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Abstract

Sparse feature (dictionary) selection is critical for

various tasks in computer vision, machine learning, and

pattern recognition to avoid overfitting. While extensive

research efforts have been conducted on feature selec-

tion using sparsity and group sparsity, we note that there

has been a lack of development on applications where

there is a particular preference on diversity. That is,

the selected features are expected to come from different

groups or categories. This diversity preference is moti-

vated from many real-world applications such as adver-

tisement recommendation, privacy image classification,

and design of survey.

In this paper, we proposed a general bilevel exclusive

sparsity formulation to pursue the diversity by restrict-

ing the overall sparsity and the sparsity in each group.

To solve the proposed formulation that is NP hard in

general, a heuristic procedure is proposed. The main

contributions in this paper include: 1) A linear conver-

gence rate is established for the proposed algorithm; 2)

The provided theoretical error bound improves the ap-

proaches such as L1 norm and L0 types methods which

only use the overall sparsity and the quantitative benefits

of using the diversity sparsity is provided. To the best of

our knowledge, this is the first work to show the theoret-

ical benefits of using the diversity sparsity; 3) Extensive

empirical studies are provided to validate the proposed

formulation, algorithm, and theory.

1. Introduction

Nowadays people can easily extract tons of features

in computer vision applications, for example, the well-

known open source library VLFeat [34] provides a large

collection of feature extraction algorithms, while the

number of labeled samples are usually limit. Without re-

stricting the number of active features, the learned model
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Figure 1. Illustration of different sparsity preferences. The or-

ange color indicates the active (or selected) feature. “No spar-

sity” potentially selects all features; “overall sparsity” (com-

monly used sparsity such as L1 norm and L0 norm regular-

ization) only restricts the number of selected features without

any restriction on the structure; “group sparsity” prefers selects

features staying in the same group; and “diversity sparsity” re-

stricts selected features in different groups.

will overfit the training data and dramatically degrades

the performance on testing data. Sparse feature (dictio-

nary) selection is one of key steps in various tasks in

computer vision, machine learning, and pattern recog-

nition to overcome the overfitting issue (e.g., visual-

tracking [47], face recognition [38], sparse coding for

image classification [37], joint restoration and recogni-

tion [45]). Extensive research efforts have been con-

ducted on sparse feature selection by explicitly or im-

plicitly restricting the number of active features (e.g.,

LASSO [31]) or the number of active feature group (e.g.,

group LASSO [42]), where the assumption is that active

features (or active groups of features) should be sparse.

In the paper, we are interested in the sparse feature se-

lection with a particular preference on diversity, that is,

the selected features are expected from different groups

or categories. Figure 1 provides an illustration for the

different sparsity preference that are commonly used and

the diversity preference considered in this paper.
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This diversity preference is motivated from many

real-world applications such as privacy image classifi-

cation, design of survey, and advertisement recommen-

dation:
• (Private image detection) Private image detection is

a new emerging task with the thriving activity of post-

ing photos on social media. Sometimes the user up-

loads photos with the intent to limit the viewership to

only friends and family but not to the general public

due to personal information in the photos. The reason

why an image is considered as private may vary, as

shown in Figure 4. Different privacy type is usually

better to indicate with different type of features. To

better identify the general private image, diversity in

feature selection is highly preferred.

• (Design of survey) Survey is a very useful data col-

lection technique that has been widely used in many

fields such as HCI, education, healthcare, marketing,

and etc. On one hand, the total number of questions

should be restricted in a certain range. On the other

hand, the principle for the design of the survey is to

be thorough and comprehensive to cover all aspects.

• (Advertisement recommendation) Many recom-

mendation systems are designed to help users to find

interesting and relevant items from a large informa-

tion space. From a user perspective, users will feel

frustrated when they are facing a monotonous rec-

ommendation list. On one hand, the total number of

recommended advertisements is given. On the other

hand, users expect the recommended advertisements

from diverse categories.
To emphasize the diversity in feature selection, a

popular approach is to use L1,2 norm regularization

[48, 9, 19, 17] such as exclusive LASSO. It is a soft di-

versity regularization and the selection is seriously af-

fected by the magnitiute of weights of true features.

Thus, it does not fit well for applications with strict re-

quirement on diversity such as design of survey and ad-

vertisement recommendation. More importantly, so far

there is no any theoretical result showing the benefit of

emphasizing the selection diversity.

This paper proposes a novel general bilevel exclu-

sive sparsity formulation to pursue a diverse feature se-

lection, which directly restricts the numbers of the to-

tal selected features and the features selected from each

group:

min
w2Rp

f(w) (1a)

s.t. kwk0 s (1b)

kwgk0 tg g 2 G (1c)

w is the model we are pursuing. Its nonzero elements

indicate the selected features (or items). f(w) is a con-

vex smooth function characterizing the empirical loss

on the training samples. For example, f(w) can take

the form of the least square loss 1
2

Pn
i=1(Xi − yi)

2 or

logistic regression loss
Pn

i=1 log(1 + exp(−yiX
>
i w)).

The first constraint (1b) controls the overall sparsity, that

is, the total number of selected features, where the L0

norm kwk0 is defined as the number of nonzeros in w.

The second constraint (1c) maintains the selection di-

versity by restricting the maximal number of selected

features from each group, where wg is a sub-vector of

w indexed by g ⇢ {1, 2, · · · , p} and G is a super set

containing all g’s. (Note that tg’s are positive integers

and their sum is greater than s; otherwise the constraint

(1b) can be removed.) The group information usually

comes from the prior information which is usually de-

cided by the specific applications and domain knowl-

edge. For example, in many computer vision applica-

tions, the group is automatically decided by the kind of

features such as SIFT features, HOG features, GIST fea-

tures, and etc. When group information is unavailable,

a typical way is to cluster the features using algorithms

like K-means [19].
In this paper, we derive an efficient computational al-

gorithm to solve (1) which is NP-hard in general, and

further provide theoretical results that show convergence

of the algorithm and consistency of the learning formu-

lation. More importantly, our analysis shows the clear

advantages of using bilevel exclusive sparsity than using

the single overall sparsity in two senses: 1) for the noise-

less case, our approach needs fewer samples to find the

true solution than the approach only using a single level

of sparsity; 2) our approach improves the estimation er-

ror bound from O(n−1s log p) to O(n−1s log(p/|G|))
under certain assumptions where n is the number of

training samples, p is the total number of features, and

|G| is number of groups. To the best of our knowl-

edge, this is the first work to show the benefits of us-

ing the diversity sparsity structure, which provides fun-

damental understanding on diversity preference. Ex-

tensive numerical studies have been conducted on both

synthetic data and real-world data which show that the

proposed method is superior over existing methods such

as LASSO [46], L0 norm approach [43], and exclusive

LASSO [19].
Notation and definition

• Ω(s, t) is used to denote the set {w 2 R
p | kwk0

s, kwgk0 tg 8g 2 G};

• t 2 R
|G| a vector consisting of all tg in G in a certain

order;

• w̄ 2 Ω(s, t) denotes the target solution which takes

an arbitrary point in this region Ω(s, t);
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• PΩ(s,t)(u) = argmin
w2Ω(s,t) kw − uk2.

PΩ(∞,t)(w) removes the overall sparsity restric-

tion and can be simply calculated by keeping the top

tg largest elements in group g. Similarly, PΩ(s,∞)(w)
removes the sparsity restriction for all groups and can

be calculated by keeping the top s largest elements

from w;

• supp(w) denotes the support index set, that is, the in-

dex set of nonzero elements in w;

• [w]S denotes the subvector indexed by the set S;

• |S| returns the cardinality of S if S is a set or the

absolute value of S if it is a real number.

2. Related Work

Extensive research efforts have been conducted on

the sparse learning and sparsity regularizer. In this sec-

tion, we provide a brief overview of the methods that

are mostly related to our work, which include algorithms

and models restricting the overall sparsity and the struc-

tured sparsity.

Overall sparsity. The most popular approaches to

enforce the overall sparsity is to use the L1 norm regu-

larization [31, 7], which leads to a convex problem. L0

norm approaches directly restrict overall sparsity, but it

turns out to be NP hard problem in general. Iteratively

hard threshold (IHT) [14, 5, 43] is a commonly used ap-

proach to solve it, which is nothing but the projected gra-

dient descent. The model L0 norm with least square loss

is considered in [14, 5], while [43] considers the gen-

eral convex smooth loss and provides theoretical error

bounds and convergence rate. Our work is also based on

IHT, but we consider bilevel exclusive sparsity structure

simultaneously. In [26], IHT is categorized as greedy

pursuits algorithm, together with Compressive Sampling

Matching Pursuit (CoSaMP) [24], Orthogonal Matching

Pursuit (OMP) [33], Regularized OMP (ROMP) [25],

and forward-backward greedy algorithms [22]. All of

these approaches essentially admit the same theoreti-

cal error bound. One interesting work [18] shows that

by considering projection with a relaxed L0 constraint,

some assumptions which are needed for most methods

can be released. Although some method (e.g. CoSaMP)

can achieve better accuracy by designing more crafted

procedures, there are not much theoretical improve-

ments, and it usually brings considerable computational

cost. The reason we choose IHT is that it is a straight-

forward approach to directly control the sparsity at all

levels.

Structured sparsity. Besides of the overall spar-

sity, there is another type of structured sparsity. Group

LASSO [4, 42] was proposed to extend LASSO for se-

lecting groups of features. Fused LASSO [32] penalizes

the sparsity of features and their difference. Exclusive

LASSO [48, 9, 19, 17] also seeks the diversity in selec-

tion and uses the convex regularizer L1,2 norm to char-

acterize the exclusive sparsity structure. The key differ-

ence from this paper lies on two folds: 1) L1,2 norm is a

soft constraint for diversity preference, which is not suit-

able for applications with strict requirement on diversity

and is not robust when weights of true features are in

very different scales; and 2) They do not have any the-

oretical guarantee or error bound to show the benefit by

using the exclusive sparsity. To our best knowledge, this

paper is the first work to show the theoretical guaran-

tee and benefits of using the diversity preference. Bach

et.al. show the extension of the usage of L1 norm to

the modeling of a series of structured sparsity constraint

composing with groups of features [2]. [41] presented a

bilevel sparsity model. In addition, there are some work

about pursuing sparsity of multiple levels [39, 40, 36].

The difference with our “bilevel” concept is their mod-

els restrict the overall sparsity and the group sparsity

while our model restricts the overall sparsity and exclu-

sive group sparsity. More importantly, previous works

do not show any theoretical benefit by using the bilevel

sparsity structure.

3. Algorithm
The problem in (1) is NP hard in general. In this sec-

tion, we derive the IHT algorithm for solving (1). The

IHT algorithm is an iterative algorithm which is able to

directly control the sparsity of the solution unlike the

convex relaxation based approaches. It consists of two

steps per iteration: gradient descent and projection. The

gradient descent step aims to decrease the objective and

the projection uses to satisfy all constraints:

wk+1 = PΩ(s,t)(w
k − ηrf(wk)

| {z }

gradient descent

)

| {z }

projection

(2)

where wk are the weights in the k-th iteration. The

combination of these two steps per iteration will mono-

tonically decreases the objective function value as long

as the step length η is small enough. We will show it

converges in a linear rate to a ball of the target solu-

tion. It is also worth to mention that the IHT algorithm

is essentially the projected gradient descent algorithm

from the perspective of optimization. It is simple and

efficient as long as the projection step is easy to calcu-

late. In (2), the projection step is to project a point to

the set Ω(s, t) which is the intersection between the sets

Ω(s,1) and Ω(1, t). In general, the projection to the

intersection between two sets would be difficult to cal-
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culate efficiently, but in our case due to the special struc-

ture, this projection can be decomposed into two simple

projects.

Lemma 1. The projection on PΩ(s,t) defined in (2) can

be calculated from two simple sequential projections as

following

PΩ(s,t)(w) = PΩ(s,∞)

(

PΩ(∞,t)(w)
)

.

The projection operation PΩ(s,∞) sets all the ele-

ments to zero except the s elements which have the

largest magnitude, and PΩ(∞,t) makes the same oper-

ation to each group.

Note that the lemma above greatly simplifies the

computational procedure of (1) by decomposing the

procedure into two simpler operations PΩ(∞,t)(w) and

PΩ(s,∞)(w). Specifically, PΩ(∞,t)(w) basically re-

moves the total sparsity restriction and it is simply to

calculate by keeping the top tg largest elements in group

g. Similarly, PΩ(s,∞)(w) removes the sparsity restric-

tion for all groups which is also simply to calculate by

keeping the top s largest elements of w.

The η is the step length in (2). To guarantee the con-

vergence, η can be dynamically decided by linear search

[6]. The idea behinds linear search is to decrease the step

length η if wk+1 does not reduce the objective function

value from wk.

4. Main Results
This section discusses the convergence rate of (2) and

the advantages of the proposed algorithm and the for-

mation by using two levels of sparsity constraints. All

proofs are provided in the supplemental materials.

The main theoretical results and significance can be

summarized as follows:

• (Convergence) The general analysis [43] for the IHT

update guarantees its convergence, but it is unclear

whether it converges to the true solution. We show

that the IHT update in (2) converges to a ball around

the true solution with a linear rate and the radius of

this ball converges to zero when the number of sam-

ples goes to infinity. This means that the solution pro-

vided by (2) will be driven to the true solution when

more and more samples are received.

• (Benefits of using bilevel exclusive sparsity) It is a

core problem in machine learning and sparse learn-

ing (or compressed sensing) to understand the depen-

dence of the error bound and the sample complexity.

Under some commonly used assumptions in sparse

learning for the least squares objective function, we

prove the error bound of the proposed algorithm is

kŵ −w∗k O
⇣

p

s log(p/|G|)/n
⌘

,

where ŵ is the output of running the IHT updates for a

certain number of iterations. To the best of our knowl-

edge, this work is the first to provide an error bound

for the exclusive sparsity motivated approaches. More

importantly, our analysis shows the advantages over

the approaches (such as L0 norm approaches and L1

norm approaches) only using the overall sparsity with

the well known error bound

O
⇣

p

s log(p)/n
⌘

.

We believe that this analysis provides some funda-

mental understanding on the exclusive sparsity.

4.1. Convergence Rate

For the convergence property, we need to make some

assumptions similar to most papers in compressed sens-

ing and sparse learning. The following two assump-

tions essentially assume the lower bound ρ−(s, t) and

the upper bound ρ+(s, t) for the curvature of f(·) in a

low dimensional space Ω(s, t). However, the key dif-

ference from existing assumption lies on that our as-

sumptions are less restrictive. While in many existing

works such as [43, 22], where ρ+ and ρ− need to hold

for any pairs (w,u) satisfying w − u 2 Ω(s, t). Our

assumptions only needs to hold for a subset (w, w̄) with

w − w̄ 2 Ω(s, t), where w̄ is a fixed target model.

Assumption 1. (Target Restricted Strong Convexity.)

There exists ρ−(s, t) > 0 which satisfies:

hrf(w)−rf(w̄),w − w̄i ≥ ρ−(s, t)kw − w̄k2,

8 w − w̄ 2 Ω(s, t)

Assumption 2. (Restricted Lipschitz Gradient.)

There exists ρ+(s, t) < +1 which satisfies:

hrf(w)−rf(w̄),w − w̄i ≥

ρ+(s, t)
−1k[rf(w)−rf(w̄)]Sk

2,

8supp(w − w̄) ✓ S, S 2 Ω(s, t).

For readers who are familiar with RIP constant δ de-

fined in Eq. (1.7) [8] for the least square loss function,

ρ−(s, t) and ρ+(s, t) are actually nothing but 1− δ and

1 + δ respectively.

Theorem 2. Let w̄ be an arbitrary target model and

α = 2(1− 2ηρ−(3s, 3t) + η2ρ+(3s, 3t)ρ−(3s, 3t))
1/2.
(3)

If the step length η in (2) can appropriately set to a value

such that α is less than 1 and w0 is initialized as a fea-

sible point in Ω(s, t), we have the following results
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• The k-th iteration satisfies

kwk − w̄k ↵
kkw0 − w̄k+

2

(1− ↵)⇢+(3s, 3t)
∆;

• If k ≥
l

log 2∆
(1−α)ρ+(3s,3t)kw0−w̄k/log↵

m

, then the

target features in w̄ can be identified by wk is at least

|supp(wk) \ supp(w̄)|≥
∣

∣

∣

∣

⇢

j | |w̄j |>
4∆

(1− ↵)⇢+(3s, 3t)

}∣

∣

∣

∣

where ∆ =
∥

∥PΩ(2s,2t)(rf(w̄))
∥

∥.

This theorem suggests a few important obser-

vations: 1) wk in (2) converges to the ball

Bw̄

⇣

2
(1−α)ρ+(3s,3t)∆

⌘

in a linear rate; 2) The number

of correctly selected features by wk (i.e., |supp(wk) \
supp(w̄)|), should be more than |{j | |w̄j |>

4∆
(1−α)ρ+(3s,3t)}|; 3) If all channels (that is, all nonze-

ros) of the target solution w̄ are strong enough, all true

features can be identified correctly after a few iterations.

Acute readers may notice that the implicit assump-

tion in our theory is ↵ < 1, which essentially re-

quires the ratio ⇢−/⇢+ > 3/4 by choosing the op-

timal steplength. This assumption is consistent with

former studies [24, 8]. There is a recent analysis for

L0 minimization [18] which can relax this requirement

(⇢−/⇢+ > 0) by enlarging the scope (i.e. larger Ω) of

the Assumptions 1 and 2. By applying their strategy, our

result can be potentially relaxed.

4.2. Theoretical Benefits of Using Bilevel Exclu-
sive Sparsity

We explain the benefits of using the bilevel sparsity

structures in this subsection. In particular, we show the

advantage over the model only using the overall spar-

sity such as Dantzig Selector [7], LASSO [46] and L0

minimization [43].

To simplify the following analysis, we consider the

least square loss f(w) = 1
2nkXw − yk2. Assume that

w⇤ 2 Ω(s, t) ⇢ R
p is a sparse vector, and y is generated

from y = Xw⇤ + ✏✏✏ 2 R
n where ✏✏✏i are i.i.d Guassian

noise N (0,σ2)1. The data matrix X has i.i.d samples (or

rows) and each sample follows the sub-Guassian distri-

bution.

We will consider two cases to show the advantage of

the proposed model: noiseless case ✏✏✏ = 0 and noisy case

✏✏✏ 6= 0. First for the noiseless case, we have the following

result:

1The Gaussian noise can be relaxed to sub-Gaussian noise; for ex-

ample, any bounded random variable is sub-Gaussian

Theorem 3. (Noiseless linear regression) For the least

square loss without observation noise (that is, ✏✏✏ = 0),

assume that matrix X is sub-Guassian and has indepen-

dent rows or columns. If the number of samples n is

more than

O

0

@min

8

<

:

s log p, log(max
g2G

|g|)
X

g2G

tg

9

=

;

1

A (4)

then by appropriately choosing ⌘ (for example, ⌘ =
1/⇢+(3s, 3t)) such that ↵ defined in (3) is less than 1,

we have with high probability2 that the sequence {wk}
generated from (2) converges to identify all features in

the true solution w⇤.

This theorem basically suggests that the true solution

w⇤ can be exactly recovered when the number of sam-

ples is more than the quantity in (4). For the models

which only consider the overall sparsity, for example,

Dantzig selector [7], LASSO [46], and L0 minimiza-

tion [43], they have a similar exact recovery condition

when the number of samples is more than O(s log p).
Apparently, the required number of samples for our

model is fewer in the order sense. Particularly, when
P

g∈G tg = O(s) and log(maxg2G |g|) ⌧ log p, the re-

quired number of samples in (4) is much less than s log p
required by Dantzig selector, LASSO, and L0 minimiza-

tion. For example, taking s = p/log p and |g|= log p,

we have

s log p = p and (4) = p
log log p

log p

which suggest that the proposed model constantly im-

proved the sample complexity. In other words, it implies

the quantitative benefits of using the additional exclusive

sparsity. Next, we will observe similar benefits in the

noisy case.

Theorem 4. (Noisy linear regression) Under the same

setting as in Theorem 3 except that the noise allows to

be nonzero, we have with high probability

• There exists a number k0, such that

kwk −w⇤k (5)

O

0

@min

8

<

:

r

s log p

n
,

s

log(maxg2G |g|)
P

g2G tg

n

9

=

;

1

A ,

for all k > k0, that is, all true features are identified

after a certain number of iterations.

2“With high probability” is a typical statement to simply the com-

plicated probability definition and explanation. It basically says that

the probability will converge to 1 when the problem dimension goes

to infinity.

5949



• If |w⇤
j |> O

⇣

min
n

s log p, log(maxg2G |g|)
P

g2G
tg

o⌘

,

there exists a number k00, such that supp(wk) =
supp(w⇤) for all k > k00, that is, all true features are

identified after a certain number of iterations.

To see the benefits, recall the error bound for Dantzig

selector [7], LASSO [46], and L0 minimization [43] is

O(
p

n−1s log p). Our result actually improves it to Eq.

(5). To see a clear quantitative improvement, we can

assume that all groups have comparable sizes and tg is

chosen appropriately (
P

g2G
tg = O(s)), then the error

bound in (5) becomes O(
p

n−1 log(p/|G|)). Consider-

ing the same scenario as in the noiseless case, we can

obtain the constant improvement as well.

5. Experiments

Although this paper mainly focuses on the theoreti-

cal side, we provide an empirical study to validate the

proposed model and algorithm with L0 norm based ap-

proach, L1 norm based approach, and L1,2 norm based

approach. Experiments are conducted on synthetic data,

real data, and a real application problem.

5.1. Synthetic Data

In this section, we evaluate our method with syn-

thetic data. Our sparsity method can be used in many

algorithms which pursue a sparse solution. In the ex-

periments, we conduct two classical models in machine

learning and artificial intelligence, i.e., the least square

and logistic regression models. These two algorithms

are both linear models which allow us to use a n ⇥ p
measurement matrix X to measure the data for n dimen-

sional observations. For both algorithms, the measure-

ment matrix X is generated with i.i.d. standard Gaussian

distribution. For generating the true sparse vector w⇤,

we first generate a dense p dimensional vector with i.i.d.

standard Gaussian distribution, then we randomly set its

elements to zeros until it satisfies our requirement (i.e.,

the bilevel sparse constraint). For the sparsity parame-

ters correspond to s and t, we use random integers from

1 to bp/|G|c to set elements of t, where G is the set of all

groups. Elements are uniformly assigned to |G| groups.

The overall sparsity s is set as 0.75 ⇥ sum(t), where

the function sum(·) means the sum all of elements in the

vector. The settings of group structure and sparsity s are

the same for all the methods. All the synthetic experi-

ments are repeated 30 times and we report the averaged

performance.

Linear regression Firstly, we demonstrate the experi-

ment using linear regression to recover the sparse vec-

tor w⇤. The dimension of the vector w⇤ is set as

p = 1000 and the number of measurements is set

as n = 600. After generating the true sparse vec-

tor w⇤, we can get the observations y 2 R
n by y =

Xw⇤ + ✏, where ✏ is a n dimensional noise vector gen-

erated from i.i.d. Gaussian distribution with mean 0
and variance 0.01. The cost function of least square

is f(w) = 1

2nkXw − yk2. We compare our methods

with three methods, i.e., L0 norm minimization [43],

L1 norm regularization (LASSO [46]), and L1,2 norm

regularization (Exclusive LASSO [19]). While LASSO

and L0 minimization only considers the overall spar-

sity, exclusive LASSO only restrict the exclusive spar-

sity. For fair comparison, methods with regularization

will be truncated and we only keep the largest s ele-

ments. Figure 2 shows the accuracy of feature selection

(i.e. |supp(w⇤) \ supp(w)|/|supp(w⇤)|) and the rela-

tive error rate which is kw −w⇤k/kw⇤k. The step size

⌘ of projected gradient descent is chosen by line search

method. For all methods, the relative error rate decreases

just with the improvement of feature selection accuracy.

Within these four methods, the proposed bilevel method

is superior when compared to other methods.
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Figure 2. Feature selection accuracy and relative error rate for

linear regression loss.

Logistic Regression Next we move to the logistic re-

gression model which is a classical classification model.

The model learns a linear classifier by maximizing the

likelihood of sample-label pairs in the training set. The

ith sample Xi is generated from Gaussian distribution

and its label yi is decided by sign(Xiw
⇤). We set

the feature dimension p to 1000 and generate the true

sparse model w⇤ in a similar fashion to the linear re-

gression experiment. The number of training samples

is n = 2000. Besides the comparison with true sparse

vector w⇤, we need to estimate the classification error of

our learned classifier. In addition, we generate a matrix

Xtest 2 R
n⇥p by using the mean of the generated ma-

trix X , then its label vector is sign(Xtestw⇤). Figure 3

shows the feature selection accuracy and classification

error rate of our method, and its counterparts, L0 logis-

tic regression and L1 logistic regression. The result of

L1 norm regularization method only keep the s largest
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Table 1. Testing accuracy comparison among L1 logistic regression, L0 logistic regression, and the proposed Bilevel exclusive

sparsity model on real datasets: Computer (ISOLET [3]), Handwritten Digits (GISETTE and MNIST [21]), Cancer (LEU [15],

ALLAML [13], Colorectal [1] and Prostate-GE [30]) and Social Media (TwitterHealthData [29]).

Data #Samples #Features #Selected features L1 logistic regression L0 logistic regression Exclusive LASSO Bilevel sparsity(#Groups)

ISOLET 1560 617 18 74.74%±0.1127% 80.63%±0.1013% 77.96%±0.3559% 81.14%±0.0729 % (10)

MNIST 3119 784 8 96.40%±0.0670% 97.13%±0.1011% 95.03%±0.0957% 97.29%±0.1138 % (10)

ALLAML 72 7129 4 83.33%±0.0728% 85.28%±0.1785% 79.44%±0.1642% 85.28%±0.0561 % (4)

Colorectal 112 16331 6 92.14%±0.0275% 92.14%±0.2203% 80.71%±0.2168% 93.75%±0.0060 % (8)

GISETTE 6000 5000 20 90.82%±0.0109% 93.78%±0.1528% 91.92%±0.0743% 94.17%±0.1360 % (20)

Prostate-GE 102 5966 7 84.12%±0.0814% 88.24%±0.1720% 86.67%±0.0792% 88.63%±0.0118 % (8)

LEU 72 571 16 93.06%±0.0384% 93.61%±0.3812% 83.13%±0.0114% 95.56%±0.0673 % (8)

TwitterHealthData 6873 3846 36 81.96%±0.2071% 83.39%±0.0601% 83.33%±0.1957% 83.50%±0.0241% (20)

elements, and all of the other methods are conducted in

a standard L2 norm regularized logistic regression with

the selected features. The L1 norm and L2 norm regu-

larized logistic regression models are implemented with

LIBLINEAR [12]. From Figure 3, we can see that our

method consistently outperforms other methods.
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Figure 3. Feature selection accuracy and classification error

rate for logistic regression loss.

5.2. Real Data Sets

We compare the proposed method to exclusive

LASSO, L1 norm and L0 norm logistic regression on

real datasets. For each dataset, we randomly sampled

50% of the data for training and the remaining data for

testing. We repeat all experiments 10 times and reported

the averaged performance for three algorithms in Ta-

ble 1. For our approach, s is set to sum(t) roughly for

all experiments. We observed that the proposed bilevel

sparsity algorithm is the best performer compared to L1

norm and L0 norm in logistic regression.

5.3. Application on Privacy Image Classification

Photo privacy is an important problem in the digital

age. Many photos are shared on social media websites

such as Facebook, Twitter, Flickr, and etc. Many time,

the user uploaded photos without noticing privacy sensi-

tive information is leaked in their photos. This can lead

on identify theft, stolen private photos, or cause embar-

rassment. Solving the photo privacy problem helps to al-

leviate the aforementioned problems and alerts the user

before they post their photos online.

Private: smoke Private: wedding Private: document

Private: nude Private: group Private: ID card

Figure 4. Samples of private images data set.

This experiment use two datasets for photo privacy

detection. The first data set is a public dataset from [44]

which consists of with roughly 4K private photos and

33.5K public photos from Flickr. Due to the imbalance

number of photos between the two classes, we randomly

sampled 4K photos from the public photos set. For the

second dataset, we collected photos [20] that are con-

sidered as private risk in general which come from 6

classes, i.e., nude photos, identification card, wedding

photos, documents, people smoking, and family (group)

photos. A sample of photos in our data set is shown in

Figure 4. This data set consists of roughly 3.4K private

photos. We randomly sampled 3.4K public photos from

the public photos of dataset from [44] and used them as

public photos.

We extracted 5 types of features: color histogram,

histogram of oriented gradients (HOG) [11], linear bi-

nary pattern (LBP) [27], GIST [28], and bag of vi-

sual words (BoVW) with SIFT points [23, 10]. For

each image, we generate 5 sub feature vectors which

are 768-dimensional color histogram, 1984-dimensional

HOG feature vector, 3712-dimensional LBP feature vec-

tor, 512-dimensional GIST feature vector, and 512-

dimensional BoVW vector. These features capture the

different type of image statistics such as colors, textures,

and other patterns.
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(b) Our privacy image dataset.

Figure 5. Classification error rate on privacy image datasets.

Different types (groups) of features depict different

aspects of the visual information and emphasize differ-

ent attributes of the images. As shown in Figure 4, the

six private images classified into the “private” image due

to different reasons look very different visually. For ex-

ample, nude photos and documents photos have very dif-

ferent visual information. Therefore, we need to use dif-

ferent kinds of features to classify all of them into the

general private image framework. Although traditional

overall sparsity can avoid this, but the selected features

may concentrate in just a few groups due to the biased

dataset. For example, if the training set is dominanted

by the number of nude images as private images, the se-

lected features are also dominanted by nude images as

well while important features from other types of pri-

vate images could be absent in the selection procedure.

This motivates us to emphasize the diversity in feature

selection.

We demonstrate the performance of learning models

with a relatively small training data (i.e., number of data

is much smaller than the number of features). In our ex-

periment, we randomly chose 1% ∼ 5% samples from

all the samples as the training set and leave the rest as

the testing set. We construct the features into 5 groups

based on the 5 different feature types mentioned above.

By tuning the parameters on training set, we set the spar-

sity tg as half of the number of total features in the group

g and the overall sparsity s = 0.75×sum(t). The classi-

fication error rate is shown in Figure 5. Exclusive Lasso

is also compared here by setting the observations y as

1 and −1 for positive and negative samples respectively.

We can see that our bilevel sparse model consistently

outperforms the other sparse learning models. We also

notice that all the error rates decrease significantly as the

size of training set grows from 1% to 2%.

5.4. Application on a Complex Survey Dataset

We implemented our method on a survey dataset that

was used for understanding which business practices

drive firm’s performance. This is a complex problem

since many factors and practices could affect a firm per-

formance. Thus, the original survey was quite compre-

hensive that consists of more than 20 categories (each

category can be a group in the context of this paper) such

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.85

0.9

0.95

1

# Selected features

E
m

p
ir
ic

a
l 
a

c
c
u

ra
c
y

 

 

L0 logistic regression
L1 logistic regression
Exclusive LASSO
Bilevel sparsity

Figure 6. Empirical accuracy vs. # of selected features.

as human resources, supply chain, information technol-

ogy, to name a few. To measure each category, several

related items (each item is a variable) were used to mea-

sure the same latent construct. The survey was assigned

to 197 companies while these companies were classi-

fied as two classes, the high-performing company and

low-performing company. The dataset comprised 1701

variables and 197 observations. The primary objective

of the experiment is show how the proposed method can

help to improve the design of complex survey. For our

approach, s is set to 0.5 × sum(t). Thus, as shown in

Figure 6, the proposed method is more powerful to cap-

ture the inherent structure in the survey data. For a given

number of feature that will be selected, the proposed

method provides better approximation of the original

dataset. Therefore, it implies that our method could help

optimize the design of the survey, minimize the redun-

dancy, and maximize the information collection power.

6. Conclusion
In this paper, we propose a novel bilevel exclusive

sparsity formulation to emphasize the diversity in fea-

ture or item in general selection, motivated by diversity

preference in many real problems such as private image

classification, advertisement recommendation, and de-

sign of survey. The proposed formulation can be speci-

fied by many common tasks such as regression and clas-

sification. We propose to use IHT to solve this formu-

lation which is NP-hard in general, and prove a linear

convergence rate of IHT and the error bound between

the output of IHT and the true solution. Our theoretical

analysis shows the improvement of using diversity spar-

sity over the commonly used sparse learning approaches

such as LASSO and L0 norm approaches. To the best of

our knowledge, this is the first work to show such error

bound and theoretical benefit of using the diversity spar-

sity. Experiments on synthetic data and real-world data

demonstrate the effectiveness of our method and validate

and the correctness of our theory.
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