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Abstract

For spectral embedding/clustering, it is still an open
problem on how to construct an relation graph to reflect the
intrinsic structures in data. In this paper, we proposed an
approach, named Relation Discovery based Slow Feature
Analysis (ReD-SFA), for feature learning and graph con-
struction simultaneously. Given an initial graph with only
a few nearest but most reliable pairwise relations, new reli-
able relations are discovered by an assumption of reliability
preservation, i.e., the reliable relations will preserve their
reliabilities in the learnt projection subspace. We formulate
the idea as a cross entropy (CE) minimization problem to
reduce the discrepancy between two Bernoulli distribution-
s parameterized by the updated distances and the existing
relation graph respectively. Furthermore, to overcome the
imbalanced distribution of samples, a Boosting-like strate-
gy is proposed to balance the discovered relations over all
clusters. To evaluate the proposed method, extensive ex-
periments are performed with various trajectory clustering
tasks, including motion segmentation, time series cluster-
ing and crowd detection. The results demonstrate that ReD-
SFA can discover reliable intra-cluster relations with high
precision, and competitive clustering performance can be
achieved in comparison with state-of-the-art.

1. Introduction

Trajectory clustering provides benefits for many vision
tasks, such as motion segmentation [24]], object detection
[4], action recognition [31] and scene modeling [32]. As
trajectories often lie in a low dimensional subspace, spec-
tral methods have been widely used, where trajectories will
be firstly embedded into a low dimensional feature space
before clustering. However, it is still an open problem to
construct an appropriate relation graph by which the intrin-
sic structures in data can be well encoded.

With original (x,y) sequence representation of trajec-
tories, the most straightforward way to construct relation
graph is to calculate the distance (e.g., Euclidian distance)
between all pairs of samples, and remain a number of pair-
wise relations with the smallest distances through K near-
est neighbor (K-NN) criterion or €-ball neighbor criterion.
However, it is difficult to capture the true reliable relation-
s by setting a constant k or € for all samples and different
datasets. A large k or € may induce wrong relations due to
the high dimensionality and variant distribution densities of
samples, while a small one may miss true relations.

From another aspect, if efficient features can be extracted
in advance, it will be much easier to construct reliable rela-
tion graph. For trajectory clustering, some hand-crafted fea-
tures, such as velocity [8]] and high-order derivatives [14],
have been adopted before graph construction. Thus, it may
be better to do feature learning and relation discovery joint-
ly, instead of the one-step graph construction.

In this paper, given a small number of initial reliable rela-
tions which can be obtained by selecting the nearest neigh-
borhood relations in original space X, we will discover new
relations with e-ball neighbor criterion in the low dimen-
sional feature space Y, where the € can be estimated by an
assumption of reliability preservation, i.e., the reliable rela-
tions will preserve their reliabilities in the feature space.

The process is illustrated in Fig[T] The left two figures
show the data samples of two clusters (denoted by blue and
green stars) in original space X, and the dash line indicates
the projection direction learnt by the current relations (red
links). In projection space Y (right figures), some pairwise
relations are enhanced greatly, as their distances in feature
space Y are even smaller than the distances of some initial
reliable relations. Thus, the enhanced relations can be dis-
covered as new reliable relations based on which the projec-
tion direction can be further corrected (left bottom). With
such progress, the samples of intra-cluster will be concen-
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Figure 1. Illustration of the learning process of ReD-SFA.

trated more closely in the new space Y’ (right bottom).

In this work, we proposed ReD-SFA to jointly construc-
t relation graphs and learn features, where Slow Feature
Analysis (SFA) [34] is chosen as the basic feature learning
algorithm. In summary, the efforts of this paper include:

e The idea of joint graph construction and feature learn-
ing is formulated as a problem of cross entropy min-
imization, which aims to reduce the discrepancy be-
tween two Bernoulli distributions parameterized by the
updated distances and the relation graph respectively.

e For efficient optimization, the original objective func-
tion is relaxed to its upper bound, so that the solution is
well compatible with the GSFA. Furthermore, all pa-
rameters can be selected automatically.

e Furthermore, to overcome the problem of imbalance
distribution of data samples, a Boosting-like strategy
is proposed to improve the balance of discovered rela-
tions over different clusters.

e Extensive experiments are performed with various
clustering tasks, e.g., motion segmentation, time series
clustering and crowd detection. The competitive per-
formance demonstrates the effectiveness of ReD-SFA.

2. Related Work

For spectral based trajectory clustering, the primary
problem is how to construct the affinity graph to measure
the pairwise relations between trajectories. In previous
work, there are mainly two kinds of methods on the prob-
lem: similarity based methods and learning based methods.

For similarity based methods [4] [21], the similarities be-
tween all pairs of trajectories need to be calculated based
on original trajectories or other trajectory features. Various
hand-crafted features, e.g., velocity [4] [8] [38], high order
motion models [[14] [21], and Principle Components Anal-
ysis (PCA) coefficients [1]], are proposed. Another impor-

tant issue is to design a good similarity metric, especially to
overcome the problem of trajectories with varying lengths
and misalignment. The commonly used similarity metric-
s include Euclidean distance [1], Hausdorff distance [15],
Dynamic Time Warping (DTW)[18]], and Edit Distance on
Real sequence (EDR) [7]], etc. A comparison on different
similarity metrics can be found in [36].

For learning based methods, the subspace segmentation
(clustering) [35] [IL1] [20] [24] have achieved impressive
performance for point trajectory clustering. In their work,
one step of subspace recovery is performed firstly, where
each trajectory is reconstructed by other samples based on
self-expressiveness property|11]. Then, the sparse coeffi-
cients are used to build the affinity matrix for subsequent
spectral clustering. The main challenge is how to handle
the noises in trajectories [20]. For this problem, variant al-
gebraic regularization terms, such as affine projection [35],
agglomerative lossy compression (ALC)[24]], low rank [20]],
sparse [L1], and epipolar constraint [[17]],has been proposed.
Recently, Wang et.al, [33]] combined sparse and low rank
constraint to promote the robustness of subspace clustering.

Our work is close to the manifold clustering methods,
such as LLMC[16] and SMCE[10], which try to find rela-
tions and a projection to a lower-dimensional space of data.
Different with the work which adopted local linear assump-
tion to learn neighbor weights in original space, we discov-
er reliable relations in feature space iteratively. Our work is
also related to information theoretic based subspace models
[9][27] which adopted mutual information metric to mea-
sure the divergence between class labels and transformed
features. While, this work focuses on unsupervised learn-
ing with a problem of cross entropy minimization.

In this work, SFA is adopted to learn trajectory features.
SFA has been used for unsupervised invariance learning
in visual neural cell modeling [34] [3] and feature extrac-
tion in pattern recognition, e.g., digit recognition [2], scene
classification [26], behavior recognition [37] [25]. In [12]
the SFA is generalized from temporal sequences to relation
graphs for supervised dimensionality reduction. Here, we
will extend the GSFA to unsupervised clustering based on
joint relation discovery and feature learning.

3. ReD-SFA
3.1. Problem definition and initialization

Given a collection of data points X = [x1, ..., X,] for x; €
R9, ReD-SFA will learn a projection matrix P = [py,...,p,]
and construct a relation graph composed of a Boolean ma-
trix A = {§;;} and a real value matrix W = {w;; } simulta-
neously, so that P'x; (€ R¢) is the intrinsic low-dim rep-
resentation of x;, &; € {1,0} indicates whether the rela-
tion of the ith sample and the jth one can be measured by
l;; = |[P'x; — P'x/|| reliably or not, and w;; € [0,1] de-
notes the confidence degree of §;;.
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At initialization, only the first m nearest relations in o-
riginal space are set to 1 in A°, otherwise 0. WY is set as
follows, while the superscript O denotes the initial stage,
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where l?j = ||x; —x;||2 and t is a scale factor.

3.2. Objective function

Assuming a Boolean variable r;; € {1,0} indicates the
intra-cluster relation or not between x; and x;, which can
be modeled with a Bernoulli distribution described by 1;;
in feature space as well as another Bernoulli distribution
based on w;; in relation graph, the ReD-SFA aims to re-
duce the discrepancy between the two distributions. Thus
a cross entropy (CE) based objective function is adopted as
follows.

min Z H(fWijvflij) 2

i,Ji#]

The cross entropy H ( Jwijs fl,-,-) (abbreviated by H;;) is cal-
culated [[19]:

Hij=— Y fuw,(rj)Inf,(r;), 3)

l‘,‘jE{l,O}

where the Bernoulli distribution fi; (r;;) is defined as:

A, (xij) =By, (1= By) ™"
= [5ijPr(rij = l;l,’j,5,'j = 1)+ (1 —5,'j)Pr(l‘jj = 1;],‘]’,5,']‘ = O)]ri}

1-r;j
[S[jPr(l‘,‘j =0;l,'j,6,'j = 1)+(1 75[1')137‘(1','}' = O;I[j,&j = 0)] Yij

4)
We define Pl’(l’l'j = 1;lij7 8,‘]' = 1) = % + %eilfzi to be larg_
er than % with the assumption of local consistency [39],
i.e.,nearby points are likely to have the same cluster label.
Otherwise, 6,-.,' = 0 means the distance l;; is too far to mea-
sure the reliability, thus Pr(r;; = 1;1;;,6;; = 0) is decided
by a threshold € as } — %e’gz which is smaller than ;.

Similarly, we can define fw,(r;;) with the type of E-
ql4] where Pr(ri; = 1;w;;, 8 =1) = 1+ fwij and Pr(r;; =
Liwij, 6 =0) = 5 — 3 Wij.

With the above definitions, Eq{Z] can be summarized
as a function of P, A and W. In the optimization,
however, it is very complex to compute the deriva-
tive of P directly, due to the logarithmic term. For

efficiency, an auxiliary variable n < % is introduced,

so that % + %e*xz is approximated by % + (% . 77) e,xz
and § — %e_xz is replaced by 1 — (1 fn)e—xz. S.

ince —ln(%—k(%—n)e’xz) < —ln((l—n)e”‘z) and

—In (% — (% — r’) e—xz) < —In (ne—xz), H;j in Eq can
be relaxed to the upper bound function J;;,

Jij =8ijwij|[PTx; = PTx;|3+ (1 - 8wi))e?

] )

Detailed derivations are shown in supplemental materials.

Additionally, one regularization term is added to avoid
2
the divergence from initial WY, i.e., JI-VJV = (wi = W?J-) .
Thus, the final objective function is as follows:

n
: w
guin X, [+ (1=2)75] ©
L]

where A is a trade-off parameter in [0, 1].
3.3. Optimization

Step 1: Given A and W, Eq[6|can be transformed into

- T T T T\
min Z [Aéijw,-jTr ((P X,'—P Xj) (P X,‘—P Xj) >:| .
L]
)

As presented in GSFA [[12], P can be optimized by solving
the generalized eigenvalue problem,

AP = TBP (8)

where the derivative covariance matrix A is calculated as:

1 n
A= X Adywi(xi—x)) (xi—x))" ©)
i

with R=37,,;A6;jw;;. And the matrix B is as:

N xR (x—x) T
B_Vi;/lv,(x, ) (x; —X) (10)

where V =Y7" | v; withv; = ):;le A6;jwij, and X is the mean
value of all data samples.

Step 2: Given P and W, §;; can be simply updated with
the following rule:

1, L j <eEg,

v {O, Otherwise. (D
where the € should remain most initial relations 51.0. =1 still
reliable in the feature space. Meanwhile, it should be tight
enough to avoid noise relations. The selection of € will be
discussed in the next section.

Step 3: Given A and P, the optimization of w;; can be
obtained by calculating the first derivative for each w;;, then
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let it equal to zero.

A 2 = .

o (g5 =1
o A 1—

w?j—l—mlnu—", 5ij:0~

(12)
Note, w;; should be limited in the range of [0, 1].

3.4. Selection of parameters
3.4.1 Selection of ¢

In this work, € indicates the threshold of reliable distances
in feature space. As shown in Eq[IT] a pairwise relation will
be considered to be reliable, if the distance is smaller than
€. According to the assumption of reliability preservation, €
is estimated as the percentile of a very high percentage (e.g.
98th percentile), given the distribution of reliable relations.

Here, we find the reliable relation set L = {li 61 = 1}
can be well modeled by alpha-stable distribution. Figure
[2(a)] shows one example of the histogram of distances on a
trajectory set in Hopkins 155 dataset [28]]. The distribution
has a typical heavy right tail which cannot be modeled by
common normal distribution.

Thus, we firstly estimate the alpha-stable distribution
with the set L, after the optimization of P at each round.
Then, € is calculate as the percentile value of a given very
high percentage ¢, i.e.,

€ = Percentile (q|o, 8,7, L) (13)

where, o, 3, y and p are the four parameters in alpha-stable
distribution. o € (0,2] describes the tail of the distribution.
B € [—1,1] is the skewness. The last two parameters are the
scale v > 0, and the location i € R, which are similar to the
variance and mean in normal distribution. Here, a toolbox
[29]] is used for the estimation of alpha-stable distribution.

3.4.2 Selection of A and 1

In Eq@ A controls the balance between J;; and Jiv}/ . And
7N controls the increment speed of w;; in Eq Here, in-
stead of setting a constant value A and 7 over all relations
empirically, the two parameters are set for each relation in-
dividually. The priors come from the contextual informa-
tion of a given sample pair. For the ith sample and the jth

(@ (®)
Figure 2. (a) An example to show the heavy-tailed distribution of
L. (b)Objective function vs. the number of learning iterations.

Algorithm 1 ReD-SFA Algorithm

Require: A%, W0, X

Ensure: P, AW
1: A=A% W = W0 and Calculate A, n with Eq and Eq
2: Calculate J with Eq[]

3: while 1 do
4:  Update P with GSFA [33] to solve the problem in Eq. [7]
5:  Estimate € with Eq[T3]
6:  Update §;;, where §;; € A with Eq
7:  Update W with Eq. [I2]
8 Calculate new J' with Eqld]
9: ifJ <J' then
10: break;
11:  endif
122 J=J

13: end while

sample, as the increasing of the number of shared reliable
neighborhoods, the relation r;; is more likely to be reliable,
so that it should favor more weight to J;; and a higher incre-
ment speed of w;;. Based on the above idea, 4;; and n;; are
determined as follows.

S Z

t
Zij T
/’{'ij = T]g tij

1 Zjj -F
m=2<—é)ew (15)

where zfj is the number of shared neighborhoods, i.e.,

(14)

2} = Lkarij O A 8y and z; is the total number of reli-
able neighborhoods, i.e., zﬁj = Yhktij 61.(,){ vV 5,%, and 7 is the
mean value over all pairs of samples. As z} ; =0, asmall
value is set to 4;; and 7;;, e.g., %

Finally, the ReD-SFA is summarized in Alg[l}] Fig-
ure shows an instance on how the objective function
changes with respect to the number of iterations. In our ex-
periments, the ReD-SFA usually halts within 5 iterations.

3.5. Boosting ReD-SFA

As presented above, ReD-SFA discovers reliable rela-
tions based on a few nearest neighborhoods. However, due
to the imbalanced distribution of densities among different
clusters, the initial reliable relations may be from only high-
density clusters. In such case, the relations discovered by
ReD-SFA will not cover all clusters.

To address this problem, we adopt the idea of boosting
learning to run the ReD-SFA in several rounds to discover
relations from all clusters. At each new round of ReD-SFA,
the data samples uncovered in previous rounds are selected
out to form a candidate set ®@. Then, the ReD-SFA is imple-
mented only over the pairwise relations in ®. Finally, all the
discovered relations are gathered to form the final relation
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Ground Truth

Initial Relations In Run 1 Run 1
Total True c1 c2 C3 Prec. Rec. :
Run 1 32122 32122 0 172 31950 100% 26.6% i 2
Run 2 33702 33624 6 1648 31970 99.8% 27.8% ’ -3
Run 3 34152 34074 456 1648 31970 99.8% 28.2% ;
Ground Truth 120868 2450 10506 107912 - -

£ ) ] ] n 1 ?

Figure 3. Illustration of Boosting-like ReD-SFA. The table shows the distributions of the discovered relations over different clusters in the
three runs of ReD-SFA. The “ground truth” denotes the number of true intra-cluster relations in each clusters.

graph and the GSFA is performed again to obtain the final
feature representation.

Figure [3] shows an example of the implementation pro-
cess of boosting ReD-SFA, where the trajectories covered
by the discovered relations in each run of ReD-SFA (the
last three sub-figures) are labeled as red color. Besides, the
statistics of the discovered relations in each round are pre-
sented in the table. The high precisions (Prec. = True/Total)
indicate that most discovered relations are intra-cluster re-
lations. The imbalance distributions of the relation discov-
ery over the three clusters are also shown in the last row
(Ground Truth), where the cluster “C1” has a much small
proportion (only 2%) over the total intra-cluster relations,
while the cluster “C3” is the most prevalent one. As shown
in the figure, the first run of ReD-SFA concentrates on the
cluster “C3”, because the initial relations are mainly on this
cluster (the second sub-figure from left), the second round
is mainly for the cluster “C2”, and so on. The multiple runs
of ReD-SFA improve the balance of the discovered rela-
tions. The right bottom figure shows the final feature rep-
resentation, where the well-separated clusters can be easily
grouped by simple clustering algorithms, e.g., K-means.

4. Experimental Results
4.1. Motion segmentation on Hopkins 155 dataset

The Hopkins 155 dataset [28] has become a standard
benchmark to evaluate trajectory clustering algorithms. The
dataset provides 155 trajectories sets with 2 or 3 motion cat-
egories as well as the ground truth of all trajectories.

Both parameters of ReD-SFA are percentage type. One
is m which denotes the first m nearest relations are select-
ed in initial graph, the other is ¢ indicating the percentile
threshold € for relation discovery. In this work, m ranges
from 1% to 10%, g ranges from 92% to 99%. Furthermore,
PCA is performed as preprocessing, like in SFA [34] and
GSFA [12]. For all sets, the dimensionality of PCA is set to
9, and the final is further reduced to 3 after ReD-SFA.

To better understand the properties of the ReD-SFA on
relation discovery and feature learning, we pick out 20 tra-
jectory sets with three motions for a set of controlled tests.
On this set, GSFA and ReD-SFA are performed with the
same initial relation graph in terms of the first m nearest
pairwise relations. Fig[4]shows the clustering errors of GS-
FA and ReD-SFA over the 20 sets along with different m
values, where ¢ is fixed to 95%. From the two figures, it is
not surprised that the overall errors of ReD-SFA are much
lower than that of GSFA, where the blue colors denote low
errors (it is better shown in color). Furthermore, for GSFA,
the necessary percentages of initial relations to obtain low
errors are also variant. For example, the 7th set needs at
least 8% to obtain a low error rate, and the 16th set needs
above 10%. Thus, the sensitivity to m makes GSFA difficult
to set a constant value over all sets. While for ReD-SFA, it
achieves lower errors only using small m values with the
helps of relation discovery.

We find on the 18th set, the clustering errors of GSFA
over all m values are very high (around 40% displayed by
orange color), while for ReD-SFA, the errors are very low
(below 10%) with only small number of initial relations.
Thus, we further analyze the discovered relations on the set.
Based on the ground truth (labels) of trajectories, we check
whether each relation discovered by the ReD-SFA is intra-
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Figure 4. The error rates with variant initial parameters m over the
20 sets in Hopkins Dataset. This graphic should be seen in color.

ID of Trajectory Sets
ID of Trajectory Sets

756



Total D. Num. Prec./Rec.(TP Num.) [ Rec. C1 (TP Num.) [ Rec. C2 (TP Num.) [ Rec. C3 (TP Num.)
Per. of Nearest Neighbors in Initial Graph: 1%
Initial 1232 100% / 2.6% (1232) 0.27% (8) 2.79% (2490) 2.73% (3562)
ReD-SFA 9478 99.68% /19.91% (9448) 89.36% (2654) 11.78% (1855) 17.19% (4939)
Per. of Nearest Neighbors in Initial Graph: 3%
Initial 3696 100% / 7.79% (3696) 2.09% (62) 8.93% (1406) 7.75% (2228)
ReD-SFA 16946 95.82% /34.22% (16238) 67.31% (1999) 43.71% (6885) 25.6% (7354)
Per. of Nearest Neighbors in Initial Graph: 5%
Initial 6160 100% / 12.98% (6160) 3.64% (108) 15.81% (2490) 12.4% (3562)
ReD-SFA 21473 94.74% 1 42.87% (20344) 65.56% (1947) 56.37% (8879) 33.13% (9518)
Ground Truth 47450 [ 2970 [ 15750 [ 28730 |
Table 1. Results of Statistical Analysis on Pairwise Relation Discovery in the 18th set “2RT3RCT_A”.
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Figure 5. The features learnt by GSFA and ReD-SFA.

cluster relation or not. The statistical results are presented
in Tablem where the precision (Prec.) and recall (Rec.) are

defined as
TP.Num.

Prec. = ——— 1
" = Total. D.Num’ (16)
TP.Num.
Rec. = ——— 17
ec GroundTruth’ an

where TP.Num means the number of true positives,
Total.D.Num is the total number of discovered relations.
Besides the overall recall values, the recall values on the
three clusters are also reported indivally. Since we do not
distinguish the cluster labels of discovered relations, we on-
ly show the overall precisions.

From Table [T} we find that all initial relations are reli-
able intra-cluster relations in the three initial settings with
m = 1%,3%,5% (Precision is 100%). However, the dis-
tribution of initial relations is very imbalance on the three
clusters. The very little amount of relations in the 1st cluster
(the recall is only 2.09% with m = 3%) will make the fea-
tures of this cluster disperse in a large scale after the GSFA
learning, shown with red points in the left of Figure [5] It
explains the high errors of GSFA While since the Boosting-
like relation discovery, the recall values of all clusters can be
improved greatly, especially on the 1st cluster (from 2.09%
to 67.31% as m = 3%), so that the features learnt by ReD-
SFA are more centralized according to individual clusters
(right in Fig. [5).

Figure [0 presents the average errors of GSFA and ReD-
SFA over all 155 sets with different m and g values. Besides

Figure 6. The average errors of the GSFA and the ReD-SFA over
all 155 sets with different m values, when ¢ is fixed to 95%.

e-ball initialization, denoted by 1, we also test k-NN initial-
ization denoted by 2. From the figure, the performance of
the GSFA with k-NN initialization is clearly better than &-
ball initialization, because the k-NN initialization provides
more balanced distribution of initial relations. However, k-
NN initialization trends to introduce noise relations (inter-
cluster relations) as the increasing of m. The initial noise
relations will lead to a larger € in relation discovery, which
may introduce more noise relations in later stage. Thus, the
performance of ReD-SFA with k-NN initialization (black
circle) is worse than that of €-ball initialization (red star).

Compared to state-of-the-art methods, Tableg] shows the
average errors over the entire dataset. The compared meth-
ods include GPCA [30], ALC [24]], SSC [11], SCC [6], L-
RR [20]], RV [17], LLMC [16] and SMCE [10]]. From the
table, the recent work on the dataset has achieved very low
errors (below to 1%). However, these results are achieved
with specifical designs for 3D affine motion models or some
additional pre/post-processing. Overall, ReD-SFA is still
competitive with previous methods.

We also test the computational times on the Hopkins 155
dataset. On average, there are 296 trajectory samples per
set. The average number of frames per trajectory is 29. The
average time costs per trajectory of ReD-SFA as well as sev-
eral classical approaches are shown in Table 1. The results
of other approaches are taken from the work [20][[13]. ReD-
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GPCA’05 | ALC’10 | SCC’09 | SSC’13 | LRR’13 | RV’14 | LLMC’07 | SMCE’11 | ReD-SFA
total 10.02% 3.37% 2.70% 2.41% 1.59% 0.77% 4.80% 3.25% 2.19%
three | 28.66% 6.69% 5.89% 4.40% - 1.88% 8.85% 7.03% 3.98%
two 4.59% 2.4% 1.77% 1.83% - 0.44% 3.62% 2.15% 1.67%
Table 2. Clustering errors (%) on the entire Hopkins 155 dataset.

D | ”self-expressiveness” property, widely adopted in subspace

PAL Vit clustering is restrictive to the large misalignment. While,

\ \ the SMCE and the ReD-SFA based on local neighbor rela-

1. Normal 2. Cyclic 3. Increasing trend tionships are more reliable in general case and thus obtain

,\-,' "

4. Decreasing trend 5. Upward shift 6. Downward shift

Figure 7. Some samples from the CC Dataset.

SFA is implemented on a PC with Intel i7 2.1GHz. We can
see that the ReD-SFA achieves the lowest time cost because
of the close form solution in ReD-SFA, while other methods
needs more computing iterations in optimization.

Algorithm | SSC [11] | LRR [20] | ICLM[I3] | ReD-SFA

Avg. time (s) 94 1.9 1.4 1.2

Table 3. Average time cost (seconds) for the Hopkins 155 dataset.

4.2. Time series clustering on CC Dataset

In this section, we will test ReD-SFA with a more gen-
eral time series clustering task. The synthetic control charts
(CC) dataset contains 600 1D samples [22] for time series
classification and indexing. There are six classes: normal,
cyclic, increasing trend, decreasing trend, upward shift, and
downward shift. Each class has 100 samples, and the di-
mensionality of each sample is 60. Some samples are il-
lustrated in Figure |/, where misalignment widely occurs in
intra-class trajectories. We use the first 2, 3, 4, 5 and all 6
classes data to do clustering 5 times. For comparison, we
implement a DTW based spectral clustering method [36],
two subspace clustering algorithms, i.e., LRR [20] and SS-
C [IL1], and a manifold clustering algorithm, SMCE [10].
For ReD-SFA, LRR and SSC, PCA is firstly performed and
the first 9 principle components are remained. For SMCE,
we run the algorithm with the parameter setting of k = 10
(maximum neighbor size), A = 10 (trade-off parameter).

Table [] presents the errors of different clustering meth-
ods. The two subspace clustering methods cannot achieve
satisfying results. LRR fails to recover correct subspaces in
all clustering tasks. SSC is much better than LRR in 2 and
3 classes, however it still cannot achieve good performance,
as more classes are involved. That is mainly because the
assumption of global linear relationship among data, i.e.,

better performance. As more classes (5 and 6 classes), ReD-
SFA achieves lower errors than SCME due to the high preci-
sion of relation discovery. DTW shows impressive cluster-
ing results, due to its superior capability to correct the mis-
alignment. Compared to these methods, ReD-SFA achieves
much better results than subspace learning based methods,
and similar with DTW, which demonstrates the effective-
ness of ReD-SFA on the general time series clustering task.

Num. C | LRR SSC | SMCE | DTW | ReD-SFA
2 41.5% | 1.5% 0% 0% 0%
3 49.7% | 2.33% 0% 0% 0%
4 48.5% | 38% 0% 0.3% 0%
5 51.6% | 34.8% | 28.4% 4% 6.6%
6 60.5% | 44% | 43.2% | 24.7% 22.8%

Table 4. Clustering errors on the CC dataset.

4.3. Crowd detection on CUHK Crowd Dataset

In this section, we test ReD-SFA with crow detection
task in numerous and varied scenes. The CUHK crowd
dataset [23] includes 474 crowd videos with various densi-
ties and perspective scales from many different surveillance
environments. In [38] [23], coherent crowd motion pattern-
s are detected by tracklets clustering, where tracklets from
300 video clips are manually annotated into groups for eval-
vation. Some samples are illustrated in the last column of
Fig[0 where the tracklets indicated by the same color and
marker form one crowd group and the outliers that do not
belong to any groups are indicated by red plus.

For each frame, a set of tracklets with the same length is
selected by a sliding window. Then, ReD-SFA is performed
to discover the reliable intra-cluster relations among track-
lets. Finally, a number of crowd groups are identified as the
connected components in the relation matrix A, where the
groups with size of less than 3 are deemed as outliers.

Here, to reduce the serious effects of outliers often oc-
curring in real world scenes, we adopt a priori on crowd
motion, coherent neighbor invariance (CNI) in [38]], and
restrict the relation discovery of ReD-SFA only from the
coherent neighbors. With the prior, coherent neighbors a-
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Figure 8. Quantitative comparison on CUHK Dataset. The left
figure shows the NMI with varying parameter settings. The right
is the comparison results with other state-of-the-art methods.

mong tracklets are those spatial neighborhood relationships
persevered in several consecutive frames. The details on
CNI can refer to [38]. In their work, crowd groups are de-
termined through coherent filtering (CF) which removes the
unreliable relations with low velocity correlations in coher-
ent neighbors. Different from CF [38]] which explicitly cal-
culates the velocity correlation distance with strong priors
on crowd groups, ReD-SFA learns tracklet features auto-
matically based on original x-y coordinates.

As the number of crowd groups is assumed unknown in
[38] 23], Normalized Mutual Information (NMI) is adopt-
ed to measure the results quantitatively. The left of Fig[§]
shows the comparison results of ReD-SFA (¢ = 96% and
¢ =4) and CF with varying thresholds of velocity correla-
tions for CF, which are also used for the initialization of
ReD-SFA. Additionally, the results of ReD-SFA without
using CNI priori (blue square marker) are also presented.
From the results, the ReD-SFA with CNI priori (red cir-
cle marker) achieves higher clustering results than the CF
consistently at all settings. Compared to other methods, in-
cluding mixture of dynamic texture (DTM) [3]], hierarchical
clustering (HC) [13]], coherent filtering(CF) [38]] and collec-
tive transition (CT) [23], the results reported in are also
presented at the right of Fig[8] The result of ReD-SFA is
better than other methods except for the CT method which
adopts an additional Markov chain model to refine the clus-
tering results of CF with more dynamic information.

Some examples on the crowd detection results of CF and
ReD-SFA are presented in Fig. [0} As shown in the figure,
ReD-SFA obtain more accurate motion boundaries than CF.
It is worthy noting: Firstly, in the ground truth, the members
in the same group only need have a common goal and co-
herent motion direction, even they are moving at different
locations with far spatial distance. However, the relation-
s discovered by ReD-SFA encodes the spatial affinity based
on original tracklet representation. Thus, ReD-SFA tends to
obtain smaller crowd groups as spatial gaps exist between
group members. In some cases, e.g., the 3rd row and the 4th
row, such detection results are more consistent with com-
mon perception. Secondly, some outliers in ground truth
(red plus) are not well labeled. In the last row, the tracklets
located at the lady with white coat are mixed with her back
person, and labeled as outliers. In such cases, ReD-SFA ob-

Ground Truth ‘

Figure 9. Some crowd detection results on CUHK Dataset. Note,
the groups with the same color can be further distinguished by the
markers. This graphic should be seen in color for complete clarity.

tains more accurate segmentation results. In the first and
second row of Figl0] ReD-SFA merges some outlier points
(red plus in ground truth) with its around group. However,
it seems more coherent than the ground truth.

5. Conclusion

In this work, we proposed ReD-SFA for joint feature
learning and relations discovery for trajectory clustering.
Here, ReD-SFA is formulated as an problem of cross en-
tropy minimization which continuously reduces the discrep-
ancy between the updated pairwise similarities and the ex-
isting affinity graph, so that more reliable relations can be
discovered. Furthermore, a Boosting-like strategy is pro-
posed to tackle the imbalance of the discovered relations.
Benefitting from the relation discovery, competitive results
on different trajectory clustering tasks validate the proposed
method. In future, we will extend the ReD-SFA to other da-
ta sources, e.g., images or videos. And a scalable ReD-SFA
will be designed for large scale feature learning.
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