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Abstract

Feature matching is a key problem in computer vision

and pattern recognition. One way to encode the essen-

tial interdependence between potential feature matches is

to cast the problem as inference in a graphical model,

though recently alternatives such as spectral methods, or

approaches based on the convex-concave procedure have

achieved the state-of-the-art. Here we revisit the use of

graphical models for feature matching, and propose a be-

lief propagation scheme which exhibits the following advan-

tages: (1) we explicitly enforce one-to-one matching con-

straints; (2) we offer a tighter relaxation of the original cost

function than previous graphical-model-based approaches;

and (3) our sub-problems decompose into max-weight bi-

partite matching, which can be solved efficiently, leading to

orders-of-magnitude reductions in execution time. Experi-

mental results show that the proposed algorithm produces

results superior to those of the current state-of-the-art.

1. Introduction

The feature matching problem aims to find consistent

correspondences between two sets of features or points, and

is a key step in many tasks in computer vision and pattern

recognition including self-calibration, image registration,

and multiple object tracking[8, 23, 24]. While finding one-

to-one correspondences between local feature points can be

done efficiently, the problem becomes NP-hard as soon as

pairwise affinities are introduced, leading to a range of re-

laxation and approximation techniques.

Graphical models are often used to encode pairwise

matching problems as they naturally express the interdepen-

dence among a set of putative matches where each feature

can be matched only once. Bayati, Shah and Sharma[2]

first formulated feature matching as a MAP inference prob-

lem in a graphical model (without pairwise constraints) and

incorporating pairwise constraints was addressed by Duchi

et al. [9], and others[29]. The primary disadvantage of

the approach of Duchi et al. [9] is that convergence can-

not be guaranteed; Torresani, Kolmogorov and Rother[29]

addressed this limitation, devising a method which was con-

sidered the state-of-the-art at the time. Even so, the loose-

ness of the relaxation limited the extent to which the match-

ing quality could be guaranteed. This limitation served as

a primary motivator for recent approaches, and a shift away

from methods based on inference in graphical models.

A range of alternative approaches to the matching prob-

lem have been proposed (see [5] for a review). One ap-

proach has been to relax the one-to-one matching con-

straints, and to recover them later through post-processing;

this is the approach typically adopted by Spectral Matching

(SM) [7, 19], and Local Sparse Models (LSM)[15]. This

produces good results despite the lack of theoretical justifi-

cation for the post-processing step. The Convex-Concave

Relaxation Procedure (CCRP) used in [23, 33], in con-

trast, maintains the constraints, but involves solving a series

of non-convex optimization problems; it thus is not guar-

anteed to find a high-quality solution, and may converge

slowly. Despite these limitations the CCRP-based method

Factorised Graph Matching[33] is considered to be the cur-

rent state-of-the-art as its performance is superior to that of

competing methods in many scenarios.

In this paper, we revisit the problem of using graphical

models for feature matching. We find that graphical model

based feature matching can be both fast and accurate. We

first formulate the matching problem as MAP inference in a

graphical model with one-to-one matching constraints, and

use a tighter linear programming (LP) relaxation than has

previously been identified. We then propose an augmented

belief propagation scheme to solve the dual problem of the

LP relaxation. Unlike other dual methods such as [29], we

decompose the dual problem into sub-problems which ei-

ther can be efficiently solved in terms of max-weight bi-

partite matching (e.g. using the Hungarian algorithm), and

others which have a closed-form solution. Note that the de-

composition into sub-problems which can be cast as max-

weight bipartite matching is possible only because of the

specific form of our novel LP relaxation. The fact that such

a relaxation is available in turn depends on the nature of the
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one-to-one matching constraints, which is perhaps why a

corresponding approach has not been discovered for general

MAP inference problems. In this study, a classic Hungarian

method is adopted for max-weight bipartite matching, but it

should be noted that other methods (including fast approx-

imations) instead of the Hungarian algorithm could also be

used. Promising experimental results show the effective-

ness and efficiency of the proposed Hungarian-BP method.

2. Notation and Problem Formulation

Assume that we have two sets of features: the model

features M = {fM
ij |(i, j) ∈ [n] × [n]} and the data fea-

tures D = {fD
ij |(i, j) ∈ [n] × [n]}, where [n] denotes

the set {1, 2, . . . , n}. Each set consists of n unary features

and several pairwise features. Specifically, fM
ii , i ∈ [n]

and fD
jj , j ∈ [n] are unary features, while fM

ij , f
D
ij where

i, j ∈ [n], i 6= j are pairwise features. In a graph matching

problem, for example, the unary features might represent

nodes, and the pairwise features edges. We assume here

that M and D have the same size, though this can easily

be relaxed (e.g. to handle outliers) by generating additional

‘dummy’ points in either M or D. Feature matching is the

problem of finding the best correspondence between M and

D.

Given a correspondence vector yi = j (i ∈ [n], j ∈ [n]),
meaning that feature i in M corresponds to feature j in

D, finding an optimal one-to-one matching can be formu-

lated as a constrained MAP inference problem in a graphi-

cal model1,

y∗ =argmax
y

[

∑

i∈V

θi(yi) +
∑

{i,j}∈E

θij(yi, yj)

]

, (1)

s.t. ∀l ∈ [n],
∑

i∈V

✶(yi = l) = 1,

where yi ∈ {1, 2, . . . , n} and V = {1, 2, . . . , n}. The set

E ⊆ {{i, j}|i, j ∈ V} is known as the edge set. ✶(S) is

the indicator function, which outputs 1 if S is true and 0 if

S is false. θi(yi) and θij(yi, yj) are real-valued functions,

known as potentials and are given by

θi(yi) = φ(fM
ii , f

D
yiyi

),

θij(yi, yj) = ϕ(f
M
ij , f

D
yiyj

) + ϕ(f
M
ji , f

D
yjyi

), (2)

where φ and ϕ are real-valued functions, which measure the

similarity between the features (φ for unary features, and ϕ
for pairwise features). The edge set E is a subset of V×V,

which is defined as follows

E={{i, j}|∃yi, yj ∈ [n], s.t.θij(yi, vj) 6= 0}. (3)

1Details are provided in the supplementary file.

3. Inference by Iterative Bipartite Matching

Problem (1) is NP-hard in general, thus we search for

efficient and accurate approximations. Belief propagation

(BP) provides an efficient means of producing approximate

solutions[26, 32] for the MAP inference problem, and ex-

act solutions in certain specific cases. However, general

BP methods cannot encode one-to-one matching constraints

(as they introduce an interdependence among all variables),

thus unfortunately they can not be used to solve (1) di-

rectly. To address this problem, we propose an augmented

BP method for solving (1) using an LP relaxation. One

of the reasons to adopt LP relaxations is that they allow

a tighter approximation to the original cost function than

many other relaxations[18].

3.1. LP Relaxation and Its Dual

Previously, an LP relaxation was proposed via compo-

sition of roof-duality-relaxation and the one-to-one match-

ing constraints[29]. Then a dual decomposition method was

proposed to solve the relaxed problem. One drawback of the

relaxation in [29] is that it is relatively loose; thus it often

leads to inferior solutions. To improve the solution quality,

they added so called local sub-problems solved by exhaus-

tive search, which makes the resulting algorithm computa-

tionally expensive.

To overcome the issues of looseness and speed, we pro-

pose a new LP relaxation for (1), which provides a better

approximation than [29], and can be solved much more ef-

ficiently with a speed up of two orders of magnitude. First

we introduce the typical LP relaxation for an unconstrained

MAP inference problem,

max
µ∈▲

[

∑

i∈V

〈µi, θi〉+
∑

{i,j}∈E

〈µij , θij〉
]

, (4)

where 〈µi, θi〉 =
∑

yi
µi(yi)θi(yi), and 〈µij , θij〉 =

∑

yi,yj
µij(yi, yj)θij(yi, yj). The set ▲, known as the lo-

cal marginal polytope[30], is defined as

▲=







µ>0

∣

∣

∣

∣

∣

∣

∑

yi
µi(yi) = 1,

∑

yj
µij(yi, yj) = µi(yi),

∑

yi
µij(yi, yj) = µj(yj)







. (5)

In the LP relaxation (4), µi(yi) plays a similar role to a

permutation matrix by capturing a loose notion of a one-to-

one correspondence. Following this we propose the follow-

ing LP relaxation with one-to-one matching constraints:

max
µ∈▲

[

∑

i∈V

〈µi, θi〉+
∑

{i,j}∈E

〈µij , θij〉
]

, (6)

s.t. ∀l ∈ [n],
∑

i∈V

µi(l) = 1.
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Table 1. Introduced dual variables
Constraints Dual Variables

∀i ∈ V,
∑

yi
µi(yi) = 1 ui

∀l ∈ [n],
∑

i∈V
µi(l) = 1 vl

∀{i, j}, yi,
∑

yj
µij(yi, yj) = µi(yi) λj→i(yi)

∀{i, j}, yj ,
∑

yi
µij(yi, yj) = µj(yj) λi→j(yj)

In (6), the additional constraints
∑

i∈V
µi(l) = 1 enforce

the matrix mat(µ) with µi(yi) as its entry ith row and ythi
column to be a permutation matrix. As local marginal poly-

topes provide a more compact feasible set than roof-duality-

relaxations, the proposed LP relaxation constitutes a closer

approximation than the one in [29]. Commercial LP solvers

such as CPLEX can be used to solve problems such as (6)

but have been shown to be very slow in doing so[32] as

they do not exploit the particular structure of the problem.

We have thus tailor-made an efficient solver for this prob-

lem using dual coordinate descent and max-weight bipartite

matching.

The Lagrangian dual of previous LP-relaxation-based

BPs[26] only involves dual variables (i.e. Lagrange multi-

pliers), which are referred to as messages (i.e. λi→j(yj) and

λj→i(yi)). Thus a straightforward way to derive the dual of

(6) is to introduce dual variables for additional one-to-one

matching constraints in (6).

However, since µi(yi) serves a similar role to a permuta-

tion matrix, we find that introducing dual variables ui corre-

sponding to the constraints
∑

yi
µi(yi) = 1, and dual vari-

ables (i.e. vl) for the additional one-to-one matching con-

straints in (6) leads to a more clear connection between

the proposed dual and the max-weight bipartite matching

problem[3]. Introducing the dual variables in Table 1 yields

the dual problem below,

min
u,v,λ

g(λ,u,v) =
∑

i∈V

ui +
∑

l∈[n]

vl

+
∑

i∈V

max
yi

[

θi(yi) +
∑

j∈N(i)

λj→i(yi)− ui − vyi

]

+
∑

{i,j}∈E

max
yi,yj

[

θij(yi, yj)− λj→i(yi)− λi→j(yj)
]

, (7)

where u = [u1, . . . , un], v = [v1. . . . , vn], λ =
[λi→j(yj)]{i,j}∈E and N(i) = {j|{i, j} ∈ E} is the set

of neighbours of node i. The variables λ are referred to as

messages as in previous work[26].

A nice property of this dual problem is that one of its

sub-problems can be smoothly transformed to a max-weight

bipartite matching problem[3] (see Proposition 1), which

can be efficiently solved by the Hungarian algorithm and a

variety of other methods[11]. Without ui, the dual form is

not as convenient.

Since the variables u and v correspond to one-to-one

matching constraints, we name them matching variables

throughout the paper.

3.2. Sub­Problems Solved by Max­Weight Bipartite
Matching

Fixing λ, the problem of updating u and v in (7) be-

comes

min
u,v

∑

i∈V

max
yi

[

θi(yi) +
∑

j∈N(i)

λj→i(yi)− ui − vyi

]

+
∑

i∈V

ui +
∑

l∈[n]

vl. (8)

Instead of solving sub-problem (8) directly, one can solve

the following weighted bipartite matching problem

Primal:X⋆ = argmax
X

∑

i∈[n]

∑

l∈[n]

cil Xil (9a)

s.t.
∑

i∈[n]

Xil = 1;
∑

l∈[n]

Xil = 1;Xil > 0, ∀i, l,

Dual:[u⋆,v⋆] = argmin
u,v

∑

i∈V

ui +
∑

l∈[n]

vl (9b)

s.t. ui + vl > cil, ∀i, l,

where X is a permutation matrix and the coefficients cil are

determined via

cil = θi(l) +
∑

j∈N(i)

λj→i(l), ∀i, l ∈ [n].

Proposition 1. Sub-problem (8) is equivalent to the max-

weight bipartite matching problem in (9).

Proof. Associating ui to constraints
∑

l∈[n] Xil = 1 and vl
to constraints

∑

i∈[n] Xil = 1 results in the dual of (9a) as

follows,

h(u,v) =max
X>0

[

∑

i∈[n]

∑

l∈[n]

cil Xil−
∑

i∈[n]

ui(
∑

l∈[n]

Xil−1)

−
∑

l∈[n]

vl(
∑

i∈[n]

Xil−1)

]

=max
X>0

∑

i∈[n]

∑

l∈[n]

(cil − ui − vl)Xil +
∑

i∈[n]

ui +
∑

l∈[n]

vl.

Now we have two different approaches to further sim-
plify the dual. One approach is adding the constraints
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∑

l∈[n] Xil = 1, ∀i ∈ [n] back, which yields

h(u,v) =max
X>0

∑

i∈[n]

∑

l∈[n]

(cil − ui − vl)Xil

+
∑

i∈[n]

ui +
∑

l∈[n]

vl, s.t.
∑

l∈[n]

Xil = 1, ∀i ∈ [n]

=
∑

i∈[n]

max
l

(cil − ui − vl) +
∑

i∈[n]

ui +
∑

l∈[n]

vl

=
∑

i∈V

max
yi

[

θi(yi) +
∑

j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑

i∈V

ui +
∑

l∈[n]

vl.

The other approach is as follows

h(u,v) =
∑

i∈[n]

max
Xil>0

∑

l∈[n]

(cil − ui − vl)Xil +
∑

i∈[n]

ui +
∑

l∈[n]

vl

=

{
∑

i∈[n]

ui +
∑

l∈[n]

vl all cil − ui − vl 6 0,

+∞, otherwise.

Thus the two dual formulation (8) and (9b) are equivalent.

Various methods, for example the Hungarian algorithm,

can be used to determine the optimal u⋆, v⋆, as well as

the optimal assignment X⋆. In this study, we use the

classical Hungarian algorithm implemented by Jonker and

Volgenant[16]. However in practice the running time asso-

ciated with the bipartite matching method did not prove to

be a limiting factor.

Next, we show how to update λ. Here, at each step, we

choose some {i, j} ∈ E and update λj→i(yi), λi→j(yj)
with all other dual variables fixed. Thus the sub-problem

becomes

min
λj→i,λi→j

max
yi

[

θi(yi) +
∑

j′∈N(i)

λj′→i(yi)− ui − vyi

]

+max
yj

[

θj(yj) +
∑

j′∈N(j)

λj′→j(yj)− uj − vyj

]

+max
yi,yj

[

θij(yi, yj)− λj→i(yi)− λi→j(yj)
]

. (10)

Fortunately, a closed-form solution of (10) exists. Let

bi(yi) = θi(yi) +
∑

j∈N(i)

λj→i(yi)− ui − vyi
,

bij(yi, yj) = θij(yi, yj)− λj→i(yi)− λi→j(yj). (11)

By using a similar derivation as in [12], one MPLP-like

Algorithm 1: The Hungarian-BP procedure

input : Potentials θi(yi), i ∈ V, θij(yi, yj),{i, j} ∈ E;

MaxIter; threshold ǫ1 and ǫ2.
output: y

⋆.

1 fmax = −∞, u = 0, v = 0 ;

2 for k ∈ {1, 2, . . . ,MaxIter} do

3 for {i, j} ∈ E do

4 Compute λ⋆
j→i(yi) and λ⋆

i→j(yj) as in (12);

5 [λj→i(yi), λi→j(yj)]← [λ⋆
j→i(yi), λ

⋆
i→j(yj)];

6 Compute optimal u⋆, v⋆ and X⋆ of (9) by the Hungarian

algorithm;

7 [u,v]← [u⋆,v⋆];
8 Decode ŷ as in (13),

fk =
∑

i∈V

θi(ŷi) +
∑

{i,j}∈E

θij(ŷi, ŷj);

9 If fk > fmax then fmax = fk, y⋆ = ŷ;

10 gk ← current dual objective of (7);

11 if |fmax − gk| < ǫ1 or |gk − gk−1| < ǫ2 then

12 break;

closed-form solution of (10) is

λ⋆
j→i(yi)=λj→i(yi)−

1

2
bi(yi)

+
1

2
max
yj

[

bij(yi, yj)+bj(yj)
]

,

λ⋆
i→j(yj)=λi→j(yj)−

1

2
bj(yj)

+
1

2
max
yi

[

bij(yi, yj)+bi(yi)
]

. (12)

The overall procedure is summarized in Algorithm 1. We

call this Hungarian-BP, since the Hungarian algorithm is

used to update matching variables u and v, and BP updates

the messages λ. Since it is a dual method, we use a decod-

ing strategy to obtain a feasible integer (primal) solution.

Decoding In traditional belief propagation methods such

as MPLP[12], the integer solution is decoded via ȳi =
argmaxyi

bi(yi). When multiple maiximizers exist, one of

them (ȳi) can be chosen randomly. However, this scheme

may give rise to an infeasible integer solution. On the con-

trary, in our Hungarian-BP framework, as the optimal X⋆ is

also provided, a feasible ŷ can be decoded from X⋆ via

ŷi = argmax
l

Xil . (13)

We would like to point out that ŷi also maximizes bi(yi).

Remarks In other dual decomposition frameworks such

as [17, 31] for MAP inference, constraints are often consid-

ered as higher order potentials (HOPs), and they essentially
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consider the following sub-problem,

min
δ

max
y

[

θ(y)−
∑

i∈V

δi(yi)
]

+
∑

i∈V

max
yi

[

θ̄i(yi) + δi(yi)
]

,

where the high-order potential θ(y) enforces the one-to-one

matching constraints,

θ(y) =

{

0,
∑

i∈V
✶(yi = l) = 1, ∀l ∈ [n],

−∞, otherwise,

and θ̄i(yi) = θi(yi) +
∑

j∈N(i) λj→i(yi). Here δ are the

messages from the high-order term to node.

In our setting, one can show that one optimal δ∗ can be

obtained from the optimal u∗ and v∗ by δ∗i (yi) = −u∗
i −

v∗yi
, ∀i ∈ V, yi ∈ [n]. Expressing δ in terms of u and v

yields our sub-problem (9), which can be efficiently solved

as shown.

3.3. Fast Dual Objective Evaluation

In Hungarian-BP, the dual and primal objectives are eval-

uated iteratively. Dual objective evaluation can be expen-

sive because it requires a lot of maximization operations.

For example evaluating the dual via (7) has a time complex-

ity of O(n2|E |). Thus a fast evaluation of the dual objective

is desirable. For this purpose, we precisely arranged the or-

der of dual variable updates. In Algorithm 1, we update

messages first and then update matching variables. This is

because our framework has convenient properties given by

the following propositions.

Proposition 2. The closed-form solution of (10) in (12) sat-

isfies2

max
yi,yj

[

θij(yi, yj)− λ⋆
j→i(yi)− λ⋆

i→j(yj)
]

= 0.

Proposition 3. The optimal u⋆ and v⋆ of (8) satisfies that

∀i ∈ V

max
yi

[

θi(yi) +
∑

j∈N(i)

λj→i(yi)− u∗
i − v∗yi

]

= 0.

By these two properties, after message updating, at each

iteration of Algorithm 1, the dual objective can be evaluated

as

gk =
∑

i∈V

ui +
∑

l∈[n]

vl, (14)

because all other terms in (7) are zero. Using (14), we can

evaluate the dual with a time complexity of O(n) instead of

O(n2|E |).

2Proof of all propositions excepet Proposition 1 are provided in sup-

plementary file.

3.4. Analysis

In this section, we analyse the time complexity, conver-

gence and exactness conditions for Hungarian-BP.

Time complexity Hungarian-BP has a time complexity of

O(n3+ |E |n2) per iteration, which is much better than that

of [29] of O(n6|E |2) per iteration. In the Hungarian-BP

procedure, solving the weighted bipartite matching problem

has complexity O(n3). Finding closed-form solutions of

each small-scale problem like (10) has complexity O(n2).
As there are |E | such problems, the time complexity of each

iteration in total is O(n3 + |E |n2). The work of Torresani,

Kolmogorov and Rother[29] needs to solve a maxflow prob-

lem with n2 nodes and n2|E | edges at each iteration. Thus

the complexity per iteration is at least O(n6|E |2). Though

neither Hungarian matching nor max-flow are nearly as

slow as their worst-case running time might imply, in our

experiments we find that Hungarian-BP can be up to two

orders of magnitude faster than a max-flow-based approach.

In each iteration of our algorithm, other methods besides

the Hungarian algorithm could be used to solve weighted

bipartite matching problems as in (9). As far as we know,

the best complexity for solving (9) is O(n5/2 log(nC))3[11,

14, 25], where C = max cil. However, as in the worst case

|E | can be n2, solving weighted bipartite matching prob-

lems is not the bottleneck of the whole complexity. Thus

switching to a faster algorithm instead of the Hungarian al-

gorithm may only marginally improve the time complexity.

Convergence The dual objective of Hungarian-BP de-

creases at each iteration. By the fact that the dual objective

is bounded from below by the true MAP value, Hungarian-

BP provides a sequence of converged dual objectives.

Exactness Here we provide two sufficient conditions for

Hungarian-BP to provide exact solutions of the constrained

MAP inference problem.

Proposition 4. In each iteration of Algorithm 1,

after updating message and matching variables, if
∑

{i,j}∈E
bij(ŷi, ŷj) = 0, then ŷ is a solution of (1).

Proposition 5. If in Algorithm 1, for some k the two con-

ditions hold: (1) gk = gk−1; (2) for each bi(yi), there is a

unique maximizer ȳi = argmaxyi
bi(yi); then y⋆ is a solu-

tion of (1).

When there is a gap between the dual objective and

decoded integer solutions, various approaches including

cluster pursuit techniques[1, 27] and branch-and-bound

3To simplify the derivation, we assume that all cil are bounded.
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techniques[28] can be used to tighten the initial relax-

ation. In our implementation, we use a similar branch-

and-bound framework as [28], where the split strategies are

most-fractional-first. In each branch step of branch-and-

bound, we run the relaxation solver (with MaxIter=5 and

ǫ1 = ǫ2 = 10−6). If there is a gap between the dual ob-

jective and decoded primal, we use most-fractional-first to

select a node. Then we branch the state space of x in two

parts as follows. In one part the selected node must be as-

signed its current label, and in the other part it must not be

assigned to its current label. The branched state space is

organized as a queue and the procedure terminates once the

queue is empty or maximal iterations are reached.

4. Experiments

In this section, we apply Hungarian-BP4 to several

matching tasks. Our Hungarian-BP method is compared

with several existing popular and state-of-the-art matching

algorithms, including:

• the graduated assignment algorithm (denoted as “GA”

for short)[13];

• the spectral matching algorithm (denoted as “SM” for

short)[19];

• the spectral matching algorithm with affine constraints

(denoted as “SMAC” for short)[6];

• the integer projected fixed point matching algorithm

with initialization X0 = 1n×n/n (denoted as “IPFP-

U” for short)[20];

• the integer projected fixed point matching algorithm

with the result of SM as initialization (denoted as

“IPFP-S” for short)[20];

• the reweighted random walks matching algorithm (de-

noted as “RRWM” for short)[4];

• the factorized graph matching algorithm (denoted as

“FGM” for short)[33];

• the local sparse model matching algorithm (denoted as

“LSM” for short)[15];

• the MAP inference based dual decomposition match-

ing algorithm (denoted as “DD” for short)[29].

We conducted experiments on a server with two 12-core

Xeon X5650 CPUs and 96 GB memory. The seven algo-

rithms, GA, SM, SMAC, IPFP, RRWM, FGM5 and DD6

4The code is available at http://zzhang.org/software/.
5The code of “GA, SM, SMAC, IPFP, RRWM and FGM” is available

at http://humansensing.cs.cmu.edu/down_fgm.html
6http://pub.ist.ac.at/˜vnk/software/

GraphMatching-v1.01.src.zip

Figure 1. The four hand-written Chinese characters used in the

experiment, and typical matching results. In the matching results,

the red lines show the structure representations of characters given

by Liu et al. [23].

were based on public implementations, and the LSM al-

gorithm was implemented by us. Our algorithm is imple-

mented in Matlab with mex files. In the experiments we

set MaxIter = 5, and ǫ1 = ǫ2 = 10−6 for Algorithm 1.

Then if there is a gap between the dual objective and de-

coded primal, we run at most 600 branch-and-bound itera-

tions to tighten the bound. For LSM, we run at most 10000

iterations, or stop when the objective difference is less than

10−6, whichever comes first. For DD, we add the linear

subproblems, maxflow subproblems and local subproblems

with size 2 (for details on parameter settings we refer to

[29]). For all other algorithms, we use the same parameter

setting as [33].

4.1. Chinese Character Matching

As our first experiment we report feature matching re-

sults on four hand-written Chinese characters shown in Fig-

ure 1, where each character has 10 different samples[22].

In this experiment, we use the manually labelled feature

points (each character has 28, 23, 28 and 23 feature points)
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Table 2. Matching results on Chinese characters. The objective is normalized to [0, 1], and the best objective and accuracy are in bold. For

each character, we report the average performance on 45 matching problems.

GA SM IPFP-U IPFP-S SMAC RRWM FGM LSM DD Ours

Character1(Acc) 0.7429 0.4127 0.6690 0.4587 0.5849 0.8651 0.8246 0.1389 0.9119 0.9159

Character1(Obj) 0.8672 0.5964 0.9113 0.8416 0.7043 0.9256 0.9787 0.2104 1.0000 1.0000

Character1(Time) 0.0443 0.0290 0.0434 0.0686 0.0291 0.3819 4.7767 0.1978 2.2333 0.0948

Character2(Acc) 0.8937 0.6860 0.8116 0.8512 0.7643 0.9014 0.8280 0.3285 0.9140 0.9188

Character2(Obj) 0.9720 0.7690 0.9634 0.9609 0.8486 0.9942 0.9789 0.3977 1.0000 1.0000

Character2(Time) 0.0723 0.0194 0.0288 0.0397 0.0169 0.1894 4.2974 0.0335 0.9873 0.0914

Character3(Acc) 0.5762 0.7198 0.7087 0.8484 0.5278 0.7730 0.7698 0.1444 0.8778 0.8778

Character3(Obj) 0.6090 0.7532 0.9371 0.9483 0.6176 0.8902 0.9779 0.2482 0.9990 0.9999

Character3(Time) 0.0299 0.0207 0.0435 0.0600 0.0285 0.3883 4.6312 0.0346 5.1402 0.4438

Character4(Acc) 0.9314 0.8609 0.8754 0.9546 0.7681 0.9411 0.9353 0.3130 0.9961 0.9961

Character4(Obj) 0.9545 0.8290 0.9525 0.9838 0.8409 0.9740 0.9872 0.3792 1.0000 1.0000

Character4(Time) 0.0470 0.0214 0.0309 0.0449 0.0165 0.1840 3.7027 0.0247 0.8655 0.0625

and structure representations provided by Liu et al. [23]7.

The similarity between unary features is set to zero (i.e. φ
in (2)), and the similarity between pairwise features (i.e. ϕ
in (2)) is computed as follows

ϕij(k, l) = exp(−
1

2
|dMij − dDkl| −

1

2
|θMij − θDkl|)A

M
ij AD

kl,

where dMij is the Euclidean distance between feature points

i, j, θMij is the angle of edge ij in M, and similarly for dDkl
and θDkl in D. AD and AM are adjacency matrices of fea-

ture points in D and M provided by Liu et al. [23]. As in

[23], we test the algorithms on all possible sample pairs,

i.e. 45 pairs for each character pair. The experimental re-

sults are shown in Table 2, and typical matching results

by Hungarian-BP are shown in Figure 1. The proposed

Hungarian-BP uniformly obtains the best results in terms

of both accuracy and normalised objective. DD can pro-

duce results competitive with ours, however its speed is at

least 10 times slower than Hungarian-BP.

4.2. Wide Baseline Image Matching

In this section, we perform feature matching on the CMU

house sequence[4, 33]. The CMU house sequence con-

sists of 111 images of a toy house captured from different

view points. In each image there are 30 manually marked

landmark points with known correspondences. We have

matched all images spaced by 10, 20, . . . 90 frames and

compute the average performance per separation gap. In the

experiments, as in [33], the similarity between unary fea-

tures is set to zero (i.e. φ in (2)), and the similarity between

pairwise features (i.e. ϕ in (2)) is computed as follows,

ϕij(k, l) = exp(−(dMij − dDkl)
2/2500)AM

ij AD
kl,

where dMij and dDkl are Euclidean distances between two

landmarks points. AM and AD are adjacency matrices

7http://www.escience.cn/system/file?fileId=

62549

of landmark points created through Delaunay triangulation.

Results are shown in Figure 2, and we note that as the sep-

aration between frames increases, the accuracy of several

algorithms drops precipitously. The four methods: IPFP-S,

RRWM, FGM, and our Hungarian-BP exactly identify the

correct match in all scenarios. Furthermore, in our match-

ing BP, an upper bound of the matching problem is also

provided. Thus we can conclude that the objective provided

by our Hungarian-BP is within 0.5% of the global optimum.

4.3. Real­World Image Matching

In this section, we evaluate our method on the dataset

from [21], which consists of 30 pairs of images of cars

and 20 pairs of images of motorbikes from the Pascal 2007

dataset[10]. Each pair contains 30-60 ground-truth corre-

spondences and several outliers. The similarity measure

function φ and ϕ are the same as that of [33]. The results of

experiments without outliers are shown in Table 3. For fur-

ther investigation, we randomly added 1-20 outliers from

the background to the matching problems, with the result

shown in Figure 3.

Without outliers, our method always achieves the high-

est accuracy. It also achieves the best objective in the “Mo-

torbikes” dataset, and the second best in the “Car” dataset.

The speed of the Hungarian-BP is also quite competitive.

In the Motorbike dataset, DD achieves the second best ac-

curacy, but its speed is hundreds of times slower than that of

our method. In the Car dataset, FGM achieves the second

best accuracy, but its speed is 10 times slower than that of

Hungarian-BP. When outliers exist, the running time of our

algorithm increases with the number of outliers. However it

is sill faster than the FGM method. From Figure 3, we can

see that Hungarian-BP achieves the best accuracy in most

cases, and its normalized objectives are also quite close to

being the best.
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Figure 2. Matching results across image sequences with wide baseline.
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Figure 3. Matching results on real-world images. Typical matching result are shown on the left. Yellow lines indicate correct matches, blue

lines indicates incorrect matches, and green lines indicate matches between outliers. The results of DD are not shown due to the prohibitive

execution time.

Table 3. Matching results on real-world image matching, without outliers. The objective value is normalized to [0, 1]. The best accuracy

and objective are in bold, and the second best are in italic.

GA SM IPFP-U IPFP-S SMAC RRWM FGM LSM DD Ours

Car (Acc.) 0.6246 0.7381 0.7976 0.8281 0.7913 0.8841 0.9077 0.5706 0.8883 0.9218

Car (Obj.) 0.7283 0.8666 0.9398 0.9662 0.8787 0.9865 0.9991 0.7854 0.9533 0.9952

Car (Time) 0.0523 0.0936 0.0564 0.0639 0.0692 1.1546 11.2468 0.0519 278.9577 1.1974

Motor (Acc.) 0.7531 0.7764 0.8298 0.8565 0.8565 0.9258 0.9405 0.6465 0.9610 0.9713

Motor (Obj.) 0.8573 0.8928 0.9492 0.9617 0.9377 0.9962 0.9983 0.8103 0.9993 1.0000

Motor (Time) 0.0613 0.1237 0.0442 0.0542 0.0880 0.9423 9.4517 0.0572 206.1469 0.2986

5. Conclusions

We have shown that it is possible to formulate matching

problems as a constrained graphical model MAP inference

problem suitable for the application of a novel LP relax-

ation. The advantage of this relaxation is that, as we have

shown, it is possible using dual coordinate descent to de-

vise an efficient solver, which we have named Hungarian-

BP. Under certain conditions, the proposed LP relaxation is

tight, in which case the Hungarian-BP method is guaran-

teed to achieve the global optimum. Experiments show that

our algorithm often provides the best accuracy in real world

matching problems at a greatly reduced computational cost.
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