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Abstract

Our aim is to provide a pixel-wise instance-level labeling

of a monocular image in the context of autonomous driv-

ing. We build on recent work [32] that trained a convolu-

tional neural net to predict instance labeling in local image

patches, extracted exhaustively in a stride from an image. A

simple Markov random field model using several heuristics

was then proposed in [32] to derive a globally consistent

instance labeling of the image. In this paper, we formulate

the global labeling problem with a novel densely connected

Markov random field and show how to encode various intu-

itive potentials in a way that is amenable to efficient mean

field inference [15]. Our potentials encode the compatibil-

ity between the global labeling and the patch-level predic-

tions, contrast-sensitive smoothness as well as the fact that

separate regions form different instances. Our experiments

on the challenging KITTI benchmark [8] demonstrate that

our method achieves a significant performance boost over

the baseline [32].

1. Introduction

Object detection is one of the fundamental open prob-

lems in computer vision. The main objective is to place

tight bounding boxes around each object of interest. In the

past two years, detection performance has almost doubled

thanks to the availability of large datasets as they enable

training very deep representations [16, 27]. While detec-

tion might have been a good proxy when performance was

low, recent work has been trying to go beyond simple boxes

by providing a detailed segmentation mask for each object

instance [12, 30, 28, 13, 29].

A mask is in many ways richer than a box: it allows an

informed reasoning about occlusion and depth layering. For

robotics applications where depth is available, it further en-

ables a more precise 3D localization and segmentation [11]

which is important for, e.g., obstacle avoidance, route plan-

ning and object grasping. An instance mask is also more in-

formative than pixel-wise class labeling as it allows count-

ing, important for applications such as retrieval [21].

Figure 1: Our approach densely samples patches of different sizes

from the image (row 1) and exploits a CNN to provide a soft in-

stance labeling of each patch (row 2). Our MRF connects all pixel

pairs inside the patches (yellow curves in row 2), as well as all

pixel pairs from far away connected components obtained from

patch-level CNN predictions (yellow curves in row 1), to provide

a globally consistent instance labeling of the image (row 3).

Instance segmentation has been addressed in a variety of

ways. In interactive segmentation, approaches like Grab-

cut [24, 4] require a user-supplied box, or a scribble on the

foreground and background, in order to segment the ob-

jects. This is typically done with graph-cuts by combin-

ing appearance cues and smoothness. The most common

approach to instance segmentation has been to utilize ob-

ject detections and top-down shape priors to label pixels

inside each detected box [17, 9]. Methods that jointly rea-

son about instance labeling and, possibly, depth ordering

given object detections and class-level semantic segmenta-

tion have shown improved performance [28]. Recently, ap-

proaches that train CNNs to predict instance labeling inside

densely sampled image patches have shown very promising

performance [32]. However, deriving a globally consistent

instance labeling of the image from local predictions is a
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challenging open problem.

In this paper, our goal is to estimate an accurate pixel-

level labeling of object instances from a single monocular

image in the context of autonomous driving. We propose

a method that combines the soft predictions of a neural net

run on many overlapping patches into a consistent global

labeling of the entire image. We formulate this problem

as a densely connected Markov random field (MRF) with

several potentials encoding consistency with local patches,

contrast-sensitive smoothness as well as the fact that sepa-

rate regions form different instances. An overview of our

MRF is given in Fig. 1. Our main technical contribution

is a formulation that encodes all potentials in a way that

is amenable to efficient mean field inference [15], and we

go beyond [15] by including Potts potentials as well. Our

experimental evaluation shows significant improvements

over [32] on the challenging KITTI benchmark [8].

2. Related Work

We focus our review on techniques operating on a single

monocular image, and divide them into different types.

Instance-Level Segmentation by Detection. The most

common approach to object instance segmentation is to first

localize objects with a set of bounding boxes, and then ex-

ploit top-down information such as object’s shape and ap-

pearance in order to accurately segment the object within

each box [17]. [18, 31] proposed an MRF model to iden-

tify which detections are true positive, and output pixel-

wise class labels, thus performing instance segmentation.

[22] votes for object centers and uses a MRF to infer the as-

signment of pixels to object centers. R-CNN [9] was used

in [12] to first generate object proposals, and then predic-

tions from two CNNs (box and region-based) were fused to

segment the object inside each box. This idea was extended

to RGB-D in [11].

In [30], the authors propose a generative model that takes

as input candidate detections and jointly assigns a pixel to

an object instance as well as a depth layer. Inference is per-

formed with coordinate ascent iterating between updating

the layer assignment and the parameters of the appearance

models. In contrast, we leverage the efficient inference al-

gorithm for Gaussian MRFs [15] to work directly on the

pixel level (rather than layers), thus allowing more freedom

in the final label assignment. In [28], semantic segmenta-

tion and object detection are run as a first step. The method

then solves for instance labeling and depth ordering by min-

imizing an integer quadratic program. In our approach we

use a CNN trained to directly predict instance labeling in a

stride of local patches, and then solve for a consistent in-

stance labeling using our densely connected MRF, thus not

requiring to explicitly perform object detection.

3D CAD Models. Another line of work matches CAD

models to images [2, 20, 10]. An image-aligned CAD

model effectively provides an instance labeling of the im-

age. CAD matching is however typically slow, and not very

robust, as there is a large difference between the appearance

of the synthetic models and objects in real images. Instead

of matching CAD models, [14] retrieves object segments

from a dataset of labeled objects. Their probabilistic model

then aims to find segments that optimally transform into the

given image by respecting typical 3D relations. The output

is an instance labeling of the image (a “scene collage”).

Interactive Segmentation. Instance-level segmentation

has also been done without prior knowledge about how the

object looks like. In this line of work, the techniques rely

on a user-supplied box, or a scribble on the foreground

and background, and then derive the pixel-wise labeling

of the object instance. For example, GrabCut [24] utilizes

annotations in the form of 2D bounding boxes, and com-

putes the foreground/background models using EM. [3]

relies on scribbles as seeds to model appearance of fore-

ground/background, and uses graph-cuts by combining ap-

pearance cues and a smoothness term [4].

Instances without Object Detection. Recent work has

tried to explicitly reason about instance segmentation (no

class detectors need to be run in advance). [26] makes an

optimal cut in a hierarchical segmentation tree to obtain ob-

ject instance regions. [19] trained a multi-output CNN that

jointly predicts pixel-level class labeling of the image as

well as bounding box locations and object instance num-

bers. Off-the-shelf clustering is used to derive the final ob-

ject instance labeling of the image. In our work, we exhaus-

tively sample bounding boxes and softly score each pixel

belonging to a particular object instance. Our main efforts

are then devoted to “clustering” (merging the predictions)

which in our work is done via a densely connected MRF.

Parallel to our work, [23] proposes a recurrent neural net to

label object instances sequential by keeping a memory of

which pixels have been labeled so far.

We build on [32] which trains a CNN on local patches to

obtain a depth-ordered pixel-wise instance labeling of each

patch. [32] then uses a MRF along with a connected com-

ponent algorithm to merge predictions in the possibly over-

lapping patches into a global instance labeling of the image.

In our paper, we propose a densely connected MRF that ex-

ploits fast inference [15], and provides significantly better

segmentations due to the dense connectivity in the model.

3. Object Instance Labeling

The goal of this paper is to perform instance-level seg-

mentation given a single monocular image. We follow [32]

and learn deep representations to perform this task. Our

contribution is then a novel densely connected Markov ran-
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dom field that is able to produce a single coherent expla-

nation of the full image and amenable to the efficient mean

field inference algorithm [15]. As shown in our experimen-

tal evaluation the estimates provided by our approach are

significantly better than those of [32] in most metrics.

3.1. Deep Learning for Instance­level Segmentation

We follow [32] to both generate surrogate ground truth

and train the CNN. We provide the details for complete-

ness. We generate training examples by extracting over-

lapping patches at multiple resolutions. Since KITTI does

not have instance-level segmentations, we use [5, 7] to ob-

tain the segmentations for our training set. We label the

instances according to their depth within the patch. Thus

instances farther away from the camera will get higher IDs.

Using depth ordering is important to produce a single la-

beling, breaking the symmetry of permutations of instance-

level segmentation. E.g., two instances can be labeled as

either (1,2) or (2,1). We then train a CNN to output a pixel-

level instance labeling inside each patch. We use the archi-

tecture from [25] pre-trained on ImageNet and fine-tune it

for instance-level segmentation using our surrogate ground

truth. The CNN gives us (probabilistic) pixel-level predic-

tions of instances at the patch level. We propose a model to

merge all the local predictions and produce a globally con-

sistent image labeling. This is the contribution of our paper.

3.2. Densely Connected Pixel­wise MRF

Given an image x, we index the image patches with z.

Let Pz be the set of pixels in patch z. Let pz,i be the output

of the softmax for the i-th pixel when we apply the CNN

to patch z. Note that the CNN predicts up to 5 instances as

well as background. Thus pz,i is a 6-D vector. The goal is

to merge all the patch-level information and come up with

a single explanation of the image in terms of all instances.

We restrict the maximum number of instances to be 9 per

image, which is sufficient for KITTI. Thus our global label

space Lg is {0, 1, · · · , 9} with 0 encoding background. Let

y be the labeling of each pixel in the image with yi ∈ Lg.

Unlike [32], we are not interested in ordering the instances

by depth. Thus any labeling that separates instances is valid.

We propose a novel densely connected pixel-wise MRF

to solve for the problem of labeling the full image given

the local patch-based predictions. The corresponding Gibbs

energy E(y) of our MRF consists of three main terms: a

pairwise smoothness term, a pairwise local CNN prediction

term and a pairwise inter-connected component term, each

encoding different intuitions about the problem:

E(y) = Esmo(y) + Ecnn(y) + Eicc(y). (1)

Note that all terms are defined over densely connected pixel

pairs. We cannot use the CNN output as a unary potential,

as the label space of the local patches and the global image

are different, i.e., only 6 labels (including background) pos-

sible locally, and instance 2 in a local patch might be totally

different from instance 2 in another patch far away.

We now describe each term in more details.

3.2.1 Smoothness: Esmo(y)

Following [15], we incorporate a contrast-sensitive smooth-

ness term into our MRF to remove noisy tiny regions. The

idea is to describe each pixel with a feature vector, and de-

fine a potential that encourages pixels with similar features

to be more likely assigned the same label. The typical fea-

ture for each pixel has been color and position on image.

In our problem we use the combination of position and

the output of the CNN to form our feature space. Our CNN

is trained to differentiate between object instances, so the

probability vectors that the CNN outputs are a very strong

cue of how likely two pixels belong to the same object. Fur-

ther, we use the position feature so that the smoothness has

a lower influence between far apart regions in order not to

over-smooth the result. Notice that we do not use color as a

feature. This is because different object instances can take

similar colors, and color may be somewhat deceiving due to

shadows, saturation and specularities.

Formally, let di be the 2-D position vector for pixel i

in the image. We define the contrast-sensitive smoothness

term as a sum of patch-specific contrast-sensitive smooth-

ness terms, each defined over all pixel pairs in the patch:

Esmo(y) =
∑

z

∑

i,j:i,j∈Pz,i<j

ϕ(z,i,j)
smo (yi, yj), (2)

where the potential is defined as

ϕ(z,i,j)
smo (yi, yj) = wsmoµsmo(yi, yj)ksmo

(

f
(z)
i , f

(z)
j

)

. (3)

Here wsmo is the weight for the potential (which we learn)

controlling the degree of smoothness, and ksmo denotes a

Gaussian kernel defined as

ksmo

(

f
(z)
i , f

(z)
j

)

= exp

(

−
‖pz,i − pz,j‖

2
2

2θ21
−

‖di − dj‖
2
2

2θ22

)

,

where f
(z)
i contains both the position di and the output of

the CNN pz,i. Note that θ1 and θ2 scale the features to re-

flect our notion of “closeness” in the feature space. Finally,

the compatibility function µsmo(yi, yj) in the potential takes

the form of the Potts model:

µsmo(yi, yj) =

{

1, if yi 6= yj

0, otherwise
.

This penalizes two pixels with similar positions and CNN

predictions to have different labels.
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Figure 2: Function h2(·) prepends 2 zeros to vector pz,i while

h−2(·) appends 2 zeros to vector pz,j . This is equivalent to shift-

ing pz,i by 2 units towards right and zero-pad both vectors to make

them aligned. The shift matches the modes of pz,i and pz,j . We

input this shifted vector pair into our Gaussian kernel.

3.2.2 Local CNN Prediction: Ecnn(y)

Any given patch contains only a subset of the instances

present in the full image. When we produce our image-level

labeling, we would like to maintain the separation into dif-

ferent instances estimated at the local level (via the CNN),

while producing a coherent labeling across all patches. For

example, if the CNN predicts that in patch z pixel i be-

longs to instance 1 while pixel j belongs to instance 2, then

any global configuration with yi 6= yj should be encour-

aged. However, it turns out to be important to have some

preference over the ordering just to break the symmetry in

our model to kick off the inference algorithm. We thus

encourage ordering in the global labeling (in this example

yi < yj).

To encode this patch-image compatibility in our energy,

we define the local CNN prediction term as a sum of patch-

specific compatibility terms, each defined over all pixel

pairs in the patch:

Ecnn(y) =
∑

z

∑

i,j:i,j∈Pz,i<j

ϕ(z,i,j)
cnn (yi, yj). (4)

The potential ϕ
(z,i,j)
cnn (yi, yj) should ideally encode the fact

that we want global instance labeling to agree with local

predictions. That is, if two pixels are likely to be of the

same (different) instance at the local level, they should also

be the same (different) at the global level. This could be

simply encoded with a compatibility potential that yi and

yj are encouraged to have the same label if the output of

the CNN pz,i and pz,j are similar, and their relative order-

ing (yi > yj or vice versa) is respected if the CNN predicts

them to be of different instances. This naive approach, how-

ever, will break the efficiency of inference, as we will no

longer be able to use Gaussian filtering. Gaussian filtering

is however crucial, since our local CNN prediction term is

fully connected at patch level.

Instead, one of the main contributions of our paper is

to approximate such compatibility potentials as a series of

Gaussian potentials. Each potential is composed of a Gaus-

sian kernel applied to a shifted version of the local softmax

probabilities:

ϕ(z,i,j)
cnn (yi, yj) =

T
∑

t=−T

ϕ(z,t,i,j)
cnn (yi, yj), (5)

where T is the maximum shift allowed (fixed to be 2 in our

experiments).

We define the shifted pairwise potential ϕ
(z,t,i,j)
cnn (yi, yj)

as a product of its weight, a compatibility function and a

Gaussian kernel defined over pairs of shifted local CNN

predictions:

ϕ(z,t,i,j)
cnn (yi, yj) = w(s(z))

cnn µ(t)
cnn(yi, yj)k

(t)
cnn(ht(pz,i), h−t(pz,j)),

(6)

where w
(s(z))
cnn is the weight which depends on the size s(z)

of patch z, and k
(t)
cnn is a Gaussian kernel characterized by

its precision matrix Λ
(t)
cnn.

When t > 0, a shift towards right is applied to pz,i to

create ht(pz,i) while a shift towards left is applied to pz,j to

create h−t(pz,j). Note that shifting by t requires prepend-

ing t zeros, while shifting by −t requires appending t ze-

ros. We refer the reader to Fig. 2 for a visualization of this

idea. If the modes of pz,i and pz,j match for any positive

t, it means that the label of pixel i is predicted to be smaller

than pixel j in patch z by the CNN. This is the case shown

in Fig. 2. Therefore, globally we prefer any configuration

with yi < yj . The reverse is also true that if we achieve a

good match with a negative t, then we prefer any configu-

ration with yi > yj . If the best match is achieved without

shift, it means that we prefer yi = yj . This can be encoded

via the following compatibility function:

µ(t)
cnn(yi, yj) =



















−1, if yi < yj , t > 0

−1, if yi > yj , t < 0

−1, if yi = yj , t = 0

0, otherwise

. (7)

Note that a negative value in µ
(t)
cnn(yi, yj) implies that we

encourage the configuration.

3.2.3 Inter-Connected Component: Eicc(y)

So far our MRF encourages smoothness as well as that

global instance labeling to agree with local predictions.

However, nothing prevents instances that are far apart and

thus do not appear together in any patch from having the

same label. Towards this goal, for each pixel i, we compute

the probability that it belongs to foreground, by summing

the output of local CNN predictions and re-normalizing. By

thresholding this probability, we obtain a binary mask of ac-

tivation. We index each connected component of the fore-

ground of the binary mask with m, and the pixels it contains

with Cm. Each component might contain more than one car.
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(a) (b)

Figure 3: (a) Suppose that {pz,i} are positive scalars. When t = 1, both ht(pz,i) and h−t(pz,j) are 2-D. The corresponding permutohe-

dral lattice (in gray) lies on a 2-D hyperplane in a 3-D space. {h−t(pz,j)} are embedded in the hyperplane (blue dots). The embeddings

follow a 1-D subspace due to zero-appending. Value of {Qj(l
′)} splats onto the vertices of their respective enclosing simplexes (blue

squares). After Gaussian blurring, vertices shown as green squares also get non-zero value. An extra step is to embed {ht(pz,i)} (red solid

dots and red open dots). The embeddings lie on another 1-D subspace due to zero-prepending. Finally, convolution is evaluated at the new

embeddings. Only red solid dots get non-zero values, while red open dots get a zero due to the inactivity of the vertices of their enclosing

simplex. (b) Three car blobs are shown in the image. During each mean field update, we sum up individual messages from members of C3

and pass the summation to each member of C1 and C2. Similarly for messages from C1 to C2 and C3, and messages from C2 to C1 and C3.

However, it is reasonable to assume that each instance will

never appear in two different components. We encode this

in the inter-connected component term as a sum of terms

defined over component pairs, and each of the terms fully

connects cross-component pixel pairs:

Eicc(y) =
∑

m,n:m<n

∑

i,j:i∈Cm,j∈Cn

wiccµicc(yi, yj), (8)

with wicc the weight and µicc(yi, yj) a Potts potential

µicc(yi, yj) =

{

1, if yi = yj

0, otherwise
. (9)

While this potential is not Gaussian, and we have dense con-

nections, in the next section we show that the updates can

still be computed in linear time.

3.3. Efficient Inference

Inference in our model consists of estimating the mini-

mum energy configuration

y∗ = argmin
y

Esmo(y) + Ecnn(y) + Eicc(y).

Unfortunately this is NP-hard. Instead, we perform effi-

cient approximated inference via mean field. Towards this

goal, we approximate the Gibbs distribution P (y|x) =
1

Z(x) exp(−E(y|x)) with a fully decomposable distribution

Q(y|x) =
∏

i Qi(yi|x). Note that we drop the conditioning

from now on to simplify notation.

Mean field computes updates by iteratively minimizing

the KL-divergence between the approximated distribution

Q(y) and the true distribution P (y). We use an iterative

algorithm which updates the local distributions {Qi(yi)} in

parallel. In our model, the updates can be derived as

logQi(yi = l)

=−
∑

z:i∈Pz

∑

l′:l′∈Lg

∑

j:j∈Pz,j 6=i

ϕ(z,i,j)
smo (l, l′)Qj(l

′) (10)

−
∑

z:i∈Pz

T
∑

t=−T

∑

l′:l′∈Lg

∑

j:j∈Pz,j 6=i

ϕ(z,t,i,j)
cnn (l, l′)Qj(l

′)

(11)

− wicc

∑

n:n 6=m,i∈Cm

∑

j:j∈Cn

Qj(l)− log(Zi), (12)

with Zi the local partition function which is easily com-

putable as it only depends on a single node. We refer the

reader to suppl. material for the derivation of these updates.

We use the uniform distribution as our initialization. We

now describe how to compute the updates efficiently.

Smoothness. Eq. (10) can be computed efficiently using

the same high-dimensional Gaussian filtering algorithm of

[15]. This results in linear updates in the number of pixels.

Local CNN Prediction. The inner most summation over

pixels in Eq. (11) is the fundamental building block for the

computation of the entire term. Explicitly it is given as

w(s(z))
cnn µ(t)

cnn(l, l
′)

∑

j:j∈Pz,j 6=i

k(t)cnn(ht(pz,i), h−t(pz,j))Qj(l
′).

This can be interpreted as a convolution with a Gaussian

kernel G
Λ

(t)
cnn

evaluated at ht(pz,i). Since Gaussian convolu-

tion is essentially a low-pass filter, by the sampling theorem

we can convolve a downsampled {Qj(l
′)} with the Gaus-

sian kernel, and upsample the output to compute convolu-

tion at ht(pz,i). Following [15], we use the efficient permu-

tohedral lattice data structure [1] to perform downsampling,
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Cls. Eval Instance Evaluation

IoU MWCov MUCov AvgPr AvgRe AvgFP AvgFN InsPr InsRe InsF1

[32]

ConnComp 77.1 66.7 49.1 82.0 60.3 0.465 0.903 49.1 43.0 45.8

Unary 77.6 65.0 48.4 81.7 62.1 0.389 0.688 46.6 42.0 44.2

Unary+LongRange 77.6 66.1 49.2 82.6 62.1 0.354 0.688 48.2 43.1 45.5

Unary+LR (w/ DeepLab [6]) 77.7 68.2 50.2 85.3 63.2 0.285 0.562 39.5 40.1 39.8

Ours

LocCNNPred 77.4 58.3 40.9 80.4 62.6 0.403 0.681 25.3 32.9 28.6

LocCNNPred+InterConnComp 76.8 65.7 50.3 79.9 63.4 0.507 0.618 35.8 46.4 40.4

Full 77.1 69.3 50.6 80.5 57.7 0.451 1.076 56.3 47.4 51.5

Full (w/ DeepLab [6]) 78.5 73.7 54.3 82.8 61.3 0.458 0.812 63.3 51.6 56.8

With Post-processing

[32]

ConnComp 77.2 66.8 49.2 81.8 60.3 0.465 0.903 49.8 43.0 46.1

Unary 77.4 66.7 49.8 81.6 61.2 0.562 0.840 44.1 44.7 44.4

Unary+LongRange 77.4 67.0 49.8 82.0 61.3 0.479 0.840 48.9 43.8 46.2

Unary+LR (w/ DeepLab [6]) 77.3 70.9 52.2 85.7 61.7 0.597 0.736 40.2 45.9 42.8

Ours

LocCNNPred 76.7 67.5 52.9 82.5 61.3 0.646 0.743 39.4 51.6 44.7

LocCNNPred+InterConnComp 76.3 68.1 53.9 80.7 62.2 0.708 0.701 42.1 52.2 46.6

Full 77.0 69.7 51.8 83.9 57.5 0.375 1.139 65.3 50.0 56.6

Full (w/ DeepLab [6]) 78.5 74.1 55.2 84.7 61.3 0.417 0.833 70.9 53.7 61.1

Table 1: Instance-level and Class-level Evaluation on the Test Set (144 images). See text for the explanation of the metrics.

For ‘AvgFP’ and ‘AvgFN’ smaller is better, for the rest higher is better.

convolution and upsampling. In the standard case of Gaus-

sian filtering with permutohedral lattice, we embed a set of

features encoding the position of {Qj(l
′)} in the hyperplane

in which the lattice lies. We then downsample by splatting

the value of each Qj(l
′) onto the vertices of its enclosing

simplex with barycentric weights. Then Gaussian blurring

is performed over lattice points along each lattice direction.

The final result is then computed by gathering values from

lattice points for the already embedded features. Due to the

fact that we introduced different shifts for the two elements

of the kernel ht(pz,i) and h−t(pz,j), apart from the set of

features {h−t(pz,j)} we need to embed in the first place, we

have to embed an extra set of features {ht(pz,i)} at which

we evaluate the convolution, in contrast to the standard case.

An example is in Fig. 3a. As in the standard case, we first

embed {h−t(pz,j)} encoding the position of {Qj(l
′)} in

the hyperplane. Note, however, that the features lie in a sub-

space of the hyperplane as they are padded with zeros (e.g.,

a line on a plane in Fig. 3a). We then distribute the value of

each Qj(l
′) onto the vertices of its enclosing simplex. This

is followed by the filtering step over the lattice. As an extra

step in contrast to the standard case, we now need to embed

the first element of the kernel, i.e., {ht(pz,i)}, in the hyper-

plane, and the embeddings lie in another subspace. Finally

we evaluate the convolution at the new embeddings.

Inter-Connected Component. The first term in Eq. (12)

is not a Gaussian kernel, however it is densely connected.

This means that potentially we have an update quadratic in

the number of pixels. We exploit the fact that all members

within a connected component have the exact same pairwise

interaction with all other pixels not in the component. This

implies that all members within a connected component re-

ceive the exact same messages passed from other compo-

nents during each update. Note that it is linear to sum up

the individual messages within a connected component and

pass this summation
∑

j:j∈Cn

Qj(l) to the members of other

components. We visualize the message passing procedure

for the inter-connected component potential in Fig. 3b.

4. Experimental Evaluation

We evaluate our approach on the challenging KITTI

benchmark [8]. In particular, we use a subset of 3, 524
images from 55 videos and divide the images into train-

ing/validation/test sets such that given a video, all its images

are exclusively contained in only one of the three sets. Alto-

gether, we use 3260 images for training, 120 for validation,

and 144 for testing. 131 images from either our validation

or test set have been manually annotated with pixel-wise

instance labeling for Cars by [5]. We labeled the rest of

the 133 images. Thus all validation and test images have

ground truth annotations.

Implementation Details. We generate surrogate ground

truth for our training images with [5] and train our CNN as

in [32]. In another experiment we also use the architecture

DeepLab-LargeFOV from [6]. By changing the CNN ar-

chitecture from the naive adaptation of VGG-16 by [25] to

DeepLab-LargeFOV (denoted by ‘w/ DeepLab [6]’ in our

results), we observe substantial performance gain for our

approach but a slight drop for the baselines. Thus we report

results with both architectures. For our validation/test im-

ages (with typical size 375×1242), we extract densely over-

lapping patches of three sizes: large (270 × 432), medium

(180 × 288), and small (120 × 192) in a sliding window

fashion. We run the extracted patches through the CNN to
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obtain local instance predictions. Following [15], we ap-

ply a pixel-wise normalization to Gaussian kernels. We

also normalize the aggregated message of each connected

component by the number of pixels it contains. Normal-

ization is able to cancel the bias caused by highly variable

instance sizes. We tune all weights, hyper-parameters and

kernel widths in our MRF on the validation set. We fix the

number of iterations of the mean field update to be 50 in all

experiments in the paper.

Baselines. We re-train the approach (in three different in-

stantiations) proposed in [32] on our validation set to obtain

three strong baselines. Note that [32] and our method use

the exact same CNN unaries and patch extraction method,

so we evaluate the two different MRFs on equal footing.

The first baseline ‘ConnComp’ is the ‘connected compo-

nents ordering’ potential in [32] which applies a connected

component algorithm to heuristically merged object in-

stances and orders them according to their positions along

the vertical axis. The second baseline ‘Unary’ additionally

adds the ‘CNN energy’ potential in [32]. The third baseline

‘Unary+LongRange’ further adds the pairwise ‘long-range

connections’ from [32]. We found that their pairwise ‘short-

range connections’ generally hurts performance, so we do

not include it in our baselines.

Evaluation Metrics. Following [32], we use a num-

ber of metrics to provide a comprehensive evaluation of

our model. We divide the metrics into two categories,

namely class-level (i.e., Car vs. non-Car) and instance-

level. For the class-level evaluation, we report the standard

intersection-over-union score for the foreground ‘FIoU’.

For the instance-level evaluation, we provide the

mean-weighted-coverage score and the mean-unweighted-

coverage score introduced in [26], which we denote by

‘MWCov’ and ‘MUCov’ respectively. For each ground-

truth instance in a given image, we find its maximally

overlapping prediction and compute the IoU score between

them. The weighted-coverage score for the image is then

the average of the IoU scores weighted by the size of the

ground-truth instances. Finally, ‘MWCov’ is obtained by

averaging the weighted-coverage score across images. The

mean-unweighted-coverage score is computed similarly but

treats every ground-truth instance equally. ‘MWCov’ and

‘MUCov’ are important, because they directly evaluate how

closely our predictions overlap with ground-truth instances,

since these two metrics are based on IoU scores. However,

they do not penalize false positive instances.

For each predicted instance, we compute the ratio of

class-level (Car vs. non-Car) true positive pixels inside it.

The ratio is then averaged across predicted instances and re-

ported as ‘AvgPr’. Similarly for each ground-truth instance,

we compute the ratio of true positive pixels inside it. The

ratio is then averaged across all ground-truth instances and

reported as ‘AvgRe’.

If a predicted instance does not overlap with any ground-

truth instance, we deem it as a false positive instance. We

average the number of false positive instances in each im-

age across images, and report it as ‘AvgFP’. Similarly, if

a ground-truth instance does not overlap with any predic-

tion, we deem it as a false negative instance. We average

the number of false negative instances in each image across

images, and report it as ‘AvgFN’.

Finally, for each ground-truth instance, we find a predic-

tion which overlaps more than 50% with it. We divide the

number of such GT-prediction pairs either by the number

of predictions to obtain instance-level precision denoted by

‘InsPr’, or by the number of ground-truth instances to ob-

tain instance-level recall denoted by ‘InsRe’, and report the

corresponding F1 score denoted by ‘InsF1’. Intuitively, ‘In-

sPr’ and ‘InsRe’ reflect the model’s ability to avoid false

positive instances and false negative instances respectively

at a 50% threshold. The corresponding ‘InsF1’ score unifies

the previous two metrics. ‘InsF1’ score (on the validation

set) is the metric we use for selecting our model parameters.

Quantitative Results. The evaluation results on our test

set are given in Tab. 1. We report results for three instantia-

tions of our model: ‘LocCNNPred’ uses only the local CNN

prediction term; ‘LocCNNPred+InterConnComp’ adds the

inter-connected component term; while ‘Full’ denotes our

full model. Following [32], we additionally apply a few

post-processing steps including hole filling, removing tiny

isolated regions and splitting the connected components of

any prediction into separate instances. This is reported at

the bottom of the table.

Notice that without post-processing the model ‘LocC-

NNPred’ which has only the local CNN prediction term

performs much worse than our baselines, because it al-

lows instances that do not coexist in any patch to have the

same labeling. Post-processing removes some of these mis-

takes and makes the model already outperform the base-

lines [32] in a number of metrics. With the addition of

the inter-connected component term, the model ‘LocCN-

NPred+InterConnComp’ encourages far apart instances to

take different labels, which improves the performance. Fi-

nally, our full model which further adds the smoothness

term is able to remove noisy regions scattered around the

image, especially around instance boundaries where the

CNN predictions are not confident. Our full model boosts

instance-level precision by a huge margin compared to

‘LocCNNPred+InterConnComp’, outperforming the base-

lines significantly in a number of metrics.

Qualitative Results. We show examples of successes of

our model (‘Full’) without post-processing in Fig. 4. We

compare our full model to ground truth and the baseline

‘ConnComp’ which has the highest ‘InsF1’ score compared

to the others. While the baseline tends to merge neighboring

instances into one, our model is more successful in telling
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Image Ground Truth [32] Ours

Figure 4: Successes of our model (without post-processing) with comparison to [32].

Image Ground Truth [32] Ours

Figure 5: Failures of our model, mostly due to large non-car vehicles, small objects or severe occlusion.

them apart. Patch boundary is clearly noticeable in many

of the baseline results, while our model prevents this from

happening. This suggests that our model exploits the local

CNN predictions in a much better way than the baselines.

A few failure cases of our model are shown in Fig. 5,

which are largely due to the CNN output. Vehicles like

vans that are similar to cars (but not labeled as cars) tend to

confuse the CNN, thus introducing false positives into our

results. Heavily occluded cars also pose great challenges.

5. Conclusions

In this paper, we proposed a new approach for instance-

level segmentation. Our approach builds upon the recently

proposed work [32] which trains a CNN on local patches to

obtain soft instance labelings. We propose a densely con-

nected MRF that is amenable to the efficient inference algo-

rithm by [15] to derive a globally consistent instance label-

ing of the full image. Our MRF exploits local CNN predic-

tions, long-range connections between far apart instances,

and contrast-sensitive smoothness. Our experiments show

significant improvements over [32].
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