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Abstract

This paper aims to develop a method than can accurately

estimate the crowd count from an individual image with ar-

bitrary crowd density and arbitrary perspective. To this end,

we have proposed a simple but effective Multi-column Con-

volutional Neural Network (MCNN) architecture to map the

image to its crowd density map. The proposed MCNN al-

lows the input image to be of arbitrary size or resolution.

By utilizing filters with receptive fields of different sizes, the

features learned by each column CNN are adaptive to varia-

tions in people/head size due to perspective effect or image

resolution. Furthermore, the true density map is comput-

ed accurately based on geometry-adaptive kernels which do

not need knowing the perspective map of the input image. S-

ince exiting crowd counting datasets do not adequately cov-

er all the challenging situations considered in our work,

we have collected and labelled a large new dataset that

includes 1198 images with about 330,000 heads annotat-

ed. On this challenging new dataset, as well as all existing

datasets, we conduct extensive experiments to verify the ef-

fectiveness of the proposed model and method. In partic-

ular, with the proposed simple MCNN model, our method

outperforms all existing methods. In addition, experiments

show that our model, once trained on one dataset, can be

readily transferred to a new dataset.

1. Introduction

In the new year eve of 2015, 35 people were killed in

a massive stampede in Shanghai, China. Unfortunately, s-

ince then, many more massive stampedes have taken place

around the world which have claimed many more victim-

s. Accurately estimating crowds from images or videos has

become an increasingly important application of computer

vision technology for purposes of crowd control and public

safety. In some scenarios, such as public rallies and sports

events, the number or density of participating people is an

essential piece of information for future event planning and

space design. Good methods of crowd counting can also be

extended to other domains, for instance, counting cells or

bacteria from microscopic images, animal crowd estimates

in wildlife sanctuaries, or estimating the number of vehicles

at transportation hubs or traffic jams, etc.

Related work. Many algorithms have been proposed in

the literature for crowd counting. Earlier methods [29]

adopt a detection-style framework that scans a detector over

two consecutive frames of a video sequence to estimate the

number of pedestrians, based on boosting appearance and

motion features. [19, 30, 31] have used a similar detection-

based framework for pedestrian counting. In detection-

based crowd counting methods, people typically assume a

crowd is composed of individual entities which can be de-

tected by some given detectors [13, 34, 18, 10]. The limi-

tation of such detection-based methods is that occlusion a-

mong people in a clustered environment or in a very dense

crowd significantly affects the performance of the detector

hence the final estimation accuracy.

In counting crowds in videos, people have proposed to

cluster trajectories of tracked visual features. For instance,

[24] has used highly parallelized version of the KLT track-

er and agglomerative clustering to estimate the number of

moving people. [3] has tracked simple image features and

probabilistically group them into clusters representing inde-

pendently moving entities. However, such tracking-based

methods do not work for estimating crowds from individual

still images.

Arguably the most extensively used method for crowd

counting is feature-based regression, see [4, 7, 5, 27, 15,

20]. The main steps of this kind of method are: 1) seg-

menting the foreground; 2) extracting various features from

the foreground, such as area of crowd mask [4, 7, 27, 23],

edge count [4, 7, 27, 25], or texture features [22, 7]; 3) u-

tilizing a regression function to estimate the crowd count.

Linear [23] or piece-wise linear [25] functions are relatively

simple models and yield decent performance. Other more

advanced/effective methods are ridge regression (RR) [7],

Gaussian process regression (GPR) [4], and neural network

(NN) [22].

There have also been some works focusing on crowd

counting from still images. [12] has proposed to leverage
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multiple sources of information to compute an estimate of

the number of individuals present in an extremely dense

crowd visible in a single image. In that work, a dataset

of fifty crowd images containing 64K annotated human-

s (UCF CC 50) is introduced. [2] has followed the work

and estimated counts by fusing information from multi-

ple sources, namely, interest points (SIFT), Fourier analy-

sis, wavelet decomposition, GLCM features, and low confi-

dence head detections. [28] has utilized the features extract-

ed from a pre-trained CNN to train a support vector machine

(SVM) that subsequently generates counts for still images.

Recently Zhang et al. [33] has proposed a CNN based

method to count crowd in different scenes. They first pre-

train a network for certain scenes. When a test image from

a new scene is given, they choose similar training data to

fine-tune the pretrained network based on the perspective

information and similarity in density map. Their method

demonstrates good performance on most existing datasets.

But their method requires perspective maps both on training

scenes and the test scene. Unfortunately, in many practical

applications of crowd counting, the perspective maps are

not readily available, which limits the applicability of such

methods.

Contributions of this paper. In this paper, we aim to

conduct accurate crowd counting from an arbitrary still im-

age, with an arbitrary camera perspective and crowd density

(see Figure 1 for some typical examples). At first sight this

seems to be a rather daunting task, since we obviously need

to conquer series of challenges:

1. Foreground segmentation is indispensable in most ex-

isting work. However foreground segmentation is a

challenging task all by itself and inaccurate segmenta-

tion will have irreversible bad effect on the final count.

In our task, the viewpoint of an image can be arbitrary.

Without information about scene geometry or motion,

it is almost impossible to segment the crowd from its

background accurately. Hence, we have to estimate the

number of crowd without segmenting the foreground

first.

2. The density and distribution of crowd vary signifi-

cantly in our task (or datasets) and typically there are

tremendous occlusions for most people in each im-

age. Hence traditional detection-based methods do not

work well on such images and situations.

3. As there might be significant variation in the scale of

the people in the images, we need to utilize features

at different scales all together in order to accurately

estimate crowd counts for different images. Since we

do not have tracked features and it is difficult to hand-

craft features for all different scales, we have to resort

(a)

(b)

Figure 1: (a) Representative images of Part A in our new

crowd dataset. (b) Representative images of Part B in our

crowd dataset. All faces are blurred in (b) for privacy p-

reservation.

to methods that can automatically learn effective fea-

tures.

To overcome above challenges, in this work, we propose

a novel framework based on convolutional neural network

(CNN) [9, 16] for crowd counting in an arbitrary still im-

age. More specifically, we propose a multi-column con-

volutional neural network (MCNN) inspired by the work

of [8], which has proposed multi-column deep neural net-

works for image classification. In their model, an arbitrary

number of columns can be trained on inputs preprocessed in

different ways. Then final predictions are obtained by av-

eraging individual predictions of all deep neural networks.

Our MCNN contains three columns of convolutional neu-

ral networks whose filters have different sizes. Input of the

MCNN is the image, and its output is a crowd density map

whose integral gives the overall crowd count. Contributions

of this paper are summarized as follows:

1. The reason for us to adopt a multi-column architecture

here is rather natural: the three columns correspond

to filters with receptive fields of different sizes (large,

medium, small) so that the features learned by each

column CNN is adaptive to (hence the overall network

is robust to) large variation in people/head size due to

perspective effect or across different image resolution-

s.

2. In our MCNN, we replace the fully connected layer

with a convolution layer whose filter size is 1 × 1.

Therefore the input image of our model can be of arbi-

trary size to avoid distortion. The immediate output of

the network is an estimate of the density of the crowd

from which we derive the overall count.

3. We collect a new dataset for evaluation of crowd
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counting methods. Existing crowd counting dataset-

s cannot fully test the performance of an algorithm

in the diverse scenarios considered by this work be-

cause their limitations in the variation in viewpoints

(UCSD, WorldExpo’10), crowd counts (UCSD), the

scale of dataset (UCSD, UCF CC 50), or the variety

of scenes (UCF CC 50). In this work we introduce

a new large-scale crowd dataset named Shanghaitech

of nearly 1,200 images with around 330,000 accurate-

ly labeled heads. As far as we know, it is the largest

crowd counting dataset in terms of number annotated

heads. No two images in this dataset are taken from

the same viewpoint. This dataset consists of two part-

s: Part A and Part B. Images in Part A are randomly

crawled from the Internet, most of them have a large

number of people. Part B are taken from busy streets

of metropolitan areas in Shanghai. We have manual-

ly annotated both parts of images and will share this

dataset by request. Figure 1 shows some representa-

tive samples of this dataset.

2. Multi-column CNN for Crowd Counting

2.1. Density map based crowd counting

To estimate the number of people in a given image via

the Convolutional Neural Networks (CNNs), there are two

natural configurations. One is a network whose input is the

image and the output is the estimated head count. The other

one is to output a density map of the crowd (say how many

people per square meter), and then obtain the head count

by integration. In this paper, we are in favor of the second

choice for the following reasons:

1. Density map preserves more information. Compared

to the total number of the crowd, density map gives

the spatial distribution of the crowd in the given image,

and such distribution information is useful in many ap-

plications. For example, if the density in a small region

is much higher than that in other regions, it may indi-

cate something abnormal happens there.

2. In learning the density map via a CNN, the learned fil-

ters are more adapted to heads of different sizes, hence

more suitable for arbitrary inputs whose perspective

effect varies significantly. Thus the filters are more

semantic meaningful, and consequently improves the

accuracy of crowd counting.

2.2. Density map via geometryadaptive kernels

Since the CNN needs to be trained to estimate the crowd

density map from an input image, the quality of density

given in the training data very much determines the perfor-

mance of our method. We first describe how to convert an

image with labeled people heads to a map of crowd density.

If there is a head at pixel xi, we represent it as a delta func-

tion δ(x − xi). Hence an image with N heads labeled can

be represented as a function

H(x) =

N
∑

i=1

δ(x− xi).

To convert this to a continuous density function, we may

convolve this function with a Gaussian kernel[17] Gσ so

that the density is F (x) = H(x) ∗ Gσ(x). However, such

a density function assumes that these xi are independent

samples in the image plane which is not the case here: In

fact, each xi is a sample of the crowd density on the ground

in the 3D scene and due to the perspective distortion, and

the pixels associated with different samples xi correspond

to areas of different sizes in the scene.

Therefore, to accurately estimate the crowd density F ,

we need to take into account the distortion caused by the ho-

mography between the ground plane and the image plane.

Unfortunately, for the task (and datasets) at hand, we typ-

ically do not know the geometry of the scene. Neverthe-

less, if we assume around each head, the crowd is some-

what evenly distributed, then the average distance between

the head and its nearest k neighbors (in the image) gives a

reasonable estimate of the geometric distortion (caused by

the perspective effect).

Therefore, we should determine the spread parameter σ
based on the size of the head for each person within the

image. However, in practice, it is almost impossible to ac-

curately get the size of head due to the occlusion in many

cases, and it is also difficult to find the underlying relation-

ship between the head size the density map. Interesting we

found that usually the head size is related to the distance

between the centers of two neighboring persons in crowded

scenes (please refer to Figure 2). As a compromise, for the

density maps of those crowded scenes, we propose to data-

adaptively determine the spread parameter for each person

based on its average distance to its neighbors.1

For each head xi in a given image, we denote the dis-

tances to its k nearest neighbors as {di
1
, di

2
, . . . , dim}. The

average distance is therefore d̄i = 1

m

∑m

j=1
dij . Thus,

the pixel associated with xi corresponds to an area on the

ground in the scene roughly of a radius proportional to d̄i.
Therefore, to estimate the crowd density around the pixel

xi, we need to convolve δ(x − xi) with a Gaussian ker-

nel with variance σi proportional to d̄i, More precisely, the

1For the images given the density or perspective maps, we directly use

the given density maps in our experiments or use the density maps gener-

ated from perspective maps. For those data only contain very few persons

and the sizes of heads are similar, we use the fixed spread parameter for all

the persons.
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density F should be

F (x) =
N
∑

i=1

δ(x− xi) ∗Gσi
(x), with σi = βd̄i

for some parameter β. In other words, we convolve the la-

bels H with density kernels adaptive to the local geometry

around each data point, referred to as geometry-adaptive

kernels. In our experiment, we have found empirically

β = 0.3 gives the best result. In Figure 2, we have shown

so-obtained density maps of two exemplar images in our

dataset.

Figure 2: Original images and corresponding crowd density

maps obtained by convolving geometry-adaptive Gaussian

kernels.

2.3. Multicolumn CNN for density map estimation

Due to perspective distortion, the images usually contain

heads of very different sizes, hence filters with receptive

fields of the same size are unlikely to capture characteris-

tics of crowd density at different scales. Therefore, it is

more natural to use filters with different sizes of local re-

ceptive field to learn the map from the raw pixels to the

density maps. Motivated by the success of Multi-column

Deep Neural Networks (MDNNs) [8], we propose to use

a Multi-column CNN (MCNN) to learn the target density

maps. In our MCNN, for each column, we use the filters

of different sizes to model the density maps corresponding

to heads of different scales. For instance, filters with larg-

er receptive fields are more useful for modeling the density

maps corresponding to larger heads.
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Figure 3: The structure of the proposed multi-column con-

volutional neural network for crowd density map estima-

tion.

The overall structure of our MCNN is illustrated in Fig-

ure 3. It contains three parallel CNNs whose filters are with

local receptive fields of different sizes. For simplification,

we use the same network structures for all columns (i.e.,

conv–pooling–conv–pooling) except for the sizes and num-

bers of filters. Max pooling is applied for each 2×2 region,

and Rectified linear unit (ReLU) is adopted as the activation

function because of its good performance for CNNs [32].

To reduce the computational complexity (the number of pa-

rameters to be optimized), we use less number of filters for

CNNs with larger filters. We stack the output feature maps

of all CNNs and map them to a density map. To map the

features maps to the density map, we adopt filters whose

sizes are 1 × 1 [21]. Then Euclidean distance is used to

measure the difference between the estimated density map

and ground truth. The loss function is defined as follows:

L(Θ) =
1

2N

N
∑

i=1

∥F (Xi; Θ)− Fi∥
2

2
, (1)

where Θ is a set of learnable parameters in the MCNN. N
is the number of training image. Xi is the input image and

Fi is the ground truth density map of image Xi. F (Xi; Θ)
stands for the estimated density map generated by MCNN

which is parameterized with Θ for sample Xi. L is the loss

between estimated density map and the ground truth density

map.

Remarks i) Since we use two layers of max pooling, the

spatial resolution is reduced by 1

4
for each image. So in the

training stage, we also down-sample each training sample

by 1

4
before generating its density map. ii) Conventional C-

NNs usually normalize their input images to the same size.

Here we prefer the input images to be of their original sizes

because resizing images to the same size will introduce ad-

ditional distortion in the density map that is difficult to es-

timate. iii) Besides the fact that the filters have different

sizes in our CNNs, another difference between our MCNN

and conventional MDNNs is that we combine the outputs of

all CNNs with learnable weights (i.e.,1×1 filters). In con-

trast, in MDNNs proposed by [8], the outputs are simply

averaged.

2.4. Optimization of MCNN

The loss function (1) can be optimized via batch-based

stochastic gradient descent and backpropagation, typical for

training neural networks. However, in reality, as the num-

ber of training samples are very limited, and the effect of

gradient vanishing for deep neural networks, it is not easy

to learn all the parameters simultaneously. Motivated by the

success of pre-training of RBM [11], we pre-train CNN in

each single column separately by directly mapping the out-

puts of the fourth convolutional layer to the density map.

We then use these pre-trained CNNs to initialize CNNs in

all columns and fine-tune all the parameters simultaneously.
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2.5. Transfer learning setting

One advantage of such a MCNN model for density es-

timation is that the filters are learned to model the density

maps of heads with different sizes. Thus if the model is

trained on a large dataset which contains heads of very dif-

ferent sizes, then the model can be easily adapted (or trans-

ferred) to another dataset whose crowd heads are of some

particular sizes. If the target domain only contains a few

training samples, we may simply fix the first several layer-

s in each column in our MCNN, and only fine-tune the last

few convolutional layers. There are two advantages for fine-

tuning the last few layers in this case. Firstly, by fixing the

first several layers, the knowledge learnt in the source do-

main can be preserved, and by fine-tuning the last few lay-

ers, the models can be adapted to the target domain. So the

knowledge in both source domain and target domain can be

integrated and help improve the accuracy. Secondly, com-

paring with fine-tuning the whole network, fine-tuning the

last few layers greatly reduces the computational complex-

ity.

3. Experiments

We evaluate our MCNN model on four different dataset-

s – three existing datasets and our own dataset. Although

comparing to most DNN based methods in the literature, the

proposed MCNN model is not particularly deep nor sophis-

ticated, it has nevertheless achieved competitive and often

superior performance in all the datasets. In the end, we al-

so demonstrate the generalizability of such a simple model

in the transfer learning setting (as mentioned in section 2.5).

Implementation of the proposed network and its training are

based on the Caffe framework developed by [14].

3.1. Evaluation metric

By following the convention of existing works [28][33]

for crowd counting, we evaluate different methods with

both the absolute error (MAE) and the mean squared error

(MSE), which are defined as follows:

MAE =
1

N

N
∑

1

|zi − ẑi|, MSE =

√

√

√

√

1

N

N
∑

1

(zi − ẑi)2

(2)

where N is the number of test images, zi is the actual num-

ber of people in the ith image, and ẑi is the estimated num-

ber of people in the ith image. Roughly speaking, MAE
indicates the accuracy of the estimates, and MSE indicates

the robustness of the estimates.

3.2. Shanghaitech dataset

As exiting datasets are not entirely suitable for evalua-

tion of the crowd count task considered in this work, we

introduce a new large-scale crowd counting dataset named

Shanghaitech which contains 1198 annotated images, with

a total of 330,165 people with centers of their heads anno-

tated. As far as we know, this dataset is the largest one in

terms of the number of annotated people. This dataset con-

sists of two parts: there are 482 images in Part A which

are randomly crawled from the Internet, and 716 images in

Part B which are taken from the busy streets of metropolitan

areas in Shanghai. The crowd density varies significantly

between the two subsets, making accurate estimation of the

crowd more challenging than most existing datasets. Both

Part A and Part B are divided into training and testing: 300

images of Part A are used for training and the remaining

182 images for testing;, and 400 images of Part B are for

training and 316 for testing. Table1 gives the statistics of

Shanghaitech dataset and its comparison with other dataset-

s. We also give the crowd histograms of images in this

dataset in Figure 4. If the work is accepted for publication,

we will release the dataset, the annotations, as well as the

training/testing protocol.
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Figure 4: Histograms of crowd counts of our new dataset.

To augment the training set for training the MCNN, we

cropped 9 patches from each image at different location-

s, and each patch is 1/4 size of the original image. Al-

l the patches are used to train our MCNN model. For

Part A, as the crowd density is usually very high, we use

our geometry-adaptive kernels to generate the density map-

s, and the predicted density at overlapping region is calcu-

lated by averaging. For Part B, since the crowd is relatively

sparse, we use the same spread in Gaussian kernel to gen-

erate the (ground truth) density maps. In our implementa-

tion, we first pre-train each column of MCNN independent-

ly. Then we fine-tune the whole network. Figure 5 shows

examples of ground truth density maps and estimated den-

sity maps of images in Part A.

We compare our method with the work of Zhang et

al. [33], which also uses CNNs for crowd counting and

achieved state-of-the-art accuracy at the time. Following

the work of [33], we also compare our work with regres-

sion based method, which uses Local Binary Pattern (LBP)

features extracted from the original image as input and uses

ridge regression (RR) to predict the crowd number for each

image. To extract LBP features, each image is uniformly
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Table 1: Comparation of Shanghaitech dataset with existing datasets: Num is the number of images; Max is the maximual

crowd count; Min is the minimal crowd count; Ave is the average crowd count; Total is total number of labeled people.

Dataset Resolution Num Max Min Ave Total

UCSD 158× 238 2000 46 11 24.9 49,885

UCF CC 50 different 50 4543 94 1279.5 63,974

WorldExpo 576× 720 3980 253 1 50.2 199,923

Shanghaitech
Part A different 482 3139 33 501.4 241,677

Part B 768× 1024 716 578 9 123.6 88,488

Test image Ground-truth Estimation Test image Ground-truth Estimation

Figure 5: The ground truth density map and estimated density map of our MCNN Model of two test images in part A

divided into 8 × 8 blocks in Part A and 12 × 16 blocks in

Part B, then a 59-dimensional uniform LBP in each block

is extracted and all uniform LBP features are concatenated

together to represent the image. The ground truth is a 64D

or 192D vector where each entry is the total number of per-

sons in corresponding patch. We compare the performances

of all the methods on Shanghaitech dataset in Table 2.

The effect of pretraining in MCNN. We show the effect

of our model without pretraining on Shanghaitech dataset

Part A in Figure 6. We see that pretrained network out-

performs the network without pretraining. The result veri-

fies the necessity of pretraining for MCNN as optimization

starting from random initialization tends to fall into local

minima.

Single column CNNs vs MCNN. Figure 6 shows the

comparison of single column CNNs with MCNN on Shang-

haitech dataset Part A. It can be seen that MCNNs signifi-

cantly outperforms each single column CNN for both MAE

and MSE. This verifies the effectiveness of the MCNN ar-

chitecture.
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Figure 6: Comparing single column CNNs with MCNN and

MCNN w/o pretraining on Part A. L, M, S stand for large

kernel, medium kernel, small kernel respectively.

Comparison of different loss functions. We evaluate the

performance of our framework with different loss function-

s. Other than mapping the images to their density maps,

we can also map the images to the total head counts in the

image directly. For the input image Xi (i = 1, . . . , N ), its

total head count is zi, and F (Xi; Θ) stands for the estimat-

ed density map and Θ is the parameters of MCNN. Then we

arrive the following objective function:

L(Θ) =
1

2N

N
∑

i=1

∥

∥

∥

∫∫

S

F (Xi; Θ)dxdy − zi

∥

∥

∥

2

(3)

Here S stands for the spatial region of estimated density

map, and ground truth of the density map is not used. For

this loss, we also pretrain CNNs in each column separate-

ly. We call such a baseline as MCNN based crowd count

regression (MCNN-CCR). Performance based on such loss

function is listed in Table 2, which is also compared with

two existing methods as well as the method based on densi-

ty map estimation (simply labeled as MCNN). We see that

the results based on crowd count regression is rather poor.

In a way, learning density map manages to preserve more

information of the image, and subsequently helps improve

the count accuracy.

In Figure 7, we compare the results of our method with

those of Zhang et al. [33] in more details. We group the

test images in Part A and Part B into 10 groups according

to crowd counts in an increasing order. We have 182+316

test images in Part A and Part B. Except for the 10th group

which contains 20+37 images, other groups all have 18+31

images each. From the plots in the figure, we can see that

our method is much more accurate and robust to large vari-

ation in crowd number/density.
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Table 2: Comparing performances of different methods on

Shanghaitech dataset.

Part A Part B

Method MAE MSE MAE MSE

LBP+RR 303.2 371.0 59.1 81.7

Zhang et al. [33] 181.8 277.7 32.0 49.8

MCNN-CCR 245.0 336.1 70.9 95.9

MCNN 110.2 173.2 26.4 41.3
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Figure 7: Comparison of our method to Zhang et al. [33]

on Shanghaitech dataset: We evenly divided our test im-

ages into 10 groups according to increasing number of peo-

ple. Absolute count in the vertical axis is the average crowd

number of images in each group.

3.3. The UCF CC 50 dataset

The UCF CC 50 dataset is firstly introduced by H.

Idrees et al. [12]. This dataset contains 50 images from

the Internet. It is a very challenging dataset, because of not

only limited number of images, but also the crowd count

of the image changes dramatically. The head counts range

between 94 and 4543 with an average of 1280 individuals

per image. The authors provided 63974 annotations in total

for these fifty images. We perform 5-fold cross-validation

by following the standard setting in [12]. The same data

augmentation approach as in that in Shanghaitech dataset.

Table 3: Comparing results of different methods on the

UCF CC 50 dataset.

Method MAE MSE

Rodriguez et al. [26] 655.7 697.8

Lempitsky et al. [17] 493.4 487.1

Idrees et al. [12] 419.5 541.6

Zhang et al. [33] 467.0 498.5

MCNN 377.6 509.1

We compare our method with four existing methods on

UCF CC 50 dataset in Table 3. Rodriguez et al. [26] em-

ploys density map estimation to obtain better head detec-

tion results in crowd scenes. Lempitsky et al. [17] adopts

dense SIFT features on randomly selected patches and the

MESA distance to learn a density regression model. The

method presented in [12] gets the crowd count estimation

by using multi-source features. The work of Zhang et al.

[33] is based on crowd CNN model to estimate the crowd

count of an image. Our method achieves the best MAE, and

comparable MSE with existing methods.

3.4. The UCSD dataset

We also evaluate our method on the UCSD dataset [4].

This dataset contains 2000 frames chosen from one surveil-

lance camera in the UCSD campus. The frame size is

158× 238 and it is recoded at 10 fps. There are only about

25 persons on average in each frame (Please refer to Table

1) The dataset provides the ROI for each video frame.

By following the same setting with [4], we use frames

from 601 to 1400 as training data, and the remaining 1200

frames are used as test data. This dataset does not satisfy as-

sumptions that the crowd is evenly distributed. So we fix the

σ of the density map. The intensities of pixels out of ROI

is set to zero, and we also use ROI to revise the last convo-

lution layer. Table 4 shows the results of our method and

other methods on this dataset. The proposed MCNN model

outperforms both the foreground segmentation based meth-

ods and CNN based method [33]. This indicates that our

model can estimate not only images with extremely dense

crowds but also images with relative sparse people.

Table 4: Comparing results of different methods on the

UCSD dataset.

Method MAE MSE

Kernel Ridge Regression [1] 2.16 7.45

Ridge Regression [7] 2.25 7.82

Gaussian Process Regression [4] 2.24 7.97

Cumulative Attribute Regression [6] 2.07 6.86

Zhang et al. [33] 1.60 3.31

MCNN 1.07 1.35

3.5. The WorldExpo’10 dataset

WorldExpo’10 crowd counting dataset was firstly intro-

duced by Zhang et al. [33]. This dataset contains 1132 an-

notated video sequences which are captured by 108 surveil-

lance cameras, all from Shanghai 2010 WorldExpo. The au-

thors of [33] provided a total of 199,923 annotated pedestri-

ans at the centers of their heads in 3980 frames. 3380 frames

are used in training data. Testing dataset includes five dif-

ferent video sequences, and each video sequence contains

120 labeled frames. Five different regions of interest (ROI)

are provided for the test scenes.

In this dataset, the perspective maps are given. For fair
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Table 5: Mean absolute errors of the WorldExpo’10 crowd counting dataset.

Method Sence1 Sence2 Sence3 Sence4 Sence5 Average

LBP + RR 13.6 59.8 37.1 21.8 23.4 31.0

Zhang et al. [33] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN 3.4 20.6 12.9 13.0 8.1 11.6

comparison, we followed the work of [33], generated the

density map according to perspective map with the relation

σ = 0.2 ∗ M(x), M(x) denotes that the number of pixels

in the image representing one square meter at that location.

To be consistent with [33], only ROI regions are considered

in each test scene. So we modify the last convolution layer

based on the ROI mask, namely, setting the neuron corre-

sponding to the area out of ROI to zero. We use the same

evaluation metric (MAE) suggested by the author of [33].

Table 5 reports the results of different methods in the five

test video sequences. Our method also achieves better per-

formance than Fine-tuned Crowd CNN model [33] in terms

of average MAE.

3.6. Evaluation on transfer learning

To demonstrate the generalizability of the learned model

in our method, we test our method in the transfer learning

setting by using the Part A of Shanghaitech dataset as the

source domain and using the UCF CC 50 dataset as the tar-

get domain. Specifically, we train a MCNNs model with

data in the source domain. For the crowd counting task in

the target domain, we conduct two settings, i.e., (i) no train-

ing samples in the target domain, and (ii) There are only a

few samples in the target domain. For case (i), we direct-

ly use our model trained on Part A of Shanghaitech dataset

for evaluation. For case (ii), we use the training samples

in the target domain to fine-tune the network. The perfor-

mance of different settings is reported in Table 6. The ac-

curacy differences between models trained on UCF CC 50

and Part A are similar (377.7 vs 397.7), which means the

model trained on Part A is already good enough for the

task on UCF CC 50. By fine-tuning the last two layers

of MCNN with training data on UCF CC 50, the accura-

cy can be greatly boosted (377.7 vs. 295.1). However, if

the whole network is fine-tuned rather than only the last

two layers, the performance drops significantly (295.1 vs

378.3), but still comparable (377.7 vs 378.31) with the M-

CNN model trained with the training data of the target do-

main. The performance gap between fine-tuning the whole

network and fine-tuning the last couple of layers is perhaps

due to the reason that we have limited training samples in

the UCF CC 50 dataset. Fine-tuning the last two layers en-

sures that the output of the model is adapted to the target

domain, and keeping the first few layers of the model in-

tact ensures that good features/filters learned from adequate

data in the source domain will be preserved. But if the w-

hole network is fine-tuned with inadequate data in the target

domain, the learned model becomes similar to that learned

with only the training data in the target domain. Hence the

performance degrades to that of the model learned in the

latter case.

Table 6: Transfer learning across datasets. “MCNN w/o

transfer” means we train the MCNN using the training data

in UCF CC 50 only, and data from the source domain are

not used. “MCNN trained on Part A” means we do not use

the training data in the target domain to fine-tune the MCNN

trained in the source domain.

Method MAE MSE

MCNN w/o transfer 377.7 509.1

MCNN trained on Part A 397.7 624.1

Finetune the whole MCNN 378.3 594.6

Finetune the last two layers 295.1 490.23

4. Conclusion

In this paper, we have proposed a Multi-column Convo-

lution Neural Network which can estimate crowd number

accurately in a single image from almost any perspective.

To better evaluate performances of crowd counting meth-

ods under practical conditions, we have collected and la-

belled a new dataset named Shanghaitech which consists of

two parts with a total of 330,165 people annotated. This

is the largest dataset so far in terms of the annotated heads

for crowd counting. Our model outperforms the state-of-art

crowd counting methods on all datasets used for evaluation.

Further, our model trained on a source domain can be easily

transferred to a target domain by fine-tuning only the last

few layers of the trained model, which demonstrates good

generalizability of the proposed model.
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