(In|θ)

⋂
l(In|sn)

h(In|θ)
⋃
(In|sn)

, (2)

which is the intersection over union ratio of the predicted

and ground-truth hand regions. For the predicted map, we

threshold it into a binary map by the resulting hand proba-

bility scores, the threshold value is 0.5. Equation 1 is nor-

malized by the number of images N .

Intuitively, we might pick up the best proposal sn for

each hand bounding box image In, i.e., to achieve the

largest κ (h(In|θ), l(In|sn)). However, this greedy solution

may be trapped to a bad local optima, by always picking up

the same candidate from the hand map proposal set Pn. To

overcome this issue, we randomly select one of the best K

Algorithm 1 pixel-level hand detection algorithm

Input: Hand bounding box images {In}n=1:N , initialized

network h(In|θ) with the parameter set θ.

Output: h(In|θ)
(1) Apply super-pixel based image segmentation on each

hand bounding box image In to generate hand probability

map I
′

n.

(2) Apply the thresholded Grabcut on each I
′

n to generate

a set of hand segmentation proposals Pn, each hand map

hypothesis is denoted as l(I
′

n|sn).
(3) EM-training algorithm:

i = 1, Nmax = 10
while i ≤ Nmax do

E-step: fix θ, optimize sn in Equation 4. i.e., for each

image, select candidate sn ∈ Pn to achieve the largest

κ, in Equation 1.

M-step: fix the set {sn}, optimize θ in Equation 4.

i.e., apply SGD training to update θ, in Equation 3.

i = i+ 1
end while

(4) Infer each hand bounding box image In with the net-

work h(In|θ)

(K = 3) hand segmentation hypotheses, instead of always

picking up the best one.

M-Step: Refine the Hand Segmentation Network.

With the augmented training set, i.e., the weakly super-

vised hand bounding boxes and the inferred best hand map

hypotheses, we fine-tune the hand segmentation network

h(In|θ). We formulate the objective of the network training

as a per-pixel regression problem to the selected hand map

proposals {sn} from E-step. More formally, the objective

function is written as:

εθ (θ, sn) = e (h(In|θ), l(In|sn)), (3)

where e (h(In|θ), l(In|sn)) is the cross-entropy error func-

tion.

The ultimate objective function is concluded as the com-

bination of Equation 1 and Equation 3:

min
θ,{sn}

N∑

n=1

εs (θ, sn) + λ

N∑

n=1

εθ (θ, sn) , (4)

where λ is the weight parameter, which we fix it as 3 by

cross validation. To minimize the objective function, the

network parameter θ and the best hand map hypotheses

{sn} are alternatively optimized. The procedure of the hand

segmentation network training can be solved by the back

propagation and stochastic gradient descent (SGD). In the

SGD training, we use a mini-batch size of 8. The learn-

ing rate and momentum are initialized to be 0.001 and 0.9,

learning rate is divided by 10 after every 4K iterations, the
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weight decay is set as 0.0005. The training procedure lasts

for 12K SGD iterations. This is the training parameters for

one epoch of our iterative training. We keep the training for

Nmax (Nmax = 10) epochs.

3.2. Foreground/Active Object Region Localization

On one hand, we note that precise detection of hands

could help localize the foreground manipulated objects in

some actions. For example, in the actions such as “operat-

ing the TV monitor”, “pouring water with bottle”, “turning

on the tap”, “drink water/bottle”, etc., hands are always very

close to the objects-of-interest. Therefore, to find the hands

directly secures the object locations. On the other hand,

we also note that sometimes motion is also a good indica-

tion of the location of the foreground object, i.e., foreground

object movements are different from background motions.

For example, the movements of washing hands are signif-

icantly more consistent and stronger than the background

motions. We note that this is the first time that hand map,

motion map and object map are combined together to gener-

ate foreground interactional object regions, in an end-to-end

network. The advantage of the network is that rich mutual

contextual information could be explored.

Bbox Regressor

…

Convolutional layers

FCs

FC

FC

Feature vector

Softmax

p

(x, y, w, h)

Hand map

Object map

Motion map

VGG-16 net

...	

Figure 3: The deep bounding box regression neural network

for manipulated foreground object detection.

Network Architecture. Inspired by these observations,

we employ an end-to-end DCNN to take the correspond-

ing hand map with, object feature map, and motion map

to detect the active object region, i.e., interactional fore-

ground. Firstly, the hand maps (i.e., binary masks) are

generated from the above introduced pixel-level hand de-

tection/segmentation network. Secondly, we calculate the

optical flow motion map of the original image, from two se-

quential video frames. Thirdly, we input the training object

bounding box images to the AlexNet [18] image classifica-

tion deep network. For each image, we extract the top-5

strongest object feature maps (the ones with strongest re-

sponses) of the fifth convolutional layer (Conv5) as the ob-

ject map. The three maps with the raw image are fed into

a bounding box regression network based on the VGG-16

net, as illustrated in Figure 3. The deep network mainly

contains 16 weights layers, 13 convolutional layers, 3 fully

connected layers, softmax layer and bounding box regres-

sion layer. The bounding box regressor is used to predict

the object location and the softmax classifier outputs the

object class probability. This regression network prototype

can be found in the work [10]. For each image, the out-

puts from the network are the tuples of (x, y, w, h, p), where

(x, y, w, h) is the object location for the detected bounding

box, and p is the corresponding object class probability.

Network Training. The two objectives of network train-

ing are to predict object bounding boxes and their confi-

dence scores for each training image, such that the highest

scoring boxes well match the ground-truth bounding boxes

for the image, both objectives can be jointly modeled as

in [10]. The ground truth for passive and active bound-

ing boxes are provided by the dataset ADL [31]. To train

the network, we firstly fine-tune all the convolutional layer

weights by the pre-trained VGG-16 model on ImageNet.

We initialize learning rate as 0.001 and run SGD for 30k

mini-batch iterations, then lower the learning rate to 0.0001

and train for another 10k iterations. A momentum term with

weight 0.9 and weight decay factor of 0.0005 are used in the

experiments. We regard the trained model as the active ob-

ject model. In our work, we also train the passive object

model by feeding the bounding box regression network [10]

with only passive object bounding boxes, without using the

active object detection.

3.3. Action Representation

We include both key object information and motion in-

formation in our action representation framework. On one

hand, we follow [31] to compute the object features from

the detected object locations and confidence scores, then

we represent the object features in a temporal pyramid man-

ner [31], and obtain a global object representation for each

action. In section 3.2, we train both active object model

(i.e., to detect manipulated foreground objects) and pas-

sive object model (i.e., without considering active objects),

thus each action is formed into the active object histogram

and passive object histogram. On the other hand, we also

propose to utilize state-of-the-art improved dense trajecto-

ries [44] to represent motion characteristics in egocentric

actions. For each trajectory, we extract the motion features

including HOG (96-dim), and MBH (96-dim for MBHx,

96-dim for MBHy), they are reduced to 64-dim by PCA.

We train Gaussian mixture models with 64 components, and

encode each action with the improved Fisher vectors [30]

(8192-dim, 64 × 64 × 2), we regard the trained model as

global motion pooling. To apply local motion pooling, we

perform the feature encoding and pooling from the trajecto-

ries that are going through the hand regions or the interac-

tional foreground objects, note that we regard the top-scored

bounding box as the active object for each image.

To this end, we obtain both object model (passive+active

object model) and motion model (global+local motion pool-

ing). To combine the representations from each feature

channel, we adopt a multi-channel approach [43]. Based

1908



on the combined feature channel mapping, we train a non-

linear SVM classifier. We fix the regularization parameter

C=10 by cross validation. We use the LibSVM [3] as our

SVM solver.

4. Experiment
We evaluate our hand segmentation method on the Geor-

gia Tech Egocentric Activity (GTEA) dataset [9], and we

evaluate the action recognition framework on the egocentric

video benchmark Activities of Daily Living (ADL) [31].

4.1. Hand Segmentation Performance

Dataset. The GTEA dataset [9] contains 7 types of daily

activities, each is performed by 4 different subjects. The

tested frames are taken from the actions of subject one,

who is making tea, making a peanut butter sandwich or

making coffee. Follow the same settings in [9], we use

the coffee sequence as training when testing on the tea and

peanut sequence, and we use the tea sequence as training

when testing on the coffee sequence. We use the F-score

(i.e., harmonic mean of the precision and recall) to quanti-

tatively evaluate the segmentation performance. The scores

are computed by comparing the predictions (i.e., segmenta-

tion) to the ground truth from the project site.

Table 1: Hand segmentation performance comparison on

GTEA dataset.

Method peanut coffee tea

Trajectory projection [39] 0.255 0.275 0.239

Single pixel color [13] 0.730 0.837 0.804

Superpixel + CRF [9] 0.727 0.713 0.812

Global scene [20] 0.883 0.933 0.943

Proposed 0.912 0.954 0.962

Table 1 shows the comparative hand segmentation results

on the GTEA dataset. Firstly, the super-pixel [9] + CRF and

Single pixel color [13] methods are based on the effective

low-level features in the hand segmentation task. Secondly,

the Global scene method [20] integrates different low-level

features (e.g., color feature or texture feature), and models

the global background scenes (i.e., to mitigate the large il-

lumination changes), to achieve better performance than the

previous methods. However, the performance is sensitive to

the number of scene categories, and it is extremely difficult

to model the scenes for the large-scale dataset in real life.

Instead, our method can directly learn rich features from the

neural network by feeding the network with various train-

ing data that are under different scenes. We observe that our

performance outperforms all the above methods.

In Figure 4, we show that both of the Global scene

method [20] and our proposed method can perform well

under the controlled environment. However, it is indeed

difficult to model all the background scenes, we show such

difficulties for Global scene method in row one of Figure 5,

Figure 4: Successful hand segmentation examples of Global

scene method [20] (row one) and our method (row two).

Figure 5: Hand segmentation comparison between Global

scene method [20] (row one) and our method (row two) un-

der background scene changes.

Figure 6: Some failure examples of our method under ex-

treme darkness or extreme brightness.

and it is expected that these failures can lead to rather unsta-

ble performance. We show that our method is still effective

compared to the Global scene method, in row two of Fig-

ure 5. However, it is intuitive to expect rather bad perfor-

mance under extreme darkness or extreme brightness. We

show such failure cases of our proposed method in Figure 6.

4.2. Acton Recognition Performance

Dataset. The ADL [31] dataset consists of 20 egocentric

videos which are collected by 20 persons. Both action anno-

tations (i.e., start time, end time, and action label for each

video sequence) and object annotations (i.e., object class,

object bounding box, passive/active status) are provided. A

total of 18 action categories and 44 objects are annotated.

During object detection, the actions of the first 6 videos are

used as training and the rest are used for testing. To evaluate

the action classification performance, we perform the leave-

one-person-out cross validation, We report the per-class av-

erage precision (mAP) score, with equal weight for each

action class.

First of all, we define the following methodology terms:

1) Passive object trains the object detection DCNN by only

using the passive object bounding box data, without active

object detection; 2) Passive+Active object augments the

passive object model by combining the passive object his-

togram with the active object histogram from the active ob-

ject detection; 3) Global motion pooling uses the recent
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Figure 7: Confusion matrix resulted from the combined Ob-

ject + Motion model in Table 2.

popular improved dense trajectories [44]; 4) Global+Local

motion pooling combines the Global motion pooling with

Local motion pooling on the active foreground regions; 5)

Object+Motion is the model to combine Passive+Active

object and Global+Local motion pooling.

Table 2: Action classification performance comparison on

ADL dataset.

Method mAP (%)

BoW 16.5

Boost-RSTP [25] 33.7

Boost-RSTP + OCC [25] 38.7

Bag-of-objects [31] 32.7

Bag-of-objects + Active model [31] 36.9

Passive object 35.2

Passive+Active object 43.8

Global motion pooling 36.7

Global+Local motion pooling 42.5

Object + Motion 55.2

In Table 2, we compare our approach with the state-of-

the-art methods on ADL dataset. Firstly, we show that the

motion-based Global motion pooling is very useful in ego-

centric action representation. Secondly, the object-centric

methods, such as Bag-of-objects, Boost-RSTP Boost-RSTP

+ OCC, and Bag-of-objects+Active model, combine the

passive and active object features with temporal pyramid,

and can achieve comparative performance to the Global

motion pooling method. However, none of the above meth-

ods can well solve the active object detection problem. We

improve these methods by jointly modeling the object, hand

and motion information from the deep neural network. We

show that our Passive+Active object model has outper-

formed the previous object-centric methods. We also aug-

ment the Global motion pooling with Local motion pool-

ing, by highlighting active foreground regions (objects-of-

interest) and suppressing the background noise. Finally,

we combine the complementary object model and motion

model (Object + Motion In Table 2), to achieve the aggre-

gated performance, we also show its confusion matrix in

Figure 7. Particularly, we find our method can have good

accuracy for those manipulation actions such as watching

tv (operating tv remote), using computer (typing keyboard),

washing hands (manipulating hands, tap), etc.

Table 3: Correlation between different hand segmentation

accuracy and action recognition performance (mAP).

mAP (%)

Method
Passive+Active Global+Local Object +

object motion pooling Motion

Bounding box 38.5 39.8 48.1

Superpixel + CRF 39.3 40.1 49.8

Global scene 33.7 38.2 44.3

Proposed 43.8 42.5 55.2

In Table 3, we show the correlation between hand seg-

mentation accuracy and action recognition performance.

Firstly, we show the largely degenerated performance by

replacing the hand segmentation maps with hand bounding

boxes (first method in Table 3). Secondly, the other hand

segmentation methods such as Superpixel + CRF [9] and

Global scene [20] intuitively result in worse action recogni-

tion performance because their hand segmentation accuracy

cannot compare to ours. We observe that the Global scene

method achieves even worse performance than the bound-

ing box input, as we find it is extremely difficult to model

all the scene categories by using the simple scene cluster-

ing algorithm. In contrast, our hand segmentation method

can directly learn various background scenes from the deep

neural network, and results in the best action recognition

performance in Table 3.

In Figure 9, we show that the presence of hand, object

and motion maps can influence training of the active ob-

ject detection network CNN2, therefore affecting the ul-

timate action recognition performance. We use the Pas-

sive+Active object method for performance evaluation. We

show that all types of maps are necessary for performance

improvement, specifically, the hand map and object map are

most significant of all. We also expect that motion map can-

not be compared to the other two maps because of the back-

ground noise.

We list some exemplars of active foreground regions

from the active object detection neural network CNN2, in

Figure 8. These detected objects are either manipulated

by hands (e.g., keyboard, kettle, tv remote) or nearby (e.g.,

1910



(a) hold object

(b) use computer

(c) wash dishes

(d) pour

(e) watch tv

Figure 8: The active foreground regions detected from the active object detection neural network CNN2. The green bounding

boxes consist of the hands and co-localized/detected manipulated objects, for different action categories under various scenes.

For each image, we visualize the active object as the bounding box to achieve the topest confidence score.

Figure 9: Correlation between action recognition perfor-

mance and presence of hand, object and motion map in

training the active object detection network CNN2.

monitor, laptop, detergent). They are easier for detection

because finding the hands can co-localize the active objects.

All the experiments are conducted on a computing

server with two Intel Xeon E5450 Quad Core processors

(3.00GHz) and 32 GB memory, the computational platform

is equipped with one Nvidia Tesla K40 GPU. The deep se-

mantic parsing neural network CNN1 is based on the De-

convNet package [28], total of 24,569 hand bounding box

images are used for the training. The network training speed

is 5 seconds per iteration, it takes approximately 14 hours

for each epoch of our iterative EM-like training algorithm,

and 6 days to finish the training procedure. The testing

speed is 1.35 seconds/image. The active object detection

neural network CNN2 is based on the Fast-rcnn [10] pack-

age. We sample one video frame every second for object

detection. The training time is 13 hours in total for 11,643

images (i.e., 6 out of 20 subjects are used for training). The

prediction time is even faster, i.e., 0.2 second per image.

5. Conclusion

Firstly, we propose a novel pixel-to-pixel deep convo-

lutional neural network to achieve decent hand segmenta-

tion performance. Secondly, the resulting hand maps are

further paired with motion maps and object maps via an-

other object detection DCNN, which explores the contexts

among object, motion and hand to generate foreground in-

teractional objects. Experiments show that our framework

has achieved the state-of-the-art egocentric action recogni-

tion performance on the benchmark dataset ADL.
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