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Abstract

In this paper, we propose a novel approach for text detec-

tion in natural images. Both local and global cues are taken

into account for localizing text lines in a coarse-to-fine pro-

cedure. First, a Fully Convolutional Network (FCN) model

is trained to predict the salient map of text regions in a

holistic manner. Then, text line hypotheses are estimated by

combining the salient map and character components. Fi-

nally, another FCN classifier is used to predict the centroid

of each character, in order to remove the false hypotheses.

The framework is general for handling text in multiple ori-

entations, languages and fonts. The proposed method con-

sistently achieves the state-of-the-art performance on three

text detection benchmarks: MSRA-TD500, ICDAR2015 and

ICDAR2013.

1. Introduction

Driven by the increasing demands for many computer

vision tasks, reading text in the wild (from scene images)

has become an active direction in this community. Though

extensively studied in recent years, text spotting under un-

controlled environments is still quite challenging. Espe-

cially, detecting text lines with arbitrary orientations is an

extremely difficult task, as it takes much more hypothe-

ses into account, which drastically enlarges the searching

space. Most existing approaches are successfully designed

for detecting horizontal or near-horizontal text [3, 4, 15,

17, 2, 8, 6, 35, 23, 20, 27]. However, there is still a large

gap when applying them to multi-oriented text, which has

been verified by the low accuracies reported in the recent

ICDAR2015 competition for text detection [10].

Text, which can be treated as sequence-like objects

with unconstrained lengths, possesses very distinctive ap-

pearance and shape compared to generic objects. Conse-

quently, the detection methods in scene images based on
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Figure 1. The procedure of the proposed method. (a) An input im-

age; (b) The salient map of the text regions predicted by the Text-

Block FCN; (c) Text block generation; (d) Candidate character

component extraction; (e) Orientation estimation by component

projection; (f) Text line candidates extraction; (g) The detection

results of the proposed method.

sliding windows [8, 25, 3, 24, 17] and connected com-

ponent [16, 6, 4, 32, 28] have become mainstream in this

specific domain. In particular, the component-based meth-

ods utilizing Maximally Stable Extremal Regions (MSER)

[15] as the basic representations achieved the state-of-the-

art performance on ICDAR2013 and ICDAR2015 compe-

titions [11, 10]. Recently, [6] utilized a convolution neu-

ral network to learn highly robust representations of char-

acter components. Usually, the component grouping al-

gorithms including clustering algorithms or some heuristic

rules are essential for localizing text at a word or line level.

As an unconventional approach, [35] directly hits text lines

from cluttered images, benefiting from symmetry and self-

similarity properties of them. Therefore, it seems that both

local (character components) and global (text regions) in-

formation are very helpful for text detection.

In this paper, an unconventional detection framework for

multi-oriented text is proposed. The basic idea is to inte-

grate local and global cues of text blocks with a coarse-to-

fine strategy. At the coarse level, a pixel-wise text/non-text

salient map is efficiently generated by utilizing a Fully Con-

volutional Network (FCN) [12]. We show that the salient

map provides a powerful guidance for estimating orienta-

tions and generating candidate bounding boxes of text lines,

while combining it with local character components. More
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Figure 2. The illustration of feature maps generated by the Text-Block FCN. (a) Input images; (b)∼(f) The feature maps from

stage1∼stage5. Lower level stages capture more local structures, and higher level stages capture more global information; (g) The fi-

nal salient maps.
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Figure 3. The network architecture of the Text-Block FCN whose 5 convolutional stages are inherited from VGG 16-layer model. For

each stage, a deconvolutional layer (equals to a 1 × 1 convolutional layer and a upsampling layer) is connected. All the feature maps are

concatenated with a 1× 1 convolutional layer and a sigmoid layer.

specifically, the pipeline of the proposed detection frame-

work is shown in Fig. 1. First, a salient map is generated

and segmented into several candidate text blocks. Second,

character components are extracted from the text blocks.

Third, projections of the character components are used for

estimating the orientation. Then, based on the estimated

orientation, all candidate bounding boxes of text lines are

constructed by integrating cues from the components and

the text blocks. Finally, detection results are obtained by

removing false candidates through a filtering algorithm.

Our contributions are in three folds: First, we present a

novel way for computing text salient map, through learn-

ing a strong text labeling model with FCN. The text label-

ing model is trained and tested in a holistic manner, highly

stable to the large scale and orientation variations of scene

text, and quite efficient for localizing text blocks at the

coarse level. In addition, it is also applicable to multi-script

text. Second, an efficient method for extracting bounding

boxes of text line candidates in multiple orientations is pre-

sented. We show that the local (character components) and

the global (text blocks from the salient map) cues are both

helpful and complementary to each other. Our third contri-

bution is to propose a novel method for filtering false candi-

dates. We train an efficient model (another FCN) to predict

character centroids within the text line candidates. We show

that the predicted character centroids provide accurate posi-

tions of each character, which are effective features for re-

moving the false candidates. The proposed detection frame-

work achieves the state-of-the-art performance on both hor-

izontal and multi-oriented scene text detection benchmarks.

The remainder of this paper is organized as follows: In

Sec. 2, we briefly review the previously related work. In

Sec. 3, we describe the proposed method in detail, includ-

ing text block detection, strategies for multi-oriented text

line candidate generation, and false alarm removal. Exper-

imental results are presented in Sec. 4. Finally, conclusion

remarks and future work are given in Sec. 5.

2. Related Work

Text detection in natural images has received much

attention from the communities of computer vision and

document analysis. However, most text detection meth-

ods focus on detecting horizontal or near-horizontal text

mainly in two ways: 1) localizing the bounding boxes of

words [4, 3, 17, 15, 18, 33, 5, 6], 2) combining detection

and recognition procedures into an end-to-end text recogni-

tion method [8, 28]. Comprehensive surveys for scene text

detection and recognition can be referred to [30, 36].

In this section, we focus on the most relevant works

that are presented for multi-oriented text detection. Multi-
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oriented text detection in the wild is first studied by [31, 29].

Their detection pipelines are similar to the traditional meth-

ods based on connected component extraction, integrating

orientation estimation of each character and text line. [9]

treated each MSER component as a vertex in a graph, then

text detection is transferred into a graph partitioning prob-

lem. [32] proposed a multi-stage clustering algorithm for

grouping MSER components to detect multi-oriented text.

[28] proposed an end-to-end system based on SWT [4] for

multi-oriented text. Recently, a challenging benchmark for

multi-oriented text detection has been released for the IC-

DAR2015 text detection competition, and many researchers

have reported their results on it.

In addition, it is worth mentioning that both of the re-

cent approaches [25, 8, 6] and our method, which used the

deep convolutional neural network, have achieved superior

performance over conventional approaches in several as-

pects: 1) learn a more robust component representation by

pixel labeling with CNN [8]; 2) leverage the powerful dis-

crimination ability of CNN for better eliminating false pos-

itives [6, 35]; 3) learn a strong character/word recognizer

with CNN for end-to-end text detection [25, 7]. However,

these methods only focus on horizontal text detection.

3. Proposed Methodology

In this section, we describe the proposed method in de-

tail. First, text blocks are detected via a fully convolutional

network (named Text-Block FCN). Then, multi-oriented

text line candidates are extracted from these text blocks by

taking the local information (MSER components) into ac-

count. Finally, false text line candidates are eliminated by

the character centroid information. The character centroid

information is provided by a smaller fully convolutional

network (named Character-Centroid FCN).

3.1. Text Block Detection

In the past few years, most of the leading methods in

scene text detection are based on detecting characters. In

early practice [16, 18, 29], a large number of manually de-

signed features are used to identify characters with strong

classifiers. Recently, some works [6, 8] have achieved great

performance, adopting CNN as a character detector. How-

ever, even the state-of-the-art character detector [8] still per-

forms poorly at complicated background (Fig. 4 (b)). The

performance of the character detector is limited due to three

aspects: firstly, characters are susceptible to several condi-

tions, such as blur, non-uniform illumination, low resolu-

tion, disconnected stroke, etc.; secondly, a great quantity

of elements in the background are similar in appearance

to characters, making them extremely hard to distinguish;

thirdly, the variation of the character itself, such as fonts,

colors, languages, etc., increases the learning difficulty for

classifiers. By comparison, text blocks possess more dis-

tinguishable and stable properties. Both local and global

appearances of text block are useful cues for distinguishing

between text and non-text regions (Fig. 4 (c)).

Fully convolutional network (FCN), a deep convolu-

tional neural network proposed recently, has achieved great

performance on pixel level recognition tasks, such as ob-

ject segmentation [12] and edge detection [26]. This kind

of network is very suitable for detecting text blocks, owing

to several advantages: 1) It considers both local and global

context information at the same time.; 2) It is trained in an

end-to-end manner; 3) Benefiting from the removal of fully

connected layers, FCN is efficient in pixel labeling. In this

section, we learn a FCN model, named Text-Block FCN, to

label salient regions of text blocks in a holistic way.

Figure 4. The results of a character detector and our method. (a)

An input image; (b) The character response map, which is gener-

ated by the state-of-the-art method [8]; (c) The salient map of text

regions, which is generated by the Text-Block FCN.

Text-Block FCN We convert the VGG 16-layer net [22]

into our text block detection model that is illustrated in

Fig. 3. The first 5 convolutional stages are derived from

the VGG 16-layer net. The receptive field sizes of the con-

volutional stages are variable, contributing to that different

stages can capture context information with different sizes.

Each convolutional stage is followed by a deconvolutinal

layer (equals to a 1 × 1 convolutional layer and a upsam-

pling layer) to generate feature maps of the same size. The

discriminative and hierarchical fusion maps are then the

concatenation in depth of these upsampled maps. Finally,

the fully-connected layers are replaced with a 1 × 1 con-

volutional layer and a sigmoid layer to efficiently make the

pixel-level prediction.

In the training phase, pixels within the bounding box of

each text line or word are considered as the positive region

for the following reasons: firstly, the regions between ad-

jacent characters are distinct in contrast to other non-text

regions; secondly, the global structure of text can be in-

corporated into the model; thirdly, bounding boxes of text

lines or words are easy to be annotated and obtained. An

example of the ground truth map is shown in Fig. 5. The

cross-entropy loss function and stochastic gradient descent

are used to train this model.

In the testing phase, the salient map of text regions, lever-

aging all context information from different stages, is com-

puted by the trained Text-Block FCN model at first. As
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shown in Fig. 2, the feature map of stage-1 captures more

local structures like gradient (Fig. 2 (b)), while the higher

level stages capture more global information (Fig. 2 (e) (f)).

Then, the pixels whose probability is larger than 0.2 are re-

served, and the connected pixels are grouped together into

several text blocks. An example of the text block detection

result is shown in Fig. 1 (c).

(a) (b)

Figure 5. The illustration of the ground truth map used in the train-

ing phase of the Text-Block FCN. (a) An input image. The text

lines within the image are labeled with red bounding boxes; (b)

The ground truth map.

(a) (b)
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Figure 6. (a) The line chart about the counting number of compo-

nents in different orientations. The right direction has the maxi-

mum value (red circle), and the wrong direction has smaller value

(green circle); (b) The red line and green line correspond to circles

on the line chart.

3.2. Multi­Oriented Text Line Candidate Genera­
tion

In this section, we introduce how to form multi-oriented

text line candidates based on text blocks. Although the text

blocks detected by the Text-Block FCN provide coarse lo-

calizations of text lines, they are still far from satisfactory.

To further extract accurate bounding boxes of text lines, tak-

ing the information about the orientation and scale of text

into account is required. Character components within a

text line or word reveal the scale of text. Besides, the ori-

entation of text can be estimated by analyzing the layout of

the character components. At first, we extract the character

components within the text blocks by MSER [16]. Then,

similar to many skew correction approaches in document

analysis [19], the orientation of the text lines within a text

block is estimated by component projection. Finally, text

line candidates are extracted by a novel method that effec-

tively combines block-level (global) cue and component-

level (local) cue.

Character Components Extraction. Our approach

uses MSER [16] to extract the character components

(Fig. 1(d)) since MSER is insensitive to variations in scales,

orientations, positions, languages and fonts. Two con-

straints are adopted to remove the most of false compo-

nents: area and aspect ratio. Specifically, the minimal area

ratio of a character candidate needs to be more than the

threshold T1, and the aspect ratio of them must be limited to

[ 1

T2

, T2]. Under these two constraints, the most of the false

components are excluded.

Orientation Estimation. In this paper, we assume that

text lines from the same text block have a roughly uniform

spatial layout, and characters from one text line are in the

arrangement of straight or near-straight line. Inspired by

projection profile based skew estimation algorithms in doc-

uments analysis [19], we propose a projection method ac-

cording to counting components, in order to estimate the

possible orientation of text lines. Suppose the orientation of

text lines within a text block is θ, and the vertical-coordinate

offset is h, we can draw a line across the text block (as the

green or red line is shown in Fig. 6(b)). And the value

of counting components Φ(θ, h) equals the number of the

character components that are passed through by the line.

Since the component number in the right direction often has

the maximum value, the possible orientation θr can be eas-

ily found if we have statistics on the peak value of counting

component in all directions (Fig. 6(a)). By this means, θr
can be easily calculated as the following formulation:

θr = argmax
θ

max
h

Φ(θ, h) (1)

where Φ(θ, h) represents the number of components when

the orientation is θ and the vertical-coordinate offset is h.

Text Line Candidate Generation. Different from com-

ponent based methods [16, 4, 6], the process of generating

text line candidates in our approach does not require to catch

all the characters within a text line, under the guidance of a

text block. First, we divide the components into groups. A

pair of the components (A and B) within the text block α

are grouped together if they satisfy following conditions:

2

3
<

H(A)

H(B)
<

3

2
, (2)

−
π

12
< O(A,B)− θr(α) <

π

12
, (3)

where H(A) and H(B) represent the heights of A and B,

O(A,B) represents the orientation of the pair, and θr(α) is

the estimated orientation of α.

Then, for one group β = {ci}, ci is i-th component, we

draw a line l along the orientation θr(α) passing the center
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of β. The point set P is defined as:

P = {pi}, pi ∈ l ∩ B(α), (4)

where B(α) represents the boundary points of α.

Finally, the minimum bounding box bb of β is computed

as a text line candidate:

bb =
⋃

{p1, p2, ...pi, c1, c2, ..., cj}, pi ∈ P, cj ∈ β, (5)

where
⋃

denotes the minimum bounding box that contains

all points and components.

(a) (b)

(c) (d)

Figure 7. The illustration of text line candidate generation. (a) The

character components within a text block are divided into groups;

(b) The middle red point is the center of a group and the other

two red points belong to P ; (c) The minimum bounding box is

computed as a text line candidate; (d) All the text line candidates

of this text block are extracted.

Fig. 7 illustrates this procedure. We repeat this proce-

dure for each text block to obtain all the text line candidates

within an image. By considering both of the two level cues

at the same time, our approach has two advantages com-

pared to component based methods [16, 4, 6]. First, under

the guidance of text blocks, MSER components are not re-

quired to catch all characters accurately. Even though some

characters are missed or partially detected by MSER, the

generation of text line candidates will not be affected (such

as the three candidates found at Fig. 7). Second, the pre-

vious works [29, 9, 32] of multi-oriented text detection in

natural scenes usually estimate the orientation of text based

on the character level with some fragile clustering/grouping

algorithms. This kind of methods is sensitive to missing

characters and non-text noise. Our method estimates the

orientation from the holistic profile by using a projection

method, which is more efficient and robust than character

clustering/grouping based methods.

3.3. Text Line Candidates Classification

A fraction of the candidates generated in the last stage

(Sec. 3.2) are non-text or redundancy. In order to remove

false candidates, we propose two criteria based on the char-

acter centroids of text line candidates. To predict the char-

acter centroids, we employ another FCN model, named

Character-Centroid FCN.

Character-Centroid FCN The Character-Centroid FCN

is inherited from the Text-Block FCN (Sec. 3.1), but only

the first 3 convolutional stages are used. Same as the Text-

Block FCN, each stage is followed by a 1× 1 convolutional

layer and a upsampling layer. The fully-connected layers

are also replaced with a 1× 1 convolutional layer and a sig-

moid layer. This network is trained with the cross-entropy

loss function as well. In general, the Character-Centroid

FCN is a small version of the Text-Block FCN.

Several examples along with ground truth maps are

shown in Fig. 8. The positive region of the ground truth

map consists of the pixels whose distance to the character

centroids is less than 15% of the height of the corresponding

character. In the testing phase, we can obtain the centroid

probability map of a text line candidate at first. Then, ex-

treme points E = {(ei, si)} on the map are collected as

the centroids, where ei represents i-th extreme point, and si
represents the score defined as the value of the probability

map on ei. Several examples are shown in Fig. 9.

In order to remove false candidates, two intuitive yet ef-

fective criteria based on intensity and geometric properties

are adopted, after the centroids are obtained:

Intensity criterion. For a text line candidate, if the num-

ber of the character centroids nc < 2, or the average score

of the centroids savg < 0.6, we regard it as a false text line

candidate. The average score of the centroids is defined as:

savg =
1

nc

nc
∑

i=1

si, (6)

Geometric criterion. The arrangement of the charac-

ters within a text line candidate is always approximated to

a straight line. We adopt the mean of orientation angles µ

and the standard deviation σ of orientation angles between

the centroids to characterize these properties. µ and σ are

defined as:

µ =
1

nc

nc
∑

i=1

nc
∑

j=1

O(ei, ej), (7)

σ =

√

√

√

√

1

nc

nc
∑

i=1

nc
∑

j=1

(O(ei, ej)− µ)2, (8)

where O(ei, ej) denotes the orientation angle between ei
and ej . In practice, we only reserve the candidates whose

µ < π
32

and σ < π
16

.

Through the above two constraints, the false text line

candidates are excluded, but there are still some redundant

candidates. To further remove the redundant candidates, a

standard non-maximum suppression is applied to remain-

ing candidates, and the score that used in non-maximum

suppression is defined as the sum of the score of all the cen-

troids.

4. Experiments

To fully compare the proposed method with competing

methods, we evaluate our method on several recent stan-
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(a) (b)

Figure 8. The illustration of the ground truth map used for train-

ing the Character-Centroid FCN. (a) Input images; (b) The ground

truth maps. The white circles in (b) indicate the centroid of char-

acters within the input images.

(a) (b)

Figure 9. Examples of probability maps predicted by the

Character-Centroid FCN. (a) Input images; (b) The probability

maps of character centroids.

dard benchmarks: ICDAR2013, ICDAR2015 and MSRA-

TD500.

4.1. Datasets

We evaluate our method on three datasets, where the first

two are multi-oriented text datasets, and the third one is a

horizontal text dataset.

MSRA-TD500. The MSRA-TD500 dataset introduced

in [29], is a multi-orientation text dataset including 300

training images and 200 testing images. The dataset con-

tains text in two languages, namely Chinese and English.

This dataset is very challenging due to the large variation in

fonts, scales, colors and orientations. Here, we followed the

evaluation protocol employed by [29], which considers both

of the area overlap ratios and the orientation differences be-

tween predictions and the ground truth.

ICDAR2015 - Incidental Scene Text dataset. The IC-

DAR2015 - Incidental Scene Text dataset is the benchmark

of ICDAR2015 Incidental Scene Text Competition. This

dataset includes 1000 training images and 500 testing im-

ages. Different from the previous ICDAR competition, in

which the text are well-captured, horizontal, and typically

centered in images, these datasets focus on the incidental

scene where text may appear in any orientation and any lo-

cation with small size or low resolution. The evaluation

protocol of this dataset inherits from [14]. Note that this

competition provides an online evaluation system and our

method is evaluated in the same way.

Unlike MSRA-TD500, in which the ground truth is

marked at the sentence level, the annotations of IC-

DAR2015 are word level. To satisfy the requirement of

ICDAR 2015 measurement, we perform the word partition

on the text lines generated by our method according to the

blanks between words.

ICDAR2013. The ICDAR 2013 dataset is a horizontal text

database which is used in previous ICDAR competitions.

This dataset consists of 229 images for training and 233 im-

ages for testing. The evaluation algorithm is introduced by

[11] and we evaluate our method on the ICDAR2013 online

evaluation system. Since this dataset also provides word-

level annotations, we adopt the same word partition proce-

dure as we did on ICDAR 2015 dataset.

4.2. Implementation Details

In the proposed method, two models are used: the Text-

Block FCN is used to generate text salient maps and the

Character-Centroid FCN is used to predict the centroids of

characters. Both of the two models are trained under the

same network configuration. Similar to [12, 26], we also

use fine-tuning with the pre-trained VGG-16 network. The

two models both are trained 20×105 iterations in all. Learn-

ing rates start from 10−6, and are multiplied by 1

10
after

10×105 and 15×105 iterations. Weight decays are 0.0001,

and momentums are 0.9. No dropout or batch normalization

is used in our model.

All training images are harvested from the training set

of ICDAR2013, ICDAR2015 and MSRA-TD500 with data

augmentation. In the training phase of the Text-Block FCN,

we randomly crop 30K 500 × 500 patches from the im-

ages as training examples. To compute the salient map in

the testing phase, each image is proportionally resized to

three scales, where the heights are 200, 500 and 1000 pixels

respectively. For the Character-Centroid FCN, the patches

(32 × 256 pixels) around the word level ground truth are

collected as training examples. We randomly collect 100K
patches in the training phase. In the testing phase, we rotate

text line candidates to horizontal orientation and proportion-

ally resize them to 32 pixels height. For all experiments,

threshold values are: T1 = 0.5%, T2 = 3.

The proposed method is implemented with Torch7 and

Matlab (with C/C++ mex functions) and runs on a work-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Detection examples of the proposed method on MSRA-TD500 and ICDAR2013.

(a) (b) (c)

(d) (e) (f)

Figure 11. Several failure cases of the proposed method.

station(2.0GHz 8-core CPU, 64G RAM, GTX TitanX and

Windows 64-bit OS) for all the experiments.

4.3. Experimental Results

MSRA-TD500. As shown in Tab. 1, our method outper-

forms other methods in both precision and recall on MSRA-

TD500. The proposed method achieves precision 0.83, re-

call 0.67 and f-measure 0.74. Compared to [32], our method

obtains significant improvements on precision (0.02), recall

(0.04) and f-measure (0.03). In addition, the time cost of

our method is reported in Tab. 1. Benefiting from GPU ac-

celeration, our method takes 2.1s for each image in average

on MSRA-TD500.

ICADR2015 - Incidental Scene Text. As this dataset has

been released recently for the competition in ICDAR2015,

there is no literature to report the experimental result on

Table 1. Performance comparisons on the MSRA-TD500 dataset.

Algorithm Precision Recall F-measure Time cost

Proposed 0.83 0.67 0.74 2.1s

Yin et al. [32] 0.81 0.63 0.71 1.4s

Kang et al. [9] 0.71 0.62 0.66 -

Yin et al. [33] 0.71 0.61 0.65 0.8s

Yao et al. [29] 0.63 0.63 0.60 7.2s

Table 2. Performance of different algorithms evaluated on the IC-

DAR2015 dataset. The comparison results are collected from IC-

DAR 2015 Competition on Robust Reading [10].

Algorithm Precision Recall F-measure

Proposed 0.71 0.43 0.54

StradVision-2 0.77 0.37 0.50

StradVision-1 0.53 0.46 0.50

NJU Text 0.70 0.36 0.47

AJOU 0.47 0.47 0.47

HUST MCLAB 0.44 0.38 0.41

Deep2Text-MO 0.50 0.32 0.39

CNN Proposal 0.35 0.34 0.35

TextCatcher-2 0.25 0.34 0.29

it. Therefore, we collect competition results [10] as listed

in Tab. 2 for comprehensive comparisons. Our method

achieves the best F-measure over all methods.

ICDAR 2013. We also test our method on the ICDAR2013

dataset, which is the most popular for horizontal text detec-

tion. As shown in Tab. 3, the proposed method achieves

0.88, 0.78, 0.83 in precision, recall and F-measure, re-
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Table 3. Performance of different algorithms evaluated on the IC-

DAR 2013 dataset.

Algorithm Precision Recall F-measure

Proposed 0.88 0.78 0.83

Zhang et al. [35] 0.88 0.74 0.80

Tian et al. [23] 0.85 0.76 0.80

Lu et al. [13] 0.89 0.70 0.78

iwrr2014 [34] 0.86 0.70 0.77

USTB TexStar [33] 0.88 0.66 0.76

Text Spotter [16] 0.88 0.65 0.74

Yin et al. [32] 0.84 0.65 0.73

CASIA NLPR [1] 0.79 0.68 0.73

Text Detector CASIA [21] 0.85 0.63 0.72

I2R NUS FAR [1] 0.75 0.69 0.72

I2R NUS [1] 0.73 0.66 0.69

TH-TextLoc [1] 0.70 0.65 0.67

spectively, outperforming all other recent methods only de-

signed for horizontal text.

The consistent top performance achieved on the three

datasets demonstrates the effectiveness and generality of the

proposed method. Besides the quantitative experimental re-

sults, several detection examples under various challenging

cases of the proposed method on the MSRA-TD500 and IC-

DAR2013 datasets are shown in Fig. 10. As can be seen,

our method successfully detects the text with inner texture

in Fig. 10 (a), non-uniform illumination in Fig. 10 (b) (f),

dot fonts (Fig. 10 (e)), broken strokes (Fig. 10 (h)), multi-

ple orientations (Fig. 10 (c), and (d)), perspective distortion

(Fig. 10 (h)) and mixture of multi-language (Fig. 10 (g)).

4.4. Impact of Parameters

In this section, we investigate the effect of parameters T1

and T2, which are used to extract MSER components for

computing text line candidates. The performance of differ-

ent parameters is computed on MSRA-TD500. Fig. 12 (a)

and Fig. 12 (b) show how the recall of text line candidates

changes under the different settings of T1 and T2. As we

can see, the recall of text line candidates is insensitive to

the change of T1 and T2 in a large range. This proves our

method does not depend on the quality of character candi-

dates.

4.5. Limitations of the Proposed Algorithm

The proposed method achieves excellent performance

and is able to deal with several challenging cases. How-

ever, our method still has a great gap to achieve a per-

fect performance. Several failure cases are illustrated in

Fig. 11. As can be seen, false positives and missing charac-

ters may appear in certain situations, such as extremely low

contrast (Fig. 11 (a)), curvature (Fig. 11 (e)), strong reflect

light (Fig. 11 (b) (f)), too closed text lines (Fig. 11 (c)), or

(a) (b)
Figure 12. The recall of text line candidates with different T1 and

T2.

tremendous gap between characters (Fig. 11 (d)). Another

limitation is the speed of the proposed method, which is still

far from the requirement of real-time systems.

5. Conclusion

In this paper, we presented a novel framework for multi-

oriented scene text detection. The main idea that integrates

semantic labeling by FCN and MSER provides a natural

solution for handling multi-oriented text. The superior per-

formance over other competing methods in the literature

on both horizontal and multi-oriented text detection bench-

marks verifies that combining local and global cues for text

line localization is an interesting direction that is worthy of

being studied. In the future, we could extend the proposed

method to an end-to-end text recognition system.
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