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Abstract

In this work, we propose a direct least-squares solution

to the perspective-n-point (PnP) pose estimation problem

of a partially uncalibrated camera, whose intrinsic param-

eters except the focal length are known. The basic idea is

to construct a proper objective function with respect to the

target variables and extract all its stationary points so as to

find the global minimum. The advantages of our proposed

solution over existing ones are that (i) the objective func-

tion is directly built upon the imaging equation, such that

all the 3D-to-2D correspondences contribute equally to the

minimized error, and that (ii) the proposed solution is nonit-

erative, in the sense that the stationary points are retrieved

by means of eigenvalue factorization and the common itera-

tive refinement step is not needed. In addition, the proposed

solution has O(n) complexity, and can be used to handle

both planar and nonplanar 3D points. Experimental results

show that the proposed solution is much more accurate than

the existing state-of-the-art solutions, and is even compara-

ble to the maximum likelihood estimation by minimizing the

reprojection error.

1. Introduction

To simultaneously estimate camera pose and focal length

by using n (n ≥ 4) 3D points in the world frame and their

image projections is an important problem in geometric

computer vision, with widespread applications in camera

tracking [7], incremental structure-from-motion [22] and

geolocalization using community image collections [9]. It

can be regarded as a natural extension to the classical abso-

lute pose estimation problem with fully known camera cal-

ibration parameters, also known as the PnP problem. This

extension is of tremendous practical value, since the other

intrinsic parameters of modern digital cameras can usually

be assumed to be known a priori. For example, the skew-

ness is usually zero and the aspect ratio is one. The principle

point lies approximately in the image center.

Due to its importance, many algorithms [1,3,4,11,21,24,

25, 28] have been proposed to solve the PnP problem with

unknown focal length. Unfortunately, the existing state-of-

the-art solutions for the general n-point case, like [21, 28],

are still not satisfactory in estimation accuracy. The primary

reason lies in that their objective functions are built upon

some intermediate entities, and some point correspondences

are harmfully privileged over the others. Although one can

resort to an additional iterative refinement step to improve

the estimation accuracy further, the potential risk of running

into local minima or wandering around some extreme points

justifies some more endeavors in developing an accurate but

noniterative solution.

In this paper, we propose a direct least-squares solution

to the PnP problem with unknown focal length in the gen-

eral n ≥ 4 case. Similar to [28], our basic idea is to con-

struct a proper objective function with respect to the target

variables and extract all its stationary points so as to find

the global minimum. However, our solution is quite dif-

ferent from the existing solutions in that (i) the objective

function is directly built upon the imaging equation, such

that all the 3D-to-2D correspondences are treated with bal-

ance, without privileging some points over the remaining,

and that (ii) the proposed solution is noniterative, in the

sense that the stationary points are retrieved by means of

standard eigenvalue factorization and the common iterative

refinement step is not needed.

The proposed solution has linear time complexity, and

thus can be used to handle large scale problems. Unlike the

existing work [21], our solution does not explicitly differ-

entiate planar from nonplanar 3D points, thus is insensitive

to 3D point configurations. We have experimentally veri-

fied that the proposed solution is more accurate and efficient

than the current state-of-the-art solutions, whose accuracy is

even comparable to that of the maximum likelihood estima-

tion by minimizing the reprojection error, despite the fact

that our cost function is algebraically meaningful only.

11790



2. Related Works

In this section, we review the related works for the classi-

cal PnP problem and the extended one with unknown focal

length. There are some other works addressing the pose es-

timation problem with even more unknown variables, such

as aspect ratio [6], principle point [24] and radial distor-

tion [2, 10, 17], which will not be discussed in detail.

2.1. Solutions for PnP

The PnP problem has been extensively studied in both

the minimal [13, 19] and the overconstrained [8, 12, 18, 20,

27] case. The prominent solutions for the general n-point

case have been extended to handle the PnP problem with un-

known focal length, thus deserve to be carefully reviewed.

The EPnP solution [18] is the first widely known O(n)

method for PnP. Its core idea is to choose four (three in

the planar case) control points to represent all 3D points,

and build a cost function with respect to (w.r.t.) the coor-

dinates of those control points. A variable lifting strategy

is used to find its approximate global minimum, which can

be further refined via iterative optimization. Even ignor-

ing the potential convergence issues, the final solution is

not very accurate, since the control points are given more

weight over the others. In addition to that, to explicitly

differentiate planar 3D points from nonplanar ones would

cause inaccuracy in the intermediate near-planar case. The

RPnP solution [20] selects two 3D points as the control

points, together with which a point triplet is constructed for

each of the rest points. The objective function is w.r.t. the

depth factors of the two control points, which are therefore

privileged. Rather than working on some intermediate enti-

ties, the direct least-squares (DLS) solution [8] directly con-

structs an objective function on the basis of the projection

equation, and retrieves all stationary points via the resul-

tant technique. The OPnP solution [27] further conquers the

degeneracy of rotation parametrization of DLS. Both DLS

(when rotation degeneracy does not occur) and OPnP are

much more accurate than EPnP and RPnP, since all the point

correspondences are treated equally when constructing the

cost function.

2.2. PnP with Unknown Focal Length

When the focal length is unknown, there are seven un-

known variables, thus requiring at least three and a half

image points from four 3D points. Most existing works

for this minimal case, such as [1, 3, 24, 28], use four 3D-

to-2D point correspondences, and ignore one constraint in

the solving process. Recently, Wu [25] proposed an exactly

minimal Gröbner basis (GB) solver by using three and a half

points, and used the remaining half measurement for outlier

removal. This solver is shown to be much faster than the

existing 4-point solvers.

Given four or more points, the PnPf problem with un-

known focal length is overconstrained in general. This fact

triggered much research interest in developing an efficient

and accurate solution for the general n-point case. Choi

et al. [4] developed a branch-and-bound algorithm for this

problem, whose computational speed is not satisfactory. To

develop more efficient solutions with linear time complex-

ity, researchers have tried to transplant the core techniques

from existing PnP solutions. For example, Penate-Sanchez

et al. [21] and Kanaeva et al. [11] borrowed the idea of vir-

tual control points in EPnP [18], while Zheng et al. [28]

followed the point triplet technique originated in RPnP [20].

Unfortunately, the unbalanced cost function in [18] and [20]

leads to inferior noise resilience, and this behavior is em-

phasized in the more difficult case of unknown focal length.

In addition to that, the exhaustive variable lifting technique

in [21] is not effective enough, when the number of points

is small (e.g. 4 ≤ n ≤ 5). The error accumulation issue

in [20] becomes more severe, and one usually has to refine

the results via iterative optimization.

As mentioned above, a direct least-squares solution can

significantly improve the estimation accuracy of PnP. This

motivates us to develop a DLS solution to the PnP problem

with unknown focal length. The challenge lies in that, when

the focal length is unknown, it is very difficult to solve the

resulting polynomial system so as to find the global mini-

mum. To resolve this issue, we adopt the rotation decom-

position recently proposed in [25], and properly eliminate

the variables to build a bivariate objective function, whose

stationary points can be easily retrieved via standard eigen-

value factorization. Note that, although we are inspired by

the rotation parametrization in [25], our methods for vari-

able elimination and polynomial system solving are differ-

ent.

3. Imaging Equation and Solution Symmetry

For a pinhole perspective camera with known skewness,

aspect ratio and principle point, its intrinsic parameter ma-

trix K can be simply described by K = diag{ f , f , 1}, in

which f denotes the focal length. Given n (n ≥ 4) 3D-to-

2D point correspondences {ui ↔ xi, 1 ≤ i ≤ n}, where xi =[
xi, yi, zi

]T
represents the i-th 3D point in the world frame,

while ui = [ui, vi, 1]T the i-th point in the normalized im-

age frame, the target problem is to simultaneously estimate

the rigid transformation {R, t} and the camera focal length

f . The pinhole imaging equation can be written into

λ̄iui = diag{ f , f , 1}
(
Rxi + t̄

)
, i = 1, 2, · · · , n, (1)

where λ̄i represents the depth factor of the i-th point.

We adopt the standard quaternion expression to parame-
terize the rotation matrix R, because of its simplicity and
generality. Specifically, for a unit-norm quaternion q =
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[q1, q2, q3, q4]T , R can be parameterized by

R(q) =


q2

1
+q2

2
−q2

3
−q2

4
2q2q3−2q1q4 2q2q4+2q1q3

2q2q3+2q1q4 q2
1
−q2

2
+q2

3
−q2

4
2q3q4−2q1q2

2q2q4−2q1q3 2q3q4+2q1q2 q2
1
−q2

2
−q2

3
+q2

4

 . (2)

The quaternion expression assumes a two-fold symme-

try, because of the fact that q and -q denote the same ro-

tation. As recognized in [25], when the focal length f is

unknown, another two-fold symmetry arises, due to the fact

that diag{ f , f , 1}R = diag{− f ,− f , 1} (diag{−1,−1, 1}R).

According to the Hamilton product law of quaternions,

diag{−1,−1, 1}R can be represented by the quaternion

[−q4,−q3, q2, q1]T . In summary, when using the universal

quaternion parametrization for rotation, the solutions as-

sume four-fold symmetry in general, that is, the following

quadruplets are equivalent

{ f , q1, q2, q3, q4}, { f ,−q1,−q2,−q3,−q4},

{− f ,−q4,−q3, q2, q1}, {− f , q4, q3,−q2,−q1}.

Some existing works, like [14, 27], have tried to exploit

such symmetry in the process of developing Gröbner basis

solvers. Since it is generally difficult to design symmetric

Gröbner basis solvers, we choose instead to eliminate the

symmetry by decomposing the rotation and properly han-

dle the resulting parametrization degeneracy and numerical

instability.

When q2
1
+ q2

4
, 0, the rotation matrix R(q) can be de-

composed into the product of two rotations R(qθ) and R(qω).
Specifically, qθ = [q1, 0, 0, q4]T and

R(qθ) =
1

q2
1
+ q2

4


q2

1
− q2

4
−2q1q4 0

2q1q4 q2
1
− q2

4
0

0 0 q2
1
+ q2

4

 =


x̃ −ỹ 0

ỹ x̃ 0

0 0 1

 ,

(3)

where x̃2
+ ỹ2

= 1. As recognized in [25],


f 0 0

0 f 0

0 0 1




x̃ −ỹ 0

ỹ x̃ 0

0 0 1

 =


f x̃ − f ỹ 0

f ỹ f x̃ 0

0 0 1

 =


x −y 0

y x 0

0 0 1

 , (4)

which indicates that the focal length f happens to be
merged into the two independent variables x and y, and
the two-fold symmetry due to the sign ambiguity of f
can be eliminated. In addition, qω = [ã, b̃, c̃, 0]T , where

ã = q2
1
+ q2

4
, b̃ = q1q2 + q3q4, c̃ = q1q3 − q2q4. The two-

fold symmetry arising from the sign ambiguity of quater-
nion can be eliminated by dividing qω by ã, resulting in
qω = [1, b, c, 0]T , such that

R(qω) = R(b, c) =
1

k


1 + b2 − c2 2bc 2c

2bc 1 − b2
+ c2 −2b

−2c 2b 1 − b2 − c2

 ,

(5)

in which k = 1 + b2
+ c2.

Finally, when q2
1
+q2

4
, 0, the imaging equation in eq.(1)

can be reformulated into

λiui =


x −y 0

y x 0

0 0 1

R(b, c)xi +


t1
t2
t3

 =


rT

1

rT
2

rT
3

 xi +


t1
t2
t3

 , (6)

in which λi = kλ̄i and [t1, t2, t3]T
= kt̄. Note that

the aforementioned solution symmetry has been removed.

We are going to develop the direct least-squares solution

on the basis of eq.(6). It contains 7 unknown variables

{x, y, b, c, t1, t2, t3} that we intend to solve, in addition to the

scaled depth factors λi.

Note that, when q2
1
+ q2

4
is (or close to) 0, eq.(6) is not

applicable. A principled strategy to resolve this issue will

be presented in Sec.4.5.

4. Direct Least-Squares Solution

In this section, we first show how to eliminate linear vari-

ables in a balanced way, and then present our method to

build a proper cost function, whose stationary points can be

easily retrieved by using eigenvalue factorization.

4.1. Variable Elimination

Based on the projection equation in eq.(6), we eliminate

the depth factors λi by

λi = rT
3 xi + t3, i = 1, 2, · · · , n, (7)

which can be plugged back into the first and second row of

eq.(6), such that

rT
3 (uixi) + uit3 = rT

1 xi + t1, r
T
3 (vixi) + vit3 = rT

2 xi + t2. (8)

By averaging each set of n equations in eq.(8), we can

build the centralized projection equation

rT
3 (

1

n

n∑

i=1

uixi) + t3(
1

n

n∑

i=1

ui) = rT
1 (

1

n

n∑

i=1

xi) + t1,

rT
3 (

1

n

n∑

i=1

vixi) + t3(
1

n

n∑

i=1

vi) = rT
2 (

1

n

n∑

i=1

xi) + t2.

(9)

The variables t1 and t2 can be eliminated by subtracting

eq.(8) by eq.(9), which leads to the decentralized equation

rT
3 ûxi + ûit3 = rT

1 x̂i, rT
3 v̂xi + v̂it3 = rT

2 x̂i, (10)

in which ûxi, ûi, v̂xi, v̂i and x̂i denote the decentralized value

of uixi, ui, vixi, vi and xi, respectively. This decentralization

operation serves in effect as data normalization, which is

known to be critical in designing an algebraic cost function

[7].
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Now, we multiply the first equation of eq.(10) by ûi and
the second one by v̂i. By summing up all 2n equations, t3
can be expressed by

t3 =
1

s

rT
3

n∑

i=1

(
ûiûxi + v̂iv̂xi

)
− rT

1

n∑

i=1

ûix̂i − rT
2

n∑

i=1

v̂ix̂i

 , (11)

in which s =
∑n

i=1

(
û2

i
+ v̂2

i

)
. This elimination method

makes sure that the elimination is stable, since s is definitely

greater than 0.

To replace t3 in eq.(10) by using eq.(11) would lead to

the following equation

rT
3 p3i = rT

1 p1i + rT
2 p2i, r

T
3 q3i = rT

1 q1i + rT
2 q2i, (12)

in which pki and qki, k = 1, 2, 3, i = 1, 2, · · · , n, are three

dimensional column vectors and can be easily calculated on

the basis of eq.(10) and eq.(11).

There remain only four unknown variables {x, y, b, c} in

eq.(12). Let us further recognize that the variables x and

y are linear, although they are coupled with b and c. To

project out x and y would lead to a bivariate equation sys-

tem, which is significantly easier to handle than the four-

variable system in eq.(12).

By organizing the equations in eq.(12) properly, we can

obtain the following parametric linear system

M(b, c)[x, y]T
= e(b, c), (13)

in which M(b, c) is a 2n × 2 matrix with parametric entries

of b and c. e(b, c) is a 2n-dimensional column vector. In the

following, we are going to denote M(b, c) and e(b, c) as M

and e for simplicity.

According to eq.(13), x and y can be projected out by

[x, y]T
= M†e, in which M† =

(
MT M

)−1
MT . Plugging it

back into eq.(13) leads to
(
MM† − I

)
e = 0, in which I is

the 2n × 2n entity matrix.

Considering that MT M is positive definite (otherwise,

there would be infinitely many solutions for x and y), we

multiply the square root of the determinant of MT M at both

sides of the above equation, and obtain

√
det
(
MT M

) (
MM† − I

)
e = 0, (14)

upon which the objective function is built in the following

section.

It is important to note that the aforementioned vari-

able projection method is quite different from that in

[25]. In [25], a homogeneous linear system similar to

[M, e][x, y, 1]T
= 0 was constructed, which leads to some

bivariate polynomials by calculating the determinant of all

3 × 3 submatrices of [M, e]. Effective as it is for the min-

imal problem, this method is not appropriate to the general

n-point case, since the complexity to permute all submatri-

ces is O(n3).

4.2. Objective Function and Global Minimization

In the presence of noise, equality in eq.(14) could not be

completely satisfied. We therefore define the cost function

as the least-square error of all 2n equations in eq.(14) as

follows

ψ(b, c) = det
(
MT M

)
eT
(
MM† − I

)T (
MM† − I

)
e

= −det
(
MT M

)
eT
(
MM† − I

)
e

= −eT
[
M
(
MT M

)∗
MT − det

(
MT M

)
I
]

e,

(15)

in which
(
MT M

)∗
denotes the adjoint of MT M. It is wor-

thy of noting that, although M is parametric w.r.t. b and

c,
(
MT M

)∗
and det

(
MT M

)
can be easily calculated, since

MT M is of size 2 × 2.

The objective function ψ(b, c) is a bivariate polynomial

of degree 12. To find its global minimum, we try to find all

its stationary points by solving the following partial deriva-

tive equations

∂ψ(b, c)/∂b = 0, ∂ψ(b, c)/∂c = 0, (16)

which constitute an 11-degree bivariate polynomial system

with 72 monomials in each equation.

4.3. Polynomial Eigenvalue Solver

A bivariate polynomial system can be easily solved by

setting one variable as the hidden variable and constructing

a polynomial eigenvalue factorization problem [16] guided

by the parametric Sylvester resultant. As for our bivariate

system, by for example hiding b, it can be written into1

(
A0 + bA1 + · · · + b11A11

)
βββ = 0, (17)

in which b is the polynomial eigenvalue and βββ =

[c20, c19, · · · , c, 1]T the polynomial eigenvector. A j, j =

0, 1, · · · , 11, denote the 21 × 21 coefficient matrices. One

can easily solve a polynomial eigenvalue factorization prob-

lem by, for example, using polyeig in MATLAB.

As shown in Fig.4, the polynomial eigenvalue factoriza-

tion solver shows outstanding numerical precision. How-

ever, it gives 210 (real and complex) solutions in general,

which is much greater than the maximum number (121) of

solutions for a 11-degree bivariate system. Therefore, this

solver is not desirable in terms of computational efficiency.

4.4. Gröbner Basis Solver

We have also tried to develop a more efficient solver by

using the Gröbner basis technique [5]. The adapted Gröbner

basis technique in geometric computer vision uses a random

instance of the target polynomial system, and tries to record

1In our implementation, to hide b or c is decided online, according to

which choice leads to a smaller condition number of A0.
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(a) Nonplanar 3D Point Configuration
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(b) Near Planar 3D Point Configuration
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(c) Planar Point Configuration

Figure 1. Estimation accuracy w.r.t. varying noise levels. The number of points n is 10. The performance under nonplanar, near planar and

planar point configurations is shown in (a), (b) and (c), respectively. For each row, median errors among 500 trials for rotation, translation

and focal length are shown in the 1st, 2nd and 3rd column, while the mean errors are indicated in the 4th, 5th and 6th column, respectively.

the path for monomial elimination. This elimination path is

recorded in the so-called elimination template, from which

one can construct the action matrix. The solutions to the

original polynomial system can be found by eigenfactoriza-

tion of the action matrix [23].

By using completely random coefficients for our bivari-

ate system, the automatic solver generator [15] is able to

generate a GB solver with 121 solutions. Unfortunately, the

solver fails to work for any instance arising from a real pose

estimation problem. We have found that the reason lies in

the fact that the coefficients of our bivariate system are cor-

related, and the number of solutions is 61, rather than 121.

Inspired by this observation, we have generated consis-

tent integer coefficients that preserve intrinsic correlations.

By using such a consistent instance, we have been able to

develop a GB solver, whose elimination template is of size

130×251, while action matrix is of 61×61. This solver takes

about 3ms in our setting, which is more than 15 times faster

than the polynomial eigenvalue solver. Due to its efficiency,

we are going to use the GB solver for all the experiments,

unless explicitly stated otherwise.

4.5. Avoiding (Near)Degenerate Cases

Let us recall that the rotation decomposition applies only

when q2
1
+ q2

4
> 0. When q1 = q4 = 0, the decomposition is

not unique [25]. In addition, when the magnitude of q1 and

q4 is much smaller than q2 and q3, to divide q2
1
+ q2

4
would

cause numerical instability.

Here, we suggest a principled remedy to resolve those

two issues on the basis of the following observation

Rxi = (Rdiag{1,−1,−1}) (diag{1,−1,−1}xi) = R̃x̃i, (18)

in which diag{1,−1,−1} denotes the 180 degrees rotation

around the x-axis.

Due to the Hamilton law, the quaternion of R̃ =

Rdiag{1,−1,−1} is [q2,−q1,−q4, q3]T , from which we ob-

serve that the location of {q1, q4} and that of {q2, q3} are
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(a) Nonplanar 3D Point Configuration
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(b) Near Planar 3D Point Configuration
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(c) Planar Point Configuration

Figure 2. Estimation accuracy w.r.t. varying number of points. The noise level δ is 2 pixels. The performance under nonplanar, near

planar and planar point configurations is shown in (a), (b) and (c), respectively. For each row, median errors among 500 trials for rotation,

translation and focal length are shown in the 1st, 2nd and 3rd column, while the mean errors in the 4th, 5th and 6th column, respectively.

switched. When q2
1
+ q2

4
is 0 (or close to 0), the decom-

position of R is infeasible (or unstable), yet that of R̃ should

be feasible (or stable), since q = [q1, q2, q3, q4]T has unit

norm scale. As a result, our strategy to resolve the potential

issues of rotation decomposition is to rotate the 3D points

around the x-axis by 180 degrees, and solve the whole prob-

lem again.

Now the computational procedure can be summarized as

follows: (1). Construct and solve the bivariate system in

eq.(16) via the GB technique; (2). For each real solution

of {b, c}, find x and y by solving eq.(13), from which the

focal length and rotation can be recovered. (3). Recover the

translation vector by using eq.(11) and eq.(9); (4). Rotate

the 3D points around the x-axis by 180 degrees and repeat

step (1-3).

In our implementation, we evaluate the reprojection error

of each solution, and choose the one with smallest reprojec-

tion error as our final solution.

5. Experimental Results

In this section, we compare our direct least-squares

solution (referred to as DLSPnPf ) with the state-of-the-

art solutions, including UPnPf and its iterative variant

UPnPf+GN in [21], as well as GPnPf and its iterative vari-

ant GPnPf+GN [28]. To disclose the difference between

reprojection error minimization and our minimization crite-

rion in eq.(15), we also minimize the reprojection error and

use the solution from DLSPnPf for initialization. This is

denoted by Reproj.

We implement DLSPnPf in MATLAB and use the pub-

licly available source codes of UPnPf, UPnPf+GN, GPnPf

and GPnPf+GN. The comparison is conducted on a laptop

with a 2.6GHz CPU and 12GB RAM.

5.1. Synthetic Data

We synthesize a pinhole camera with zero skew and

unit aspect ratio, whose resolution is 800×640 pixels.

The principle point is assumed to be at the image cen-
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Figure 3. Comparison of estimation accuracy w.r.t. varying noise

levels in the minimal 4-point case. The median rotation error and

focal length error among 500 trials are shown in the left and right

subfigure, respectively.

ter. The focal length is randomly chosen in the range

from 200 to 2000 pixels. Considering that the methods

might behave differently under different 3D point config-

urations, we randomly synthesize n points in the box of

[-2,2]×[-2,2]×[4,8] for nonplanar 3D point configuration,

while in [-2,2]×[1,2]×[4,8] for near planar point configura-

tion. Ground-truth rotations and translations are generated,

which are used to transform the 3D points into the world

frame. We evaluate the absolute error (in degrees) for rota-

tion, while the relative error (%) for focal length and trans-

lation.

5.1.1 Varying Noise Levels

Here, the number of points is fixed to 10. Zero-mean Gaus-

sian noise with standard deviation δ is added to disturb the

image points. We vary the noise level δ from 0.5 to 5 pix-

els. At each δ, 500 independent trials are conducted, and

the median and mean error for rotation, translation and fo-

cal length are reported in Fig.1. We examine the competing

solutions under the nonplanar 3D, near planar and planar

point configurations. Note that UPnPf+GN is not included

in the planar case, since the Gauss-Newton iterative refine-

ment step is not needed there.

From Fig.1, we can observe that both UPnPf and GPnPf

are not sufficiently accurate, and they indeed rely heav-

ily on their respective iterative refinement UPnPf+GN and

GPnPf+GN to improve accuracy. In terms of median errors,

GPnPf+GN can offer highly accurate estimation, which is

usually better than UPnPf+GN. The reason is that the ob-

jective function in UPnPf+GN is build upon some virtual

control points, and those anchor points give more weights

to the minimized cost. However, when observing the mean

errors, GPnPf+GN is usually worse than UPnPf+GN, es-

pecially for near planar and planar points with high noise

levels (δ > 2 pixels). This reveals the fact that GPnPf+GN

might get trapped into a poor local minimum from time to

time, which is not obvious by examining the median er-

ror only. The risk of local minima or even divergence is

a common problem in iterative optimization of a nonconvex

problem. Fortunately, due to its noniterative nature, DL-
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Figure 5. Running time.

SPnPf always has the highest accuracy, irrespective of the

point configuration and the error criterion. Its accuracy is

even comparable to that of Reproj. This verifies the validity

of our derived cost function in eq.(15), although it is alge-

braically meaningful only.

Note that the translation and focal length error for all

competing solutions significantly increase under the planar

point configuration, which means that translation and focal

length are hard to be disambiguated then. This becomes

understandable by considering the extreme case that all 3D

points lie on a plane that is parallel to the image plane, in

which these two components can not be separated.

5.1.2 Varying Number of Points

Now, the noise level δ is fixed to be 2 pixels. Considering

that UPnPf does not work with 4 or 5 points, we vary n

from 6 to 15. Similarly, we conduct 500 independent tests

for each n. The median and mean errors of rotation, trans-

lation and focal length are shown in Fig.2. Again, although

GPnPf+GN works well in most trials, it occasionally re-

turns poor solutions, as verified by comparing the median

and the mean errors. This issue becomes more apparent

under the challenging near planar and planar point configu-

rations. Similar to the observations in Sec.5.1.1, DLSPnPf

is the most accurate solution in terms of both mean and me-

dian errors, and works consistently well under all examined

point configurations.

5.1.3 Comparison with Minimal Solvers

Here, we compare DLSPnPf with the state-of-the-art 4-

point solver [28] (GPnPf (n=4)) and the exactly minimal

solver in [25] (P3.5Pf ). We randomly generate 4 nonplanar

3D points and corrupt their image projections by zero-mean

Gaussian noise with standard deviation from 0 to 5 pixels.

For the P3.5Pf solver, we simply ignore the v-axis mea-

surement of the 4th point. The median error among 500

independent trials of rotation and focal length are shown in

Fig.3. We can observe that DLSPnPf provides more accu-

rate estimation, since all constraints have been utilized in

a balanced way. Considering that the minimal solvers are

much faster, DLSPnPf in its current form can not replace

them in RANSAC-type applications. Instead, due to its ac-

curacy and noniterativeness, DLSPnPf is currently suited
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Figure 6. Pose and focal length estimation of a 3D box (1st row) and a planar book cover (2nd row). In each row, the first image is the

reference, while the second image is the input. The input image has been augmented by using the projected contour calculated from the

pose and focal length parameters of our direct least-squares solution. The third image visualizes the surface of our objective function, while

the fourth image shows the intersection of the two derivative polynomials, in which red dots denote stationary points.

for outlier-free applications, like model-based pose track-

ing using fiducial markers and pose bundle adjustment, af-

ter outliers have been removed via RANSAC or other robust

matching techniques [26].

5.1.4 Numerical Precision

To verify that our strategy to avoid (near-)degeneracy in ro-

tation decomposition is effective and that our solvers are

numerically stable, we randomly synthesize 6000 nonde-

generate, near degenerate and degenerate rotations (2000

for each type). We synthesize 10 noise-free points, and

measure the log10 value of the relative error between the

estimated focal length and its corresponding ground truth.

We also add UPnPf and GPnPf for comparison. The error

histogram over all 6000 trials is shown in Fig.4, from which

we observe that the numerical precision of our solution with

the GB solver, i.e. DLSPnPf-GB, is comparable to those of

UPnPf and GPnPf, although it is lower than the polynomial

eigenvalue solver DLSPnPf-PE. This verifies the effective-

ness of our strategy to avoid rotation degeneracy and the

stability of our GB solver to handle high-degree polynomi-

als.

5.1.5 Computational Efficiency

It is easy to verify that the time complexity of DLSPnPf

is O(n), because of the matrix multiplication operation in

eq.(15). Now we compare the running time of competing

solutions by varying n from 6 to 4006. For each n, 500 in-

dependent trials are conducted, and the mean running time

in milliseconds (ms) is reported in Fig.5. We can see that

DLSPnPf is faster than UPnPf and GPnPf, especially when

the number of points is large.

5.2. Real Images

We have also evaluated our direct least-squares solution

by using real images provided in [27, 28]. We assume that

the camera has zero-skew, unit aspect ratio and a centered

principle point. Some tentative correspondences are estab-

lished by matching the input image and the reference one.

Outliers are removed via RANSAC with a threshold of 2

pixels. In Fig.6, we show two representative results of pose

and focal length estimation for a box and a planar book

cover. Considering that the ground-truth parameters are

not provided, we do not conduct quantitative comparison.

Instead, we draw the surface of the objective function in

eq.(15) and the intersection of the two derivative polynomi-

als in eq.(16), from which one can obtain a clearer sense of

the difficulty of the problem due to its strong nonconvexity.

6. Conclusion

We have developed a direct least-squares solution for

the perspective-n-point pose problem of a partially uncal-

ibrated camera with unknown focal length. Unlike existing

solutions, which would give more weights to certain anchor

points, our cost function is built directly upon the imaging

equation, and all point correspondences are treated equally.

Our proposed solution is noniterative and insensitive to the

3D point configuration. It can be applied to handle large

problems because of its linear time complexity. The pro-

posed solution has proven to be more accurate and efficient

than the current state-of-the-art solutions.
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