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Abstract

Edge-preserving image operations aim at smoothing an

image without blurring the edges. Many excellent edge-

preserving filtering techniques have been proposed recent-

ly to reduce the computational complexity or/and separate

different scale structures. They normally adopt a user-

selected scale measurement to control the detail/texture s-

moothing. However, natural photos contain objects of d-

ifferent sizes which cannot be described by a single s-

cale measurement. On the other hand, edge/contour de-

tection/analysis is closely related to edge-preserving filter-

ing and has achieved significant progress recently. Nev-

ertheless, most of the state-of-the-art filtering techniques

ignore the success in this area. Inspired by the fact that

learning-based edge detectors/classifiers significantly out-

perform traditional manually-designed detectors, this pa-

per proposes a learning-based edge-preserving filtering

technique. It synergistically combines the efficiency of the

recursive filter and the effectiveness of the recent edge de-

tector for scale-aware edge-preserving filtering. Unlike

previous filtering methods, the propose filter can efficient-

ly extract subjectively-meaningful structures from natural

scenes containing multiple-scale objects.

1. Introduction

Edge-preserving filtering has found widespread use in

many computer vision and graphics tasks. It is an im-

age smoothing technique that removes low-contrast detail-

s/textures while maintaining sharp edges/image structures.

A large category of edge-preserving filters are designed

with a specific filter kernel to measure the distance between

two pixels in a local region. The distance measurement is

then converted to the confidence of an edge between the two

pixels for edge-aware filtering. This category is very sensi-

tive to noise/textures. Examples are anisotropic diffusion

[34], bilateral filter [42], guided image filter [23] and do-
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main transform filter [20]. The main challenge in this cat-

egory is accurately including scale measurement for filter

design to distinguish textures/noise from image structure.

Designing a robust edge-aware filter kernel is surprisingly

difficult. There is not an “optimal” solution as the detec-

tion of image edges can only be evaluated in a subjective

manner. Meanwhile, numerical experiments like the Berke-

ley Segmentation Dataset and Benchmark (BSDS500) [3]

demonstrate that human subjects have various perceptions

of edges in a same image.

On the other hand, significant progress has been

achieved in machine learning over the past few years. Un-

like standard image processing techniques that use strict-

ly static program instructions, it normally builds a model

based on example inputs and then uses it to generate pre-

dictions or decisions. The performance of a learning-based

edge-preserving image filter is thus likely to be closer to

human visual system when the example inputs are obtained

based on average agreement between sufficient human sub-

jects. The svm-based filter presented in [51] is the first

learning-based bilateral filter. As Taylor series expansion

of the Gaussian function can be used to approximate the bi-

lateral filters [38], [51] learns a function that maps feature

vector comprising of the exponentiation of the pixel inten-

sity, the corresponding Gaussian filtered response, and their

products to the corresponding exact bilateral filtered values

from the training image.

This paper aims at developing image smoothing tech-

niques that can preserve edges between different-size ob-

jects/structures. It is a much more challenging problem.

Unlike the bilateral filter, it cannot be approximated using

Taylor series expansion and there is not any ground-truth

filtered image for training. Nevertheless, there are suffi-

cient hand-labelled segmentation data sets. For instance,

BSDS500 [3] contains 12,000 hand-labelled segmentation-

s of 1,000 Corel dataset images from 30 human subjects.

Image segmentation and edge detection is closely related to

image smoothing technique. They normally pre-smooth the

image with a specific low-pass filter for noise reduction.

Because human visual system is capable to understand

semantically meaningful structures blended with or formed
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(a)Input (b)GuidedFilter[23](c)D.T. Filter[20](d)L0smooth[44](e)RelativeTV[45](f)RollingGF[54] (g)Proposed

Figure 1. Natural scenes like (a) contain objects of different sizes and structures of various scales. As a result, the state-of-the-art edge-

preserving filters are unlikely to obtain “optimal” smoothing result without parameter adjustment as shown in (b)-(f). The default param-

eters included in the implementations published by the authors were used in this experiment. This paper aims at an efficient scale-aware

filtering solution by integrating fast edge-preserving filtering technique with prior knowledge learned from human segmentation results.

Unlike previous filters, it can sufficiently suppress image variance/textures inside large objects while maintaining the structures of small

objects as shown in (g).

by texture elements [4], a “perfect” segmentation result

(which agrees with human subjects) is obviously an excel-

lent guidance for scale-invariant edge-preserving filtering.

However, it is very difficult to obtain ideal edges from real

life images of moderate complexity. Traditional edge de-

tectors rely on image gradients (followed by non-maximal

suppression). Unfortunately, many visually salient edges

like texture edges do not correspond to image gradients. As

a result, most of the state-of-the-art edge-preserving filters

ignore the potential contribution from an edge detector. On

the other hand, it has been demonstrated recently that the

performance of learning-based edge detectors is approach-

ing human subjects [12, 13].

This paper proposes a simple seamless combination of

the recursive filtering technique and the learning-based

edge classification technique for fast scale-aware edge-

preserving filtering. We observed that a number of fast

edge-preserving filtering techniques including anisotropic

diffusion [34], recursive bilateral filter [47] and domain

transform filter [20] operate on the differential structure of

the input image. They recursively smoothen an image based

on the similarity between every two neighboring pixels and

are referred to as Anisotropic Filters in this paper. These

filters are naturally more sensitive to noise than the other-

s like the bilateral filter [42] or guided image filter [23].

They cannot separate meaningful structures from textures

either. However, their computational complexity is lower

as they can be implemented recursively. Another great ad-

vantage is that they can be naturally combined with a state-

of-the-art learning-based edge classifier [13] to encourage

smoothing within regions until reaching strong edges. Such

an edge classifier is trained using human-labelled contours.

According to [4], “the overall structural features are the pri-

mary data of human perception, not the individual details”.

Learning-based edge detectors can thus robustly distinguish

the contours of different-size objects from image noise and

textures. When integrating with an anisotropic filter, it en-

ables robust structure extraction from natural scenes con-

taining objects of various scales as demonstrated in Fig. 1.

Fig. 1 (a) contains two images with both large scale objects

(e.g., sky and meadow) and small scale objects (e.g., ani-

mals). Current state-of-the-art edge-preserving filters can-

not successfully separate large scale objects from the small

ones without parameter tuning as shown in Fig. 1 (b)-(f).

The proposed filtering technique does not have this limita-

tion as demonstrate in Fig. 1 (g). Its computational com-

plexity is also low due to the efficiency of the adopted edge

classifier and the recursive filters.

Compared with the other edge-preserving filters, the pro-

posed filtering technique has the following advantages:

• It is robust to natural scenes containing objects of dif-

ferent sizes and structures of various scales, and thus

can successfully extract subjectively-meaningful struc-

tures from images containing multiple-scale objects.

• Its computational complexity is low and real-time per-

formance can be achieved. The major computation

cost of the proposed filtering technique resides in the

adopted edge classifier [13] and recursive filter, and

both can obtain real-time performance.

2. Related Work

2.1. EdgePreserving Filtering

The most popular edge-preserving filter is likely to be

the bilateral filter introduced by Tomasi and Manduchi [42].

It has been used in many computer vision and computer

graphics tasks, and a general overview of the applications

can be found in [30]. Let xi denote the color of an image x

24518



at pixel i and yi denote the corresponding filtered value,

yi =

∑
j∈Ωi

Gσs
(|i− j|)Gσr

(|xi − xj |)xj∑
j∈Ωi

Gσs
(|i− j|)Gσr

(|xi − xj |)
, (1)

where j is a pixel in the neighborhood Ωi of pixel i, and

Gσs
and Gσr

are the spatial and range filter kernels measur-

ing the spatial and range/color similarities. The parameter

σs defines the size of the spatial neighborhood used to fil-

ter a pixel, and σr controls how much an adjacent pixel is

down-weighted because of the color difference. A joint (or

cross) bilateral filter [36, 16] is the same as the bilateral fil-

ter except that its range filter kernel Gσr
is computed from

another image named guidance image.

The brute-force implementation of the bilateral filter is

slow when the kernel is large. A number of techniques

have been proposed for fast bilateral filtering based on

quantization on the spatial domain and/or range domain

[15, 37, 9, 29, 50, 49, 2, 1, 21]. Other techniques reduce

the computational complexity with additional constraints on

the spatial filter kernel [43, 38] or the range filter kernel

[47, 48].

Besides accelerating bilateral filter, there are efficien-

t bilateral-filter-like techniques derived from the anisotropic

diffusion [34], weighted least square (WLS) measure [18],

wavelets [19], linear regression [23], local Laplacian pyra-

mid [31, 5, 32], domain transform [20] and L0 gradient min-

imization [44].

These edge-preserving filters have found widespread

computer graphics applications. However, they all focus on

relatively small variance suppression and vulnerable to tex-

tures. The proposed filtering technique is different in that

it can distinguish meaningful structures from textures and

image noise.

2.2. StructurePreserving Filtering

Traditional edge-preserving filtering techniques cannot

distinguish textured regions/patterns from the major struc-

tures of an image. Popular structure-preserving techniques

are based on the total variation (TV) model [40]. It uses L1-

norm based regularization constraints to enforce large-scale

edges, and has demonstrated good separations of structure

from texture [28], [52], [6]. Xu et al. [45] proposes relative

total variation measures to better capture the difference be-

tween texture and structure, and develops an optimization

system to extract main structures. Another model was pro-

posed by [41]. It separates oscillations from the structure

layer through extrema extraction and extrapolation. Alter-

natively, better similarity metrics like geodesic [10] or d-

iffusion [17] distances instead of traditional Euclidean dis-

tances can enhance the ability of texture-structure separa-

tion. Recently, [24] uses second order statistics as a patch

descriptor to capture the difference between structure and

texture.

Structure-preserving filtering is normally slow before the

availability of the rolling guidance filter [54]. Besides the

efficiency, [54] also proposes a unique scale measure to con-

trol the level of details during filtering. This scale measure

is very useful when manual adjustment is required/allowed.

Unlike [54] and most of the available structure-preserving

filters, this paper aims at extracting meaning structures re-

gardless of the sizes/scales of the objects/structures. This

type of technique is desired in computer vision.

2.3. Edge Detection

Edge detection is a fundamental task in computer vision

and image processing. Traditional approaches like the So-

bel operator [14] detects edges by convolving the input im-

age with local derivative filters. The most popular edge de-

tector - Canny detector [7] makes extensions by adding non-

maximum suppression and hysteresis thresholding steps.

These approaches use low-level interpolation of the image

structures, and an overview can be found in [57]. Recen-

t works focusing on utilizing machine learning techniques.

They either train an edge classifier based on local image

patches [11, 26, 39, 22, 12, 58, 13] or make use of learning

techniques for cue combination [3, 56, 8, 59]. Deep neural

networks were also applied to edge detection recently [25].

Traditional edge detectors rely on image gradients while

many visually salient edges like texture edges do not corre-

spond to image gradients. As a result, they are not suitable

for structure-preserving filtering. However, the state-of-the-

art detectors [12, 13] are learned from human-labelled seg-

mentation results including sufficient texture edges. As a

result, they contain useful and accurate structural informa-

tion that can be adopted for robust structure-preserving fil-

tering.

3. Scale-Aware Structure-Preserving Filtering

3.1. Anisotropic Filtering

Anisotropic diffusion is a popular edge-aware filtering

technique [34]. It is modeled using partial differential e-

quations and implemented as an iterative process. The re-

cent domain transform filter (DTF) [20] and the recursive

bilateral filter [47] are closely related to anisotropic diffu-

sion and can achieve real-time performance. Due to page

limit, only a brief introduction of DTF is presented in this

section. The proposed filtering technique is identical to DT-

F except that the distance measurement in DTF (Eq.3) will

be adjusted using edge confidence computed from an edge

classifier and the proposed filter need to repeat iteratively

until converge. As a result, a fully understand DTF is in-

deed not required.

Given a one-dimensional (1D) signal, DTF applies a

distance-preserving transformation to the signal. A per-

fect distance-preserving transformation does not exist, but
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a simple approximation is the sum of the spatial distance

(e.g., one pixel distance) and color/intensity difference be-

tween every two pixels. Let x denote the 1D input signal,

and t denote the transformed signal,

ti = x0 +

i∑

j=1

(1 + |xj − xj−1|). (2)

Similar to the bilateral filter, two additional parameters σs

and σr will be included in Eq. (2) to adjust the amount of

smoothness in practice:

ti = x0 +

i∑

j=1

(1 +
σs

σr

|xj − xj−1|). (3)

As can be seen from Eq. (3), this transform operates on the

differential structure of the input signal, which is the same

as the anisotropic diffusion. The recursive implementation

of a standard low-pass filter like the Gaussian filter with

kernel defined by σs will be used to smooth the transformed

signal (Eq.3) without blurring the edges, and the smoothed

image is the output of DTF.

DTF filters 2D signals using the 1D operations by per-

forming separate passes along each dimension of the sig-

nal. [20] demonstrates that artifact-free filtered images can

be obtained by performing filtering iteratively and the filter

kernel size (defined by σs and σr) should be reduced itera-

tively to guarantee convergence.

3.2. StructurePreserving Anisotropic Filtering

The anisotropic filters can be implemented recursively

and thus the computational complexity is relatively low.

However, they are sensitive to image noise and cannot dis-

tinguish textures from structures. Available solutions either

manually design low-level vision model(s) and descriptor(s)

[40, 45, 24] to capture the difference between structure and

texture or simply adopt a texture scale parameter [54]. The

performance of these filters is excellent when perfect pa-

rameters are used. Nevertheless, natural photos contain ob-

jects of different sizes and structures of various scales which

are hard to describe using a unified low-level feature. In

contrast, it has already been demonstrated on closely re-

lated research (like edge detection) that high-level features

learned from human-labelled data can significantly outper-

form manually-designed features. This section makes use

of the state-of-the-art structured learning based edge classi-

fier [12, 13] for structure-preserving filtering while maintain

its efficiency. The sufficient human-labelled training exam-

ples from BSDS500 benchmark [3] enable the proposed fil-

tering technique to be robust to various texture scales.

DTF accumulates the image gradients to measure the

distance between two pixels as can be seen from Eq. (3).

However, it is clear that texture edges do not correspond to

image gradients. A straightforward learning-based solution

is training a deep learning architecture to map a local patch

to a “perfect” image gradient value so that it is low inside a

region and high around texture edges. However, it will be

slow. A simpler but much faster solution is thus adopted in

this paper. By taking the advantage of the inherent struc-

ture in edges in a local patch, [13] proposes a generalized

structured learning approach for edge classification. It has

been demonstrated to be very robust to textures and very

efficient.

A straight-forward solution to structure-preserving s-

moothing is using the edge confidence computed from [13]

as the guidance in DTF to smooth the input image. This

type of filter is named cross/joint (bilateral) filter in the lit-

erature [36, 16]. Let fj
1 denote the confidence of an edge

at pixel j. fj is the output of [13] at pixel j and represents

the probability of an edge at j. Eq. (3) can be modified

as follows to suppress gradients (due to textures) inside a

region:

ti = x0 +

i∑

j=1

(1 +
σs

σr

· fj), (4)

The corresponding filter is referred to as cross DTF. This is

a good solution given a perfect edge classifier which how-

ever, does not exist in practice. It may introduce visible

artifacts or blur the image as shown in Fig.3(d).

(a)Input (b)Edge Confidence (c)Proposed.

(d) Cross DTF (w.r.t. different parameters).

Figure 3. Direct use of the edge confidence as the guidance may in-

troduce visible artifacts or blur the image as shown in (d) (zoom in

for details). (c) shows that the combination of the image gradients

from (a) and the edge confidence in (b) can effectively suppress

the potential artifacts due to imperfect edge detection.

This paper proposes to use the edge confidence to adjust

the original distance measurement in DTF:

ti = x0 +

i∑

j=1

(1 +
σs

σr

· fj |xj − xj−1|), (5)

The combination of the edge confidence and the image gra-

dients can effectively suppress the potential artifacts cause

by incorrect edge detection.

1fj will be re-computed after every iteration.
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(i) Pixel values (on the red channel) (j) Edge confidence (k) Image gradients.

Figure 2. Integration of anisotropic filters with edge detector can successfully remove textures except for small-scale textures around the

edges as can be seen in (b)-(c). A simple and robust solution is removing these textures using rolling guidance filter [54] in advance as

demonstrated in (d). However, it will be relatively slow. To improve the efficiency, this paper alternatively uses the differential structure of

median filtered image to smooth the original input image as shown in (g). Dashed ellipses will be discussed in text.

The gray curves in Fig. 2 (k) represent the original image

gradients of the red and green rows of Fig. 2 (a), respective-

ly. Traditional anisotropic filters are vulnerable to textures

in these two rows. The red curves in Fig. 2 (j) represent the

edge confidence detected from these two rows, respectively.

The peaks in the two red curves correspond to the edges in

the red and green rows in Fig. 2 (a). The edge confidence

is used to suppress the image gradients inside the textured

regions and enable texture removal according to Eq. (5).

The red curves in Fig. 2 (k) represent the modified image

gradients (which correspond to the fj |xj − xj−1| values in

Eq. 5). Note that the variance of the image gradients inside

the textured regions were significantly suppressed, and thus

the resulted anisotropic filter can successfully remove most

of the textures (e.g., the hat) as can be seen in Fig. 2 (b)

and the red curves in (i). New edge confidence can be ob-

tained from the filtered image and used to further suppress

the textures/noise.

The proposed structure-preserving filtering technique

iteratively compute edge confidence using structured-

learning based edge classifier and use it to suppress the tex-

tures until convergence. Same as [20], the filter kernels, that

is σs and σr in Eq.(5) are iteratively reduced by half to guar-

antee convergence2. Although it will not affect the transfor-

m in Eq.(5), reducing σs will decrease the filter kernel of the

low-pass filter used to smooth the transformed signal (see

the text below Eq.3 for details), and thus convergence can

be guaranteed. Fig. 2 (c) presents the filtered image after

10 iterations. It shows that most of the visible textures are

removed. The green, blue and purple lines in the first row of

Fig. 2 (i)-(k) correspond to the pixel intensities, edge con-

fidence measurements and updated image gradients of the

red row in (a) after 2, 3 and 10 iterations, respectively. It

shows that the proposed filter converges quickly (after only

about 3 iterations).

3.2.1 Suppress small-scale textures around edges

The filter presented in Eq. (5) cannot sufficiently re-

move small-scale textures around highly-confident edges as

shown in the close-ups below Fig. 2 (b)-(c). This is due

to the imperfect confidence measurements around a texture

edge. As shown in the yellow ellipse in Fig. 2 (k), large

image gradients around texture edges cannot be effective-

ly suppressed even after a large number of iterations. As a

2σs = 0.4 and σr =0.04 in all the conducted experiments.
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result, the original pixel values will be preserved as can be

seen from the yellow ellipse in Fig. 2 (i). Applying a small

median filter (MF) to the input image cannot significantly

affect the edge confidence around highly-confident edges as

can be seen in the blue and purple lines in Fig. 2 (j). How-

ever, it is very effective for removing textures around edges

as demonstrated in Fig. 2 (e)-(f) and the blue and purple

lines in the second row of Fig. 2 (i) and (k) (see the values

around the two yellow ellipses). Nevertheless, median filter

will of course remove thin-structured objects as shown in

the close-ups under Fig. 2 (e)-(f). Let xMF denote the me-

dian filter result of the input signal x, this paper ONLY uses

xMF to compute the image gradients in Eq. (5). The pro-

posed structure-preserving DTF are computed as follows:

ti = x0 +

i∑

j=1

(1 +
σs

σr

fj |x
MF
j − xMF

j−1|), (6)

Fig. 2 (g) presents the filtered images with the proposed

DTF (Eq. (6)). They both successfully remove the textures

in Fig. 2 (a)-(c) while better preserving the details around

thin-structured objects. An alternative solution is directly

applying rolling guidance filter [54] to the input image to

remove the small-scale textures and the result is presented

in Fig. 2 (d). However, it will be relatively slow.

The median filter size, σs and σr will be reduced by half

after every iteration to guarantee convergence, and it nor-

mally converges after as few as two iterations. As a nat-

ural scene contains textures of different scales, the size of

the employed median filter should be adjusted accordingly.

Otherwise it may either blur structures or cannot completely

remove all textures as shown in Fig. 4. This paper direct-

ly relies on the level of textureness which is represented by

the percentage of low confident edges detected by [13] to

decide the median filter size.

3.2.2 Computational complexity

The computation cost of the proposed filtering technique re-

sides in the adopted state-of-the-art edge detector [13], DTF

and the median filter [43, 35]. They can all run in real-time

and thus the whole pipeline will be very fast if the number of

iterations is low. This paper uses the BSDS500 benchmark

[3] to analyze the convergence problem. The average PSNR

values from the filtered images between every two iterations

are presented in Fig. 5. As can be seen, it is safe to stop af-

ter only 2 iterations as the PSNR value computed from the

filtered images after 2 and 3 iterations is higher than 40 dB

(which corresponds to almost invisible difference). In prac-

tice, a downsample-version is sufficient for both the edge

detector [13] and the median filter when the image resolu-

tion is relatively large (e.g., one megapixel). As a result, the

computation cost mainly resides in the adopted anisotropic

filter which operates on the full-resolution input image.

(a) Input (b) Edge Map (c) Without MF.

(d) 3× 3 MF (e) 5× 5 MF (f) 9× 9 MF

Figure 4. Different median filter size will affect the texture removal

result around edges and thus the filter size should be adjusted ac-

cording to the scene content.

Figure 5. Average PSNR values computed from filtered images

between every two iterations. PSNR values larger than 100 was

shown as 100 for better visualization (as it can be infinity).

The complete comparison with the other state-of-the-art

filters is presented in Table 1. The last row presents the

runtime when the rolling guidance filter [54] is used as a

pre-smoothing step (to remove small-scale textures around

edges). Note that both the proposed filter and [54] are sig-

nificantly faster than the others. However, [54] is not suit-

able for images containing various structure scales as shown

in Fig. 6.

3.3. Comparison with the stateoftheart

Fig. 7 visually compare the proposed filtering tech-

nique with the state-of-the-art filters under constant param-
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(a)Input {σs, σr}={3, 0.05}. {σs, σr}={6, 0.05}. {σs, σr}={9, 0.05}.

(b)Proposed (c){σs, σr}={3, 0.15}. (d){σs, σr}={6, 0.15}. (e){σs, σr}={9, 0.15}.

Figure 6. Proposed filter and the rolling guidance filter [54] are significantly faster than the others. Rolling guidance filter requires an

estimate of the structure scale and can effectively smooth out the corresponding textures. However, it is not suitable for scenes containing

objects/structures of multiple scales as can be seen from (c)-(e). It either cannot sufficiently remove textures in a large-scale object or blur

small-scale objects. The computational complexity of proposed filter is close to [54] but is more robust to this limitation as demonstrated

in (b).

Method Runtime(Sec./Mp)

Relative TV[45] 35

L0 Smoothing[44] 18

WMF[55] 18

Covariance M2[24] 614

Rolling GF[54](with D.T. Filter[20]) 0.15

Proposed (with D.T. Filter[20]) 0.14

Proposed (with [54]+D.T. Filter[20]) 0.27

Table 1. Exact runtime for processing a one megapixel color image

on an Intel i7 3.4GHz CPU.

eter setting3. The adoption of learning-based edge detection

technique[13] enable the proposed filter to be robust to nat-

ural scenes containing objects of different sizes and struc-

tures of various scales.

Quantitative evaluation of structure-preserving filtering

is difficult, and thus the state-of-the-art methods [44, 54, 45]

present only visual evaluation. In this section, we propose

to numerically evaluate the improvement over the state-of-

the-art saliency detection algorithm when the original image

is processed by the state-of-the-art filters. We choose the

ECSSD dataset [46] which is known to be difficult and Min-

imum Barrier Saliency (MBS) detection algorithm [53]4

which is the latest algorithm that outperforms all the oth-

ers on this dataset. The precision-recall curves which eval-

uate the overall performance of a saliency detection method

3The default parameters included in the implementations published by

the authors of [44, 54, 45] were used.
4The implementation published by the authors was used.

are presented in Fig. 8. Note that the proposed filter con-

sistently outperforms the state-of-the-art filters [44, 54, 45].

The corresponding mean absolute errors (MAE) [33] and

weighted-F-measure scores [27] are presented in Table 2

which show that the proposed filter has the lowest error rate

and the highest weighted-F-measure score.

Figure 8. Precision-recall curves for saliency detection. Note that

the combination of the structure-preserving filters can outperform

the original MBS method on average and the proposed filter con-

sistently outperforms the others.

Method MBS MBS+ MBS+ MBS+ MBS+

L0S[44] RTV[45] RGF[54] Proposed

MAE 0.1707 0.1674 0.1660 0.1698 0.1578

WFM 0.5612 0.5668 0.5630 0.5606 0.5846

Table 2. Mean absolute errors (MAE) and weighted-F-measure

scores (WFM). The proposed filter has the lowest error and the

highest weighted-F-measure score.
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(a)Input (b)Edge[13] (c)L0 smoothing[44] (d)Rolling GF[54] (e)Relative TV[45] (f)Proposed.

Figure 7. Visual comparison with the state-of-the-art structure-preserving filters under constant/default parameter setting. Unlike the state-

of-the-art filters, the proposed filter is more robust to various object scales due to adoption of learning-based edge detection technique[13].

4. Conclusion

An efficient structure-preserving filtering technique is

proposed in the paper. Unlike the current state-of-the-art

structure-preserving filters that use low-level vision features

to design the filter kernel, the proposed technique is devel-

oped based on high-level understanding of the image struc-

tures. It is a seamless combination of the fast anisotrop-

ic filtering technique(s) with the structure learning based

edge detector. The use of edge models trained from human-

labelled data sets enables the proposed filter to better pre-

serve the structure edges that can be detected by the hu-

man visual system. As a result, it is more robust to object-

s/structures with different sizes/scales.

The proposed technique cannot be directly applied to

other edge-preserving filters like the guided filter [23] and

most of the quantization-based fast bilateral filters [15, 37,

9, 29, 50, 2, 1, 21]. Fig.9(a)-(b) show that the guided fil-

ter is vulnerable to textures when a constant filter kernel is

used. A simple extension is adjusting the edge confidence to

adaptively control the guided filter kernel so that small ker-

nel will be used around edges. Fig.9(c)-(d) present the edge

confidence before and after minimum filtering, and Fig.9(e)

presents the guided filtered image using an adaptive kernel

based on the edge confidence in (d). It outperforms the o-

riginal guided filter for suppressing textures while capable

of maintaining the most salient structure edges. Howev-

er, the quality is obviously lower than the integration of an

anisotropic filter as shown in Fig.9(f). A better extension

for other edge-preserving filters will be investigated in the

near future.

(a) (b)Guided Filter[23]

Input r=4,ǫ=0.22 r=10,ǫ=0.52 r=20,ǫ=0.92

(c)Edge Conf. (d)Min Conf. (e)Conf.+GF (f)Our DTF

Figure 9. Limitation. The guided filter is not effective for remov-

ing textures as shown in (b). The proposed technique can be ad-

justed for the integration with guided filter but the quality will be

lower than anisotropic filters.
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