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Abstract

Automatic tracking of large-scale crowded targets are

of particular importance in many applications, such as

crowded people/vehicle tracking in video surveillance, fiber

tracking in materials science, and cell tracking in biomed-

ical imaging. This problem becomes very challenging

when the targets show similar appearance and the inter-

slice/inter-frame continuity is low due to sparse sampling,

camera motion and target occlusion. The main challenge

comes from the step of association which aims at matching

the predictions and the observations of the multiple targets.

In this paper we propose a new groupwise method to explore

the target group information and employ the within-group

correlations for association and tracking. In particular, the

within-group association is modeled by a nonrigid 2D Thin-

Plate transform and a sequence of group shrinking, group

growing and group merging operations are then developed

to refine the composition of each group. We apply the pro-

posed method to track large-scale fibers from microscopy

material images and compare its performance against sev-

eral other multi-target tracking methods. We also apply the

proposed method to track crowded people from videos with

poor inter-frame continuity.

1. Introduction

Automatic tracking of large-scale crowded targets has

been attracting more and more attention in the computer

vision community for its important applications. In video

surveillance, tracking of all the individual persons in a

crowd can promote the public security [29] by detecting

the group behaviors and individual anomalies. In materi-

als science, accurate tracking of large-scale fibers from a

sequence of serial sectioned slices of a composite material

can facilitate the fast characterization of its underlying mi-

crostructure and accelerate the new material design and de-

∗Indicates equal contribution.
†Corresponding author: songwang@cec.sc.edu.

velopment [23]. In biomedical imaging, accurately tracking

the motion paths of the large-scale cells can provide impor-

tant information for computer aided diagnosis [18].

One main challenge of the crowded target tracking lies in

the step of association, which aims at matching the predic-

tions and the observations of the multiple targets at a new

slice/frame. In many applications, such as cell and fiber

tracking [23], different targets may share similar appear-

ance, which increases the chances of the mis-association.

In addition, many of the above applications may generate

image sequences with low inter-frame/inter-slice continu-

ity, which increases the gap between a prediction and its

corresponding observation and further increases the mis-

association rate. For example, in both biomedical and mate-

rial imaging, it is highly desired to perform sparse sampling

along the image sequence for fast imaging. In crowded hu-

man tracking, sudden movement of the camera, which is

common when using wearable cameras, together with tar-

get occlusions, may also produce video clips with low inter-

frame continuity.

In this paper, we develop a new groupwise association

method to enable the tracking of large-scale crowded tar-

gets with similar appearance from low continuity image se-

quences. We explore the target groups in a way that the

targets in a same group show relatively consistent motions

and therefore, the tracking of the targets in a same group

shows high level of correlation. Specifically, we utilize a

2D nonrigid Thin-Plate Splines (TPS) transform to describe

the mapping between the predictions and the associated ob-

servations within a same group. However, the group com-

position of the targets are unknown priorly. To address this

issue, we develop a new algorithm that clusters the targets

into groups, following by three steps of group refinement:

shrinking, growing and merging. The proposed method can

handle false positives and false negatives in the observa-

tions, i.e., the numbers of predictions and observations may

be different in the association.

In this paper we choose the task of fiber tracking from a

sequence of microscopy material images for algorithm de-

velopment. The fiber tracking is a typical crowded track-
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ing problem that possesses all the challenges as described

above: 1) the fibers are highly crowded and of large scale,

2) all the fibers on the 2D slice are of similar appearance and

bear a similar ellipsoidal shape, and 3) fast material imaging

requires the sampled image sequence to be as sparse as pos-

sible, which leads to low inter-slice continuity. Given the

ellipsoidal shape of the fiber in each slice, we can simply

apply ellipse-detection algorithms to compute the fiber ob-

servations and focus our work on addressing the association

problem. In the experiment, we test the proposed method on

real material image sequences and evaluate the fiber track-

ing performance against the human annotated ground-truth

fiber tracks. In particular, we evaluate the fiber tracking

performance at different sampling sparsity along the image

sequence. In the experiment, we also apply the proposed

method to track crowded people with low inter-frame con-

tinuity.

For the remainder of the paper, Section 2 briefly reviews

the related work. Section 3 describes the proposed method.

Experiment results are presented in Section 4, followed by

conclusions in Section 5.

2. Related Work

Both recursive and non-recursive methods were devel-

oped for multi-target tracking. Recursive tracking methods

estimate the state of the target in a new slice (frame for

videos) only using the information from previous slices that

have been processed. Typical recursive tracking methods

include the classical Kalman filter [14, 5, 25], Particle fil-

ter [7, 21] and non-parametric mixture Particle filters [27].

When tracking moves to a new slice, these recursive meth-

ods first make a prediction of the state for each target, then

build association between predictions and observations of

multiple targets, and finally correct the states using obser-

vations. Non-recursive tracking methods assume the avail-

ability of the whole image sequence before tracking multi-

ple targets over this sequence. In these methods, observa-

tions of multiple targets are first detected on all the slices

and then linked across slices along the image sequence for

the final tracks by optimizing certain cost functions, such as

maximum a posteriori (MAP) [13, 30, 4, 22]. In [10], mo-

tion dynamics similarity is incorporated into the cost func-

tion, resulting in a non-recursive SMOT tracking method for

multi-target video tracking. In [18], a KTH tracking method

is developed by searching shortest path in the constructed

graph model and this method was successfully used to track

living cells in biomedical imaging. In [20], a CEM tracking

method was proposed by optimizing a continuous cost func-

tion that considers the detection, appearance, motion priors,

and physical constraints of the targets.

For recursive methods, association is usually formu-

lated as an explicit step which finds the matching between

the predictions and the observations. For non-recursive

methods, the association is implied in the cost function

and the optimization algorithm – the extracted paths find

the associations between the observations across neigh-

boring slices. Most of the existing work on multi-target

tracking, especially the non-recursive methods, handle only

small number of scattered targets with different appear-

ance [13, 30, 4, 22, 10, 20].

Recently, new models and methods have been developed

for crowd tracking and analysis [2, 19, 32, 26, 1, 31, 12, 24].

Many of these methods employ tracklets or trajectories,

which are extracted by optical flow and/or the local appear-

ance matching across frames. These methods require very

good inter-slice/inter-frame continuity. Differently, this pa-

per is focused on tracking large-scale, crowded, similar-

appearance targets from low-continuity image sequences.

3. Proposed Method

As mentioned above, we present the proposed method

using large-scale fiber tracking from a material image se-

quence. For simplicity, we use the Kalman filter to track

each fiber, by recursively performing prediction, associa-

tion and correction along the image sequence. The key con-

tribution of this paper is the development of a new group-

wise algorithm for association, which enables the developed

method to track along low-continuity image sequences. The

pipeline of the proposed tracking algorithm is illustrated in

Fig.1.

When the tracking moves to a new slice, we first com-

pute a set of fiber observations from this new slice. As

shown in Fig.1, most of the fibers are of an ellipse shape in

the 2D slices and can be detected using an ellipse detection

algorithm. In this paper, we first apply the EM/MPM algo-

rithm [9] to segment the image slice into fiber and non-fiber

regions and then fit an ellipse to each connected component

of the fiber region [28]. We take the locations (the center

coordinates) of the fitted ellipses as the fiber observations

and use them for association and tracking. In addition to

the locations, we also record the tight bounding box around

each fitted ellipse, which are used by several comparison

methods in the later experiment. Given the image noise and

blurs, observations contain both false positives and nega-

tives.

In using Kalman filter for tracking each fiber, we define

the tracking state s = (x, y, vx, vy)
T

to describe the tracked

fiber in 2D slices, where z = (x, y)
T

is the fiber location

(e.g., ellipse center) and (vx, vy) is the fiber velocity (e.g.,

inter-slice fiber location change). We set the state transition

matrix to be









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









and the observation matrix to

be

[

1 0 0 0
0 1 0 0

]

. Let ŝi be the computed prediction
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Figure 1. The pipeline of the proposed method used for large-scale fiber tracking. It follows the classical Kalman filtering which sequen-

tially performs prediction, association and correction when moving into a new slice.

of the fiber and oi = [xo, yo]
T

to be the observation of the

fiber on slice i. We can follow the correction step of Kalman

filter to update the state. However, we have large-scale fiber

predictions and observations on a slice. In the following,

we focus on the step of association that builds a matching

between the predictions and observations.

3.1. ThinPlate Spline Robust Point Matching (TPS
RPM) [8]

In this section, we briefly review the Thin-Plate Spline

Robust Point Matching (TPS-RPM) algorithm [8], which

we will use to develop the proposed groupwise association

algorithm. TPS-RPM can robustly match two sets of 2D

points by exploring the correlations among these points.

Specifically, let U = {up}
N

p=1
and V = {vq}

M

q=1
be two

sets of 2D points, i.e., up = (upx,upy), p = 1, 2, · · · , N
and vq = (vqx,vqy), q = 1, 2, · · · ,M . The matching be-

tween these two sets of points is represented by a matrix

H = [hp,q]N×M
, where hp,q = [0, 1] indicates the proba-

bility of matching up and vq . TPS-RPM can jointly deter-

mine a non-rigid 2D transform f = (fx, fy) : R
2 → R

2 and

the matrix H to minimize a cost function

ETPS−RPM (H, f) =

N
∑

p=1

M
∑

q=1

hpq ‖ f (up)− vq ‖2 +

+ αφ(f) + β

N
∑

p=1

M
∑

q=1

hpq log hpq − γ

N
∑

p=1

M
∑

q=1

hpq, (1)

where φ(f) =
∫∫

[L(fx) + L(fy)] dxdy is the TPS bending

energy [3, 8] with L(·) =
(

∂2

∂x2

)2

+ 2
(

∂2

∂x∂y

)2

+
(

∂2

∂y2

)2

and it reflects the smoothness of the 2D mapping f – the

smaller the φ(f) , the smoother the mapping f . The cost

function is alternately minimized in terms of H and f until

convergence. Finally the obtained matrix H is thresholded

to build the point matching between U and V. By introduc-

ing the last two terms in the cost function, TPS-RPM can

handle the noise and identify points without matchings.

3.2. Groupwise TPS Association  Initialization

When Kalman tracking moves into a new slice i, we have

a set of N fiber predictions
{

ŝip
}N

p=1
derived from the pre-

vious slices and a set of M fiber observations
{

oi
q

}M

q=1
de-

tected on the new slice. For simplicity, we drop the su-

perscript i and denote the predictions and observations as

{ŝp}
N

p=1
and {oq}

M

q=1
, respectively, when it does not intro-

duce ambiguity.

Fibers are usually implanted in bundles. On one hand,

the fibers in different bundles are not correlated and the as-

sociation of fibers in different bundles cannot be well mod-

eled by a single TPS transform. On the other hand, for the

fibers in the same bundle, they show good proximity and

parallelism in 3D space and therefore, a smooth TPS trans-

form, such as the one computed using TPS-RPM, may well

describe such a within-bundle fiber association, especially

in sparsely sampled image sequences. The problem is that

the bundle compositions are unknown priorly. In this sec-

tion, we develop a new approach that can simultaneously

explore the fiber-bundle composition and the fiber associa-

tion.

(a) (b)

Figure 2. An illustration of clustering predictions into a set of com-

pact groups. (a) Predictions (in red) and (b) clustered groups.

Without knowing the bundle composition, we first clus-

ter all the predictions into smaller groups, as shown in Fig. 2
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(a) (b)

Figure 3. An illustration of finding the initial matching. (a) One

group of predictions (in red) and (b) Sliding windows across the

slice with observations: the optimal window with the best match-

ing is shown in red.

by using the K-means algorithm. While each fiber pre-

diction ŝp is a 4D vector made up of a 2D location and

a 2D velocity, we only cluster in terms of the locations

{ẑp = (x̂p, ŷp)}
N

p=1
. However, the observations are not di-

vided into corresponding groups as for the predictions. We

use a sliding-window strategy to address this issue. As

shown in Fig. 3, for each group of predictions, shown by

red circles, we derive its bounding box (in blue). Then we

apply the sliding window of the size of the bounding box,

dilated by 5 pixels, on the slice with the observations and

perform TPS-RPM between the group of prediction against

the observations in each of the sliding window. The slid-

ing window that leads to the minimum cost ETPS−RPM is

taken as the optimal window, shown by the red box in Fig. 3,

and the matched observations in this window are taken as

the matching to the considered group of predictions. Sim-

ilarly, we only consider 2D location ẑp when applying the

TPS-RPM for matching.

After applying such a sliding-window based matching

for each group of predictions, we find its corresponding

matched group of the observations and construct an initial

association between the predictions and the observations.

However, K-means clustering cannot guarantee the predic-

tions from a same group are all from a same bundle and the

initial association from TPS-RPM in such a group may not

be reliable. In the following, we propose an algorithm to

refine this initial association result.

3.3. Groupwise TPS Association  Refinement

We develop a three-step algorithm, including group

shrinking, group growing and group merging, for refining

the initial groupwise association.

Group shrinking further removes the outlier matchings

in each group. Without loss of generality, let (̂sp,op),
p = 1, 2, · · · ,m be one matched group of predictions and

observations, as shown in Fig. 4(a). To identify and remove

the outlier matching pairs from this group, we calculate the

TPS bending energy as in Eq. (1) for this matching, in a

(a)
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 (b)

Figure 4. An illustration of the group shrinking. (a) Initial match-

ing of one group of the predictions (black boxes) and observations

(red circles), with matching pairs linked by dashed lines. Outlier

matchings that are removed in group shrinking are highlighted in

green vertical ellipses. (b) TPS bending energies before and after

removing the outlier matchings.

matrix form [6]

φ ((̂sp,op) |p = 1, 2, · · · ,m) =
1

8π

(

xT
o
Lxo + yT

o
Lyo

)

,

(2)

where L is the m × m upper-left block of the matrix
(

K P

PT 0

)

−1

, K is the m × m TPS kernel matrix with

element kpq = k(ẑp, ẑq) = ‖ẑp − ẑq‖
2 log ‖ẑp − ẑq‖,

P = (1, x̂, ŷ) with x̂ and ŷ being the concatenated

vectors for all the x and y coordinates of the predic-

tions {ŝp}
m

p=1
(i.e., {ẑp}

m

p=1
) respectively, and xo and yo

are the concatenated vectors for all the x and y coordi-

nates of the observations {op}
m

p=1
, respectively. We cal-

culate the leave-one-pair-out TPS bending energy φj =
φ ((̂sp,op) |p = 1, 2, · · · ,m; p 6= j), j = 1, 2, · · · ,m and

remove the j∗-th pair that leads to the largest decrease of

bending energy, i.e., j∗ = argminj φj . We repeat this pro-

cess until a specified percentage (δ) of pairs are removed

from each group, as shown in Fig. 4. Note that, by pre-

specifying the percentage δ, the step of group shrinking may

remove true positive matchings from a group. This will be

handled in the later steps of group growing and group merg-

ing.

(a) (b)

Figure 5. An illustration of the group growing. (a) Delaunay tri-

angulation of the predictions and a matching group before group

growing. (b) The same matching group after the group growing.

Matched pairs in the group are shown by the dashed-line linked

boxes (predictions) an circles (observations).

After the group shrinking, we can construct a TPS map-
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ping for the matching in each group. Without loss of gen-

erality, let (̂sq,oq), q = 1, 2, · · · , n be one matched group

of predictions and observations after group shrinking. We

derive the TPS transform f = (fx, fy) such that oq= f(ẑq),
q = 1, 2, · · · , n. This transform is in the form of [6]

{

fx(ẑ) = a1 + a2x̂+ a3ŷ +
∑n

q=1
cqk(ẑ, ẑq)

fy(ẑ) = b1 + b2x̂+ b3ŷ +
∑n

q=1
dqk(ẑ, ẑq),

(3)

where ẑ = (x̂, ŷ)T is any location in the domain of pre-

diction and ẑq is the location of the prediction ŝq . The

parameters a = (a1, a2, a3)
T , b = (b1, b2, b3)

T , c =
(c1, c2, · · · , cn)

T and d = (d1, d2, · · · , dn)
T can be com-

puted by

(

K P

PT 0

)(

c d

a b

)

=

(

xo yo

0 0

)

where K, P, xo, yo and k(·, ·) are defined as in Eq. (2), but

using the n matching pairs after the group shrinking.

In group growing, we first construct a Delaunay trian-

gulation [17] by taking all the predictions as the vertices,

as shown in Fig. 5(a). Group growing is performed for

each matching group (after the group shrinking) indepen-

dently. Without loss of generality, let’s consider a match-

ing group (̂sq,oq), q = 1, 2, · · · , n shown by the dashed-

line linked boxes (predictions) and circles (observations) in

Fig. 5(a). The iterative growing of this group takes the fol-

lowing steps:

1. Label the predictions ŝq , q = 1, 2, · · · , n as “pro-

cessed” and all the other predictions as “unprocessed”.

Compute the TPS transform f using Eq. (3).

2. From all the “unprocessed” predictions that are adja-

cent to the matching group in the Delaunay triangula-

tion graph, identify the nearest one and denote it as ŝa
with the location ẑa. If all predictions adjacent to the

matching group have been “processed”, exit and return

the matching group as the group growing result.

3. Apply TPS transform f to ẑa and search for the obser-

vation oa that is nearest to f(ẑa).

4. Check the consistency of the pair (̂sa,oa) against the

matching group. If the consistency conditions are sat-

isfied, we update the matching group by including the

pair (̂sa,oa) . Relabel the predictions in the updated

matching group as “processed” and all the other pre-

dictions as “unprocessed”. Recalculate the TPS trans-

form f using the updated matching group and go back

to Step 2. If any consistency condition is not satisfied,

simply label ŝa as “processed” and go back to Step 2.

Figure 5(b) shows a group-growing result, starting from the

matching group given in Fig. 5(a).

In this paper, we define two consistency conditions

between a pair (̂sa,oa) and a matching group (̂sq,oq),
q = 1, 2, · · · , n. First, we compute the distribution of the

prediction-observation gap (oq − ẑq), q = 1, 2, · · · , n in

the matching group and examine whether the gap (oa− ẑa)
shows high likelihood in this distribution. More specifi-

cally, the gap is a 2D vector and we estimate two Gaus-

sian distributions for the magnitude and slope angle, re-

spectively. The first consistency condition is that the gap

(oa − ẑa) falls in LT times the standard deviations in both

magnitude and slope angle distributions. Second, adding

a new pair to a matching group may increase the TPS

bending energy for the matching group. A small bending-

energy increase, i.e., φ ((̂sq,oq) |q = a, 1, 2, · · · , n) −
φ ((̂sq,oq) |q = 1, 2, · · · , n) ≤ ∆φ , is taken as the other

consistency condition. If both consistency conditions are

satisfied, we update the matching group by including the

new pair as stated in Step 4. Note that Gaussian distribu-

tions used in consistency conditions are also updated when

the matching group is updated in the group growing.

After applying the group growing independently to all

the matching groups, one prediction may be matched to dif-

ferent observations in different matching groups and vice

versa. We perform a group merging for the final associa-

tion by applying two rounds of majority voting. In the first

round, for each prediction ŝp, the number of the votes an ob-

servation oq receives is the number of matching groups that

contain the pair (̂sp,oq) after group growing. The observa-

tion with the largest number of votes is matched to ŝp. In the

second round, for each observation oq we vote similarly for

its corresponding prediction by only considering the match-

ing pairs that are kept after the first round of voting. Af-

ter these two rounds of voting, the resulting matching pairs

are guaranteed to be one-on-one: No two observations are

matched to a same prediction and vice versa. We take these

final matching pairs as the final association.

The whole groupwise TPS association algorithm is sum-

marized in Algorithm 1.

Algorithm 1 Groupwise TPS association algorithm.

Input
{

ŝip
}N

p=1
: N fiber predictions on slice i

{

oi
q

}M

q=1
: M fiber observations on slice i

1 Divide predictions to groups using K-means

2 FOR each group

3 TPS-RPM for initial association

4 Group shrinking to remove outlier matchings

5 Group growing to include consistent matching

pairs

6 END FOR

7 Group merging for final association
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4. Experiments

In the experiments, we apply the proposed method to

track large-scale fibers from S200, an amorphous SiNC ma-

trix reinforced by continuous Nicalon fibers. Three sets

of data, denoted as Data 1, Data 2 and Data 3, are col-

lected, each of which is a 100-slice image sequence with

dense inter-slice distance 1µm. The size of each slice is

1292 × 968. A sample slice is shown in Fig. 2(a), which

contains hundreds of crowded fibers. On the collected data,

we annotate the locations of fibers on each slice and link

them across slices as the ground truth for performance eval-

uation.

We use five widely used metrics [15, 20] for evaluat-

ing the fiber tracking performance: Multiple Object Track-

ing Accuracy (MOTA), Multiple Object Tracking Preci-

sion (MOTP), Identity Switches (IDSW), Mostly Tracked

(MT) and Mostly Lost (ML), all of which measure the

co-alignment between the tracked fibers and the annotated

ground-truth fibers. Among these metrics, MOTA is a com-

prehensive one that considers both IDSW, false positives

and false negatives. IDSW, MT and ML only reflect the

tracking performance from specific perspectives. In com-

puting these metrics, we use a threshold of 20 pixels be-

tween the tracked fiber and the ground-truth fiber on each

slice to count the hit/miss on the slice. MT is the number of

ground-truth fibers that are hit in no less than 80% of slices

while ML is the number of ground-truth fibers that are hit

in no more than 20% of slices. For MOTA and MT, the

higher the better, and for MOTP, IDSW and ML, the lower

the better. Note that, we follow the distance-based MOTP

definition [15] and a lower MOTP indicates a better track-

ing.

To test the tracking performance under sparsely sampled

image sequences, we downsample the original image se-

quence. In particular, we skip C ≥ 0 slices before taking

the next slice in the original sequence, until the end of origi-

nal sequence is reached, to construct such sparsely sampled

image sequences. For convenience, we name parameter C

the sparsity: The larger the parameter C, the lower the inter-

slice continuity of the constructed image sequence. One is-

sue is that, such constructed image sequences with large C

are much shorter than the original image sequence and the

tracking performance obtained on a single such short se-

quence may not be statistically reliable. To alleviate this

issue, for a given sparsity C we construct C + 1 image se-

quences, starting from original slice 1, 2, · · · , C+1 respec-

tively. These C+1 image sequences do not share any slice.

We perform tracking on each of them independently and

then average their performances, e.g., MOTA and MOTP,

as the performance of tracking under the sparsity C. Note

that when C = 0, tracking is directly performed and evalu-

ated on a single image sequence: the original densely sam-

pled image sequence. In our experiments, we continuously

vary the sparsity C from 0 to 19 and examine the tracking

performance under different sparsity.

To justify the effectiveness of the proposed method, we

compare its performance against three baseline Kalman

filter methods and four other state-of-the-art multi-target

tracking methods. For the three baseline methods, Kalman-

NN, Kalman-Hung and Kalman-Global, they all follow the

same Kalman filter setting as in the proposed Kalman-

Groupwise method. The difference lies in the step of as-

sociation. Kalman-NN uses the nearest neighboring (NN)

search for association. More specifically, the pair of the pre-

diction and observation with the minimum distance is iden-

tified and associated. Then we exclude this identified pair

and repeat the same NN search on the remaining predictions

and observations, until either predictions or observations are

empty. Kalman-Hung computes the association using Hun-

garian algorithm [16] for a minimum-total-distance bipar-

tite matching. Because the number of predictions and ob-

servations are usually different, we introduce dummy nodes

into Hungarian algorithm. The distance to a dummy node

is set to 40 pixels in our experiments. Kalman-Global com-

putes the association by directly applying TPS-RPM [8] to

match the predictions and observations in a global fash-

ion. The four other multi-target tracking algorithms used

for comparison are DPNMS [22], SMOT [10], CEM [20]

and KTH [18]. As reviewed in Section 2, these four are all

non-recursive tracking methods.

For the Kalman-based methods, including the three base-

line methods and the proposed Kalman-Groupwise, the ini-

tial state covariance is set to be a diagonal matrix with di-

agonal elements 103. The transition noise covariance is set

to be a diagonal matrix with diagonal elements 10−3. The

observation noise covariance is set to be a diagonal matrix

with diagonal elements 10−3. In the proposed Kalman-

Groupwise, predictions are always clustered to 10 groups

and the percentage of removed fiber pairs in group shrink-

ing is set to δ = 30%. The consistency thresholds in group

growing are set to LT = 3 and ∆φ = 0.01. For the four

non-recursive methods, we use the code downloaded from

their authors’ websites. For DPNMS, SMOT and CEM, the

observations are the bounding boxes of the detected ellipses

as described in Section 3. For KTH, no source code is avail-

able and we only have its binary executable file, which has

its own integrated image segmentation and target detection

components. For these four comparison methods, we use

their default parameters for experiments.

4.1. Experiment Results on Fiber Tracking

The top row of Fig. 6 shows the MOTA and MOTP of the

proposed Kalman-Groupwise method and the three base-

line Kalman filter tracking methods on the three datasets

(image sequences), under different sparsity C. We can

see that, when the sparsity C is low, both the proposed
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Figure 6. MOTA and MOTP performance of the proposed Kalman-Groupwise and the comparison methods, under different sparsity C.

Table 1. IDSW, MT and ML performance under different sparsity C. The performance is the average over all three image sequences.

Metrics Kalman-NN Kalman-Hung Kalman-Global DPNMS[22] SMOT[10] CEM[20] KTH[18] Kalman-Groupwise

IDSW

C = 0 9.0 6.3 4.5 780.5 62.8 63.0 258.3 4.3

C = 5 6.3 3.3 41.0 5135.7 21.9 128.2 3.5 2.6

C = 10 596.6 209.9 118.6 2921.7 0.02 89.7 0 5.0

C = 15 1162.4 937.9 229.9 1871.0 0.7 118.2 0 21.3

C = 19 1100.5 999.1 453.0 1413.3 0 129.6 0.1 43.4

MT

C = 0 376.3 377.0 366.0 370.5 363.0 113.8 84.0 376.3

C = 5 371.1 374.9 345.5 368.6 68.1 38.1 16.1 373.9

C = 10 309.2 337.6 313.0 360.1 0.7 2.3 0 364.6

C = 15 268.5 271.9 301.8 360.6 0 3.6 0 354.6

C = 19 307.5 297.5 280.2 362.0 0 5.2 0 347.5

ML

C = 0 0.3 0.3 4.0 0.8 1.0 115.5 140.8 0.3

C = 5 1.6 1.8 8.5 0.8 214.4 166.0 324.6 2.7

C = 10 3.9 5.4 7.7 0.8 372.7 198.6 375.0 6.2

C = 15 8.8 11.2 11.4 1.6 374.3 231.0 375.0 12.4

C = 19 1.5 1.7 3.5 0.8 373.5 117.7 370.6 5.5

method and the three baseline methods produce satisfac-

tory fiber tracking, with very high MOTA and very low

MOTP. With the increase of the sparsity, the performance

of all these four methods drops. However, the proposed

Kalman-Groupwise’s performance, in terms of both MOTA

and MOTP, drops much slower than the three baseline meth-

ods. Even if C = 19, i.e., increasing the inter-slice distance

by 19 times, the proposed method can still achieve very high

MOTA performance (> 80%).

The bottom row of Fig. 6 shows the MOTA and MOTP

of the proposed method and the four non-recursive track-

ing methods: DPNMS, SMOT, CEM and KTH. All the

four comparison methods show low MOTA values when the

sparsity increases, because the crowded targets with simi-

lar appearance and the low continuity between slices break

some basic assumptions made in these methods. In terms of

MOTP, the proposed Kalman-Groupwise, SMOT, and DP-

NMS are better (e.g., with lower MOTP values) than CEM

and KTH.

Table 1 shows the IDSW, MT and ML metrics of the

proposed Kalman-Groupwise and all the comparison meth-

ods. The performance shown in this table is the average

over all three test image sequences. In general, the pro-

posed Kalman-Groupwise shows competitive performance

than these comparison methods when the sparsity C is high.

In particular, compared to other comparison methods, the

proposed Kalman-Groupwise is the only one that always

keeps small IDSW, high MT and low ML when increasing

sparsity C. DPNMS shows very high MT and low ML but

suffers from very high IDSW. This indicates that DPNMS

makes many mis-associations between frames.

For the running time, the proposed method processes

0.023 slices per second on a workstation with a 4-core

2.6GHz Intel CPU and 8GB memory. It can be accelerated

substantially by parallelizing the matching on different fiber

groups. We also study the selection of the cluster numbers

in group initialization. We tried the group numbers from 8

to 16 on one fiber dataset with sparsity C=19. The obtained

mean MOTA is 85.6% with standard deviation 5.8%, indi-

cating that the proposed method is not very sensitive to the

choice of cluster number.

4.2. Crowded Human Tracking

The proposed method can be used for tracking crowded

people from videos. Analogue to fiber bundles, crowded

people usually move in groups where people in the same

group usually move toward similar directions with similar

velocities and their association can be modeled by a TPS

transform. While videos usually show good inter-frame

continuity, there are several important cases where such

inter-frame continuity may get very poor. First, the cam-

era may move suddenly and then get back to look at the
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Figure 7. An illustration of crowded human tracking. Sparsely sampled Marathon video (five frames in row 1) and the tracking results (row

2) using the proposed method. Third row: Sparsely sampled Band video (left three frames) and the tracking results (right three frames)

using the proposed method. People to be tracked are labeled in pink in the leftmost frame for both data. White boxes are observations and

the boxes with an identifical color and number across frames represent a resulting track.

Table 2. MOTA performance (%) on crowded human tracking.

Video Kalman-NN Kalman-Hung Kalman-Global DPNMS[22] SMOT[10] CEM[20] Kalman-Groupwise

Marathon 30.6 34.1 14.1 16.5 3.5 25.9 76.5

Band 14.8 20.4 7.4 16.7 1.9 9.3 74.1

same crowd of people. This is very common with the use of

wearable cameras, such as Google Glass and GoPro. Sec-

ond, the crowded targets may be occluded for a while and

then re-appear in the view. In both cases, we need to track

over low-continuity frames, analogue to the sparse sampled

image sequences in fiber tracking.

We use two videos with crowded people, downloaded

from internet, to test the proposed method: Marathon and

Band, as shown in Fig. 7. Similar to fiber tracking, we sim-

ulate the low-continuity videos by sparse sampling: skip-

ping a random number of frames (1 to 100) before taking

a new frame for tracking. In Fig. 7, the frame numbers

on the original video are shown at the bottom-left corner

of the frame. Observations shown as white boxes are ob-

tained by a trained DPM detector [11], followed by man-

ual adjustments and corrections. After the sparse sampling,

we choose 32 people to track on Marathon and 124 people

to track for Band, as labeled by pink boxes on the starting

frame as shown in Fig. 7. Their tracking results on sub-

sequent frames are shown by numbered color boxes: the

boxes with an identifical color and number across frames

represent one resulting track.

Table 2 shows the MOTA tracking performance on

these two sparsely sampled videos by using the proposed

Kalman-Groupwise and other comparison methods. KTH

is not applicable to this task because we only have its ex-

ecutable file which detects and tracks only objects with a

simple shape of cells (e.g., fibers), but not human.

5. Conclusions

In this paper, we proposed a groupwise association al-

gorithm for tracking similar-appearance, crowded targets

along low-continuity image sequences. The proposed al-

gorithm divides targets in groups and employs the nonrigid

Thin-Plate Splines (TPS) to model the within-group asso-

ciation. Without knowing the group compositions priorly,

we applied K-means clustering to initialize the groups and

then developed a three-step algorithm, consisting of group

shrinking, group growing and group merging, for refining

the initial groups. By integrating this association algorithm

into Kalman filter, we used it to track large-scale crowded

fibers from sparsely sampled material image sequences.

We also showed the application of the proposed method to

track crowded people from low-continuity videos. Results

showed that the proposed method outperforms several base-

line Kalman filters and multi-target tracking methods.
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