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Abstract

In this paper, we investigate two new strategies to detect

objects accurately and efficiently using deep convolutional

neural network: 1) scale-dependent pooling and 2) layer-

wise cascaded rejection classifiers. The scale-dependent

pooling (SDP) improves detection accuracy by exploiting

appropriate convolutional features depending on the scale

of candidate object proposals. The cascaded rejection clas-

sifiers (CRC) effectively utilize convolutional features and

eliminate negative object proposals in a cascaded man-

ner, which greatly speeds up the detection while maintain-

ing high accuracy. In combination of the two, our method

achieves significantly better accuracy compared to other

state-of-the-arts in three challenging datasets, PASCAL ob-

ject detection challenge, KITTI object detection benchmark

and newly collected Inner-city dataset, while being more ef-

ficient.

1. Introduction

In recent years, deep convolutional neural network

(CNN) [18, 19] contributed much to various computer vi-

sion problems including image classification, object detec-

tion, semantic segmentation, etc, thanks to its capability to

learn discriminative features (or representations) at different

levels of granularities. A number of recent studies [41, 43]

suggest that high level visual semantics (such as motif,

parts, or objects) are appearing in the middle of deep archi-

tecture which in turn provide strong cues to recognize com-

plex visual concepts. Leveraging on the representational

power of CNN, a number of methods are proposed to detect

objects in natural images using CNN [13, 14, 16, 7, 42].

R-CNN [14] has been proposed for object detection and

achieves promising results, where a pre-trained network is

fine-tuned to classify object proposals. However, both train-

ing and testing suffer from low efficiency since the network

∗This work was done at NEC Laboratories America.

Figure 1. We present a fast and accurate object detection method

using the convolutional neural network. Our method exploits the

convolutional features in all layers to reject easy negatives via cas-

caded rejection classifiers and evaluate surviving proposals using

our scale-dependent pooling method.

performs a forward pass on every single object proposal in-

dependently. Convolutional filters are repeatedly applied to

thousands of object proposals that are redundant and ex-

pensive. In order to reduce the computational cost, recent

CNN based object detectors, such as Fast RCNN [13] and

spatial pyramid pooling networks (SPPnet) [16], share the

features generated by the convolutional layers and apply a

multi-class classifier for each proposal. In Fast RCNN, con-

volutional operations are done only once on the whole im-

age, while the features for object proposals are pooled from

the last convolutional layer and fed into fully-connected (fc)

layers to evaluate the likelihood of object categories. Com-

pared to R-CNN [14], these methods improve the efficiency

in the order of magnitude via shared convolutional layers.

For instance, Fast RCNN achieves 3× and 10 ∼ 100×
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speedup at training and test stage, respectively. In or-

der to deal with scale variation, multi-scale image inputs

are often used where one set of convolutional features are

obtained per image scale. Despite its success, these ap-

proaches have certain drawbacks that make them less flex-

ible. First, Fast RCNN does not handle small objects well.

Since the bounding boxes are pooled directly from the last

convolutional layer rather than being warped into a canon-

ical size, they may not contain enough information for de-

cision if the boxes are too small. Multi-scale input scheme

fundamentally limits the applicability of very deep archi-

tecture like [32] due to memory constraints and additional

computational burden. In addition, pooling a huge number

of candidate bounding boxes and feeding them into high-

dimensional fc layers can be extremely time-consuming.

In this work, we attempt to address aforementioned

drawbacks and propose a new CNN architecture for an ac-

curate and efficient object detection in images. The first

contribution is that, unlike previous works, our method pro-

duces only one set of convolutional features for an im-

age while handling the scale variation via multiple scale-

dependent classifier models. Our intuition is that visual se-

mantic concepts of an object can emerge in different convo-

lutional layers depending on the size of the target objects,

if proper supervision is provided in the training process.

For instance, if a target object is small, we may observe

a strong activation of convolutional neurons in earlier lay-

ers (e.g. conv3) that encode specific parts of an object. On

the other hand, if a target object is large, the same part con-

cept will emerge in much later layers (e.g. conv5). Based

on this intuition, we represent a candidate bounding box us-

ing the convolutional features pooled from a layer corre-

sponding to its scale (scale-dependent pooling (SDP)). The

features are fed into multiple scale-dependent object clas-

sifiers to evaluate the likelihood of object categories. As

for the second contribution, we present a novel cascaded

rejection classifier (CRC) where the cascading direction is

defined over the convolutional layers in the CNN. We treat

the convolutional features in early layers as a weak classifier

in the spirit of boosting classifiers [10]. Although the fea-

tures from earlier convolutional layers might be too weak

to make a strong evaluation of an object category, they are

still useful to quickly reject easy negatives. Combining the

two strategies, we can explicitly utilize the convolutional

features at all layers instead of using only the last one as

previous works do. Our method is illustrated in Figure 1.

We evaluate our model using three object detection

datasets, PASCAL object detection challenge [8], KITTI

object detection benchmark [11] and newly collected Inner-

city dataset. In all experiments, we observe that our method

can achieve significantly higher detection accuracy com-

pared to the other methods with much higher computational

efficiency.

2. Related Works

CNN for object detection. Before the emergence of CNN,

deformable part model (DPM) [9] has been the state-of-the-

art object detector for years. With the exceptional power on

image classification, CNN has been applied to object detec-

tion and achieves promising results [34, 14, 7, 44, 13, 27].

In [34], detection is treated as a regression problem to object

bounding box masks. A deep neural network is learned to

generate and localize object boxes. Erhan et al. [7] design

a deep network to propose class-agnostic bounding boxes

for generic object detection. Sermanet et al. [31] use a re-

gression network pre-trained for classification tasks to pre-

dict object bounding boxes in an exhaustive and computa-

tionally expensive way. Each bounding box is associated

with a confidence score indicating the presence of an ob-

ject class. Recently, Girshick et al. [14] propose the R-

CNN framework that uses object proposals generated by

selective search to fine-tune a pre-trained network for de-

tection tasks. Zhang et al. [42] extend R-CNN by gradu-

ally generating bounding boxes within a search region and

imposing a structured loss to penalize localization inaccu-

racy in network fine-tuning. To reduce the cost of forward

pass for each proposal in R-CNN, Fast RCNN [13] has been

proposed by sharing convolutional features and pooling ob-

ject proposals only from the last convolutional layer. More

recently, Faster RCNN [29] replaces the object proposals

generated by selective search by a region proposal network

(RPN) and achieves further speed-up.

Neural network cascades. The Viola-Jones cascaded face

detector [36] and its extensions [6, 24] have been widely

used. The idea of eliminating candidates by combining a

series of simple features is also applied to CNNs. Sun et

al. [33] present an ensemble of networks by combining net-

works focusing on different facial parts for facial point de-

tection. Li et al. [21] use a shallow detection network with

small scale input images to first reject easy non-face sam-

ples, and then apply two deeper networks to eliminate more

negatives while maintaining a high recall. A calibration net-

work is appended after each detection network for bounding

box calibration. More recently, Angelova et al. [1] combine

a tiny deep network and a modified AlexNet to achieve real-

time pedestrian detection. The tiny deep network removes a

large number of candidates and leaves a manageable size of

candidates for the large network to evaluate. Our approach

is significantly different from prior methods in that we con-

sider cascaded classifiers by utilizing features from different

convolutional layers within a single network, that does not

introduce any additional computation.

Using convolutional features. A few works exploit fea-

tures from different convolutional layers, either by concate-

nating them or by other popular encoding techniques. One

of the most representative works is [15], where neuron acti-

vations at a pixel of different feature maps are concatenated
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Figure 2. Details of our Scale-dependent Pooling (SDP) model on 16-layer VGG net. For better illustration, we show the groups of

convolutional filters between max pooling layers as a cube, where filters are arranged side-by-side, separated by lines.

as a vector as a pixel descriptor for localization and segmen-

tation. Similarly, in the fully convolutional network [23],

feature maps from intermediate level and high level convo-

lutional layers are combined to provide both finer details

and higher-level semantics for better image segmentation.

Xu et al. [40] extract convolutional features in the same way

and encode these feature vectors by VLAD and Fisher vec-

tor for efficient video event detection. DeepProposal [12] is

used to generate object proposals in a coarse-to-fine man-

ner. Proposals are first generated in higher level convolu-

tional layers that preserve more semantic information, and

are gradually refined in lower layers that provide better lo-

calization. Similarly, Karianakis et al. [17] use lower-level

convolutional features to generate object proposals by slid-

ing window and remove background proposals, while re-

fining them using higher-level convolutional features in a

hierarchical way. For edge detection, Bertasius et al. [3] ex-

tract a sub-volume from every convolutional layers, perform

three types of pooling and again concatenate these values

into a single vector, which is further fed into fc layers. Re-

cently, Xie and Tu [39] propose a holistically-nested edge

detection scheme inspired by [20]. In the network, side-

outputs are added after several early convolutional layers

to provide deep supervision for predicting edges at multi-

ple scales. A weighted-fusion layer combines all the side-

outputs where the combination weights are learned dur-

ing network training. In contrast to these works, our ap-

proach does not explicitly combine convolutional features,

but learns classifiers separately.

3. Scale-Dependent Pooling

Scale variation is a fundamental challenge in visual

recognition. Previous works [9, 5] often adopted a sliding

window technique with image pyramids to handle the scale

variation of target objects. Similar techniques are applied to

recent CNN based object recognition methods: they treat

the last convolutional layer’s outputs (conv5 of AlexNet)

as the features to describe an object and apply a classifier

(fc layers) on top of the extracted features. R-CNN [14]

warps an image patch within a proposal that produces fixed

dimensional feature output for classification. The indepen-

dent warping process prohibits us to share any convolutional

operations across proposals in the same image, which fun-

damentally limits the efficiency. In contrast, SPPnet [16]

and Fast RCNN [13] share the convolutional features in an

image and pool the features at the last convolutional layer

to describe an object. In these methods, the scale variation

is tackled either via image pyramid inputs or brute-force

learning that directly learns the scale variation via the con-

volutional filters. However, the image pyramid introduces

additional computational burden and requires large amount

of GPU memories, and brute-force learning via convolu-

tional filters is difficult.

As for a new contribution, we introduce a scale-

dependent pooling (SDP) technique (illustrated in the Fig-

ure 2) to effectively handle the scale variation in object de-

tection problem. Our method is built based on the recent

Fast RCNN [13] method that pools the features for each

bounding box proposal from the last convolutional layer of

CNN. The region inside of each proposal is divided into a

spatial grid (7 × 7 or 6 × 6) and features are pooled using

max-pooling over each grid. Our SDP method examines the

scale (height) of each object proposal and pools the features

from a corresponding convolutional layer depending on the

height. For instance, if an object proposal has a height be-

tween 0 to 64 pixels, the features are pooled from the 3rd

convolutional layer of CNN (SDP 3). On the other hand, if

an object proposal has a height larger than 128 pixels, we

pool the features from the last convolutional layer (SDP 5)

(see Figure 2). The fc layers attached to SDPs have their

own set of parameters so as to learn scale-specific classifi-

cation models from different sets of feature inputs.

The main benefit of SDP is that we can effectively tackle

the scale variation of target objects while computing the

convolutional features only once per image. Instead of arti-

ficially resizing the input images in order to obtain a proper

feature description, the SDP selects a proper feature layer

to describe an object proposal. It reduces computational

cost and memory overhead caused by redundant convolu-

tional operations. Another benefit is that the SDP results

in a compact and consistent representation of object pro-

posals. Since the brute-force approach of Fast RCNN [13]

pools the features for object proposals from the last con-

volutional layer, often the same features are repeated over
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the spatial grid if an object proposal is very small. The

max-pooling or multiple pixel stride in convolutional layers

progressively reduces the spatial resolution of the convolu-

tional features over layers. Thus, at the conv5 layer, there

is only one feature for large number of pixels (16 pixels for

both AlexNet [18] and VGG16 [32]). In the extreme case,

if the object proposal is as small as 16 × 16 pixels, all the

grid features may be filled with a repeating single feature.

Learning from such an irregular description of object exam-

ples may prohibit us from learning a strong classification

model. Since the SDPs distribute the proposals depending

on the scale, we can provide more consistent signal through

the learning process, leading to a better detection model.

The idea of using intermediate convolutional layers to

complement high level convolutional features has also been

exploited for image classification and segmentation [22, 15,

23], video event detection [40], image retrieval [2, 25] and

edge detection [39]. We note that our approach differs from

previous works that directly concatenate or combine outputs

of multiple convolutional layers. We explicitly associate

classification models (fc layers) with different convolutional

layers, which provides strong supervision to enforce more

discriminative convolutional filters. Unlike [39], we do not

fuse multiple side-outputs into a single output, so that each

side-output is not affected by other outputs, and can be ad-

justed independently to handle a specific scale of objects,

making the training more flexible and robust.

We present our SDP model based on VGG16 [32] in

Figure 2. This SDP model has 3 branches after conv3,

conv4 and conv5. Each branch consists of a RoI pooling

layer connected to 2 successive fc layers with ReLU acti-

vations and dropout layers for calculating class scores and

bounding box regressors, similarly to [13]. We initialize

the model parameters of convolutional layers and the fc

layers in the SDP 5 with the Image-Net pre-trained model

of VGG16 [32]. The fc layers in the SDP 3 and SDP 4

are randomly initialized. During fine-tuning, input object

proposals are first distributed into 3 groups based on their

height and then fed into corresponding RoI pooling layers to

pool the features from corresponding convolutional outputs.

Gradients are back-propagated from 3 branches to update

corresponding fc layers and convolutional filters. By pro-

viding supervision about the scale of input object proposals,

we explicitly enforce neurons to learn for different scales of

objects, so that the convolutional layers are able to discover

small objects at early stage. The experiments demonstrate

that this simple modification effectively improves detection

accuracy on small objects by a large margin (see Sec. 5).

4. Cascaded Rejection Classifiers

One major computational bottleneck in our SDP method

and Fast RCNN [13] is on the evaluation of individual ob-

ject proposals using high dimensional fc layers. When there

Figure 3. Structure of the rejection classifier approximation by net-

work layers. Blue cuboid corresponds to a proposal on the feature

maps. Color squares are feature points that need to be pooled out

to form the feature vector.

are tens of thousands of proposals, time spent for the per-

proposal evaluation dominates in the entire detection pro-

cess (see Table 4). As for the second contribution, we in-

troduce a novel cascaded rejection classifier (CRC) scheme

that requires minimal amount of additional computation.

Cascaded detection framework has been widely adopted in

visual detection problems that includes [36, 6, 24]. The core

idea is to use as little as possible computations to reduce

the object proposals quickly and use complex and time-

consuming features for only few highly likely candidate lo-

cations. Recently, a few methods [33, 21, 1] are proposed to

use cascaded detection framework with CNN, but most of

them employ another simpler network to “preprocess” ob-

ject proposals and use a deeper architecture to evaluate sur-

viving candidates. Unlike the others, we exploit the convo-

lutional features progressively in a single network to build

the cascaded rejection classifiers. Since cascaded classifiers

gradually reject negatives using stronger features, they re-

semble the behaviour of deep networks where more seman-

tic and constrained features gradually emerge to help dis-

criminate objects. Therefore, our choice of boosting classi-

fiers is reasonable and consistent with the network charac-

teristics. Our model does not require any additional convo-

lutional feature computation.

We adopt the popular discrete AdaBoost [10] algorithm

to learn CRCs after each convolutional layer. Following

the intuition of our SDP models, we learn separate rejec-

tion classifiers per scale-group (Rl
s

where s and l represent

a scale-group and the convolutional layer) in order to keep

the classifiers compact while effective (see Figure 3). In fol-

lowing paragraphs, we assume that we have a CNN model

trained with SDPs without loss of generality.

Learning CRCs. Let us first define necessary notations to
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learn a CRC Rl
s
. Suppose we have N proposals that be-

long to a scale group s, B = [B1, B2, ..., BN ] and corre-

sponding foreground label yi, i = 1, ..., N . yi = 1 if it

contains a foreground object and yi = 0, otherwise. We

pool the corresponding features xi for Bi ∈ B from the

convolutional layer l using the CNN model trained with our

SDPs. In our experiments, we use the RoIPooling scheme

of [13], which gives m×m×c dimensional features, where

m = 7 and c is the number of channels in the convolutional

layer. Through this process, we obtain a training dataset of

X = [x1,x2, ...,xN ] ∈ R
m

2
c×N , and Y = {0, 1} ∈ R

N .

Given the training dataset, we learn a linear boost-

ing classifier Rl
s

with [10] that aggregates a set of weak-

learners’ response outputs, Rl
s
(x) =

∑
T

t=1
wtht(x), where

ht is a weak learner, wt is the corresponding weight and

the output is the classification score. In this work, a weak

learner ht is a decision stump that outputs 1 if the value

xv at the vth feature dimension is greater than a deci-

sion threshold δv and -1 otherwise, that can be written as

ht(x) = sign(xv − δv). We learn 50 weak-learners per

Rl
s
. After learning the boosting classifier, we train the re-

jection threshold that keeps 99% of positive training exam-

ples. All surviving training examples are passed to train

the next rejection classifier Rl+1
s

. In order to learn progres-

sively stronger rejection classifiers without additional com-

putational cost, the weak-learners used in the previous Rl
s

are used to initialize the boosting classifier training in the

next Rl+1
s

.

CRCs in Testing. Since we know which features must be

pooled after training the CRCs, we pool only the necessary

features in the testing time (the feature pooling layer in Fig-

ure 3). Given the 50 dimensional pool of weak-learners, we

approximate the boosting classifier with 2 fc layers and a

hyperbolic tangent tanh layer, so as to utilize the compu-

tational modules in the CNN framework. The first fc layer

applies the translation of the features with δv , which is fol-

lowed by the tanh layer that approximates the sign func-

tion. Finally, all the weak-learners are aggregated via the

last fc layer to produce the final boosting classification score

using w. If available (l > 1), the previous rejection clas-

sifier Rl−1
s

score is added before rejecting an object pro-

posal. The detailed structure of the CRC is illustrated in

Figure 3. We observe that the cascaded rejection classi-

fiers achieves about 3.2× speedup for the proposal evalu-

ation (4.6× when combined with truncated SVD [13], see

Table 4) with a marginal loss of accuracy. Instead of simply

connecting boosting classifiers to the network, we show that

a boosting classifier can be decomposed into a composition

of network layers, which provides new insights to convert-

ing traditional classifiers into deep networks.

5. Experiments

Datasets. We evaluate our model with SDP and CRC on

3 datasets: KITTI detection benchmark [11] , PASCAL

VOC2007 [8] and newly collected Inner-city dataset. The

KITTI dataset is composed of 7, 481 images for training,

and 7, 518 images for testing. The training dataset con-

tains 28, 742, 4, 487, and 1, 627 number of car, pedestrian

and cyclist annotations. Since the ground-truth annotation

of testing set is not publicly available, we use the train-

ing/validation split of [38] for the analysis. For more thor-

ough analysis, we collected a new dataset (Inner-city). The

dataset is composed of 24, 509 images which are collected

using a camera mounted on a car. The dataset is composed

of 16, 028 training and 8, 481 testing images which contains

60, 658, 36, 547, 16, 842, and 14, 414 numbers of car, per-

son, bike and truck instances, respectively. The images are

sub-sampled 15 frames apart from 47 number of video se-

quences to avoid having highly correlated images.

Networks. Our CNN model is initialized with a deep

network architecture (VGG16 [32]) trained on the Image-

Net classification dataset [30]. Rather than having SDP

branches for all convolutional layers, we add 3 SDP

branches after 3 convolutional layers before max pooling,

which are conv3 3 (SDP 3), conv4 3 (SDP 4) and conv5 3

(SDP 5) of VGG16, to ensure the features are discrimina-

tive enough. We use scale groups of height between [0, 64)
for SDP 3, [64, 128) for SDP 4, and [128,∞) for SDP 5.

The fc layers in the SDP 5 are initialized with the pre-

trained model parameters, while the fc layers in the SDP 3

and SDP 4 are randomly initialized. All the fc layers have

4096 dimensional outputs. After fine-tuning, we train re-

jection classifiers for each scale group using the convolu-

tional features from conv1 2, conv2 2, conv3 3, conv4 3

and conv5 3, resulting in 12 rejection classifiers. Due to

limited amount of training samples of VOC2007, we only

use two SDP branches after conv3 3 ([0, 64) for SDP 3) and

conv5 3 ([64,∞) for SDP 5). We use 2048-dim fc layers

for SDP 3 which give better detection accuracy than that by

1024-dim and 4096-dim fc layers.

Training Parameters. Following the procedure introduced

in [13], we randomly sample two images, from which we

randomly sample 128 positive and negative object propos-

als per scale group as a minibatch. The negative object pro-

posals are sampled from all the proposals that have less than

0.5 overlap with any positive ground-truth annotation. For

all the experiments, we use initial learning rate of 0.0005
and decrease it by 0.1 after every 30K iterations. We use

the momentum 0.9 and the weight decay 0.0005. The final

model is obtained after 90K iterations. We found that using

smaller dropout ratio helps to improve the detection accu-

racy on KITTI and Inner-city in our experiments, so we use

a dropout ratio 0.25 after fc layers, while 0.5 for VOC2007.

Box Proposals. We obtain the bounding box proposals us-

ing Edgebox [45] and augment them with ACF [5] detection

outputs trained for Car and Person categories. We observe
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that using only generic box proposal methods often misses

small target objects, which leads to poor detection accuracy.

We use the same proposals provided by [13] for VOC2007.

5.1. Detection Accuracy Analysis

We first discuss the detection accuracy on the KITTI

train/validation dataset, Inner-city dataset, and VOC2007

dataset. We mainly compare our model against two

baseline methods using Fast RCNN models [13] with

AlexNet [18] and VGG16 [32] architectures. For the KITTI

train/validation experiment, all the training and testing im-

ages are rescaled to 500 pixel height which gives the best

accuracy given GPU (K40/K80) memory constraints. We

use multi-scale image inputs of 400, 800, 1200, 1600 pixel

heights for the AlexNet baseline and 400, 800 pixel heights

for the VGG16 baseline to handle the scale variation as

well as possible. We also compare the VGG16 baseline

and our SDP using other single scale inputs (400 and 800).

In Inner-city experiments, we keep the original size of the

image (420 pixel height) and use 420, 840, 1260, 1680 for

the AlexNet baseline. We use both single scale input (600)

and multi-scale inputs (300, 400, 500, 600 for training and

500, 600 for testing) for SDP models in VOC2007 exper-

iments. In order to highlight the challenges posed by the

scale variation, we present the accuracy comparison over

different size groups in Table 1. Following KITTI [11], we

use 0.7 overlap ratio for the Car category and 0.5 for the

others in the evaluation. In the VOC2007 and Inner-city

evaluation, we use 0.5 overlap ratio across all categories.

Results by SDP. Table 1 shows that the multi-scale image

input baselines achieves similar detection accuracy across

different scale groups, since features are pooled at appropri-

ate scales. On the other hand, deeper architecture with a sin-

gle image input baseline achieves higher accuracy on larger

objects exploiting the rich semantic features in the deep ar-

chitecture, but performs relatively poorly on small objects.

Even using only 400 pixel heights, SDP already achieves

better overall accuracy than VGG16 using 2 scales. Our

SDP model with the same VGG16 architecture achieves

highest accuracy on almost all scale groups over all the cat-

egories. Given that the multi-scale setting takes more time

and occupies more GPU memory, our SDP is more efficient

and practical in detecting various scales of objects. More

importantly, we greatly improve the detection accuracy on

the smallest scale group by 5 ∼ 20% thanks to the SDP

branches for the intermediate convolultional layers, which

confirms our hypothesis that small objects can be better rec-

ognized at lower layers if proper supervision is provided.

Another important observation is that we achieve larger im-

provement on the Car category which has the largest num-

ber of training examples. Since our model has additional

parameters to be trained (fc layers in SDP 3 and SDP 4),

we expect that our model will improve even more when

more training examples are provided. This is demonstrated

Table 2. Detection AP (%) of the other state-of-the-art approaches

and our method on KITTI test set. Following KITTI protocol,

results are grouped into three levels of difficulties: Easy (E), Mod-

erate (M) and Hard (H).

Car Pedestrian Cyclist

Method E M H E M H E M H

Regionlet [37] 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83

DPM-VOC+VP [28] 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

3DVP [38] 87.46 75.77 65.38 - - - - - -

SubCat [26] 84.14 75.46 59.71 - - - - - -

CompACT-Deep [4] - - - 70.69 58.74 52.71 - - -

DeepParts [35] - - - 70.49 58.67 52.78 - - -

FRCN [13]+VGG16 85.98 72.32 60.16 75.50 62.53 58.14 68.82 54.21 47.98

SDP 88.34 81.69 69.72 76.89 64.44 59.72 70.13 60.08 52.93

SDP+CRC 88.33 81.17 70.00 76.28 63.12 58.30 71.06 60.24 53.17

SDP+CRC ft 90.33 83.53 71.13 77.74 64.19 59.27 74.08 61.31 53.97

in the Inner-city experiments presented in Table 1 that con-

tains larger number of training examples. A few qualitative

results are presented in Figure 4. On VOC2007, we im-

prove the AP on several categories and obtain the overall

mAP 68.2% and 69.4% using single scale and multi-scale

setting, respectively, which are 1.3% higher than [13] us-

ing the same configuration. Especially, we observe signif-

icant improvements on small objects like bottle and plants.

It should be noted that the number of training samples, es-

pecially those containing small objects, are much less than

that on KITTI dataset. Since we train the fc layers con-

nected to the intermediate layers from scratch, insufficient

samples may negatively affect the performance.

Results by CRC. Next, we evaluate the performance of

our CRCs. As described in Sec. 4, we reject object pro-

posals through our CRCs throughout the convolutional lay-

ers. With the CRC modules (denoted as SDP+CRC in Ta-

ble 1), the performance decreases very marginally, indi-

cating that CRCs successfully eliminate negative proposals

while maintaining a high recall rate for positives (see Ta-

ble 3 for details), even though we only use 50 feature dimen-

sions at each convolutional layer. The results demonstrate

that the intermediate convolutional layers can be exploited

in a hierarchical way.

Fine-tuning with CRC. We train the network with the

CRC modules in the training process. The CRC modules

can serve as a hard-negative mining process to learn better

classification model in the network, since many easy neg-

atives are rejected before reaching the SDP modules. In-

stead of randomly sampling 128 proposals in the training

process, we sample 128 proposals among the survived pro-

posals after using all the CRCs. We run the fine-tuning for

additional 50K iterations with initial learning rate 0.0001
with step size 20K iterations. We freeze the learning rate

of convolutional layers to avoid CRC parameters being in-

valid after the fine-tuning. We observe that the additional

fine-tuning (SDP+CRC ft) helps to improve the accuracy

over the SDP+CRC marginally. In KITTI testing result (Ta-

ble 2), we observe larger improvement with the additional
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Table 1. Detection AP (%) of baselines and our models on KITTI validation set and Inner-city dataset, divided by size groups, and VOC2007

dataset. S1, S2, S3, S4 and S indicate the size group of [0, 64), [64, 128), [128, 256), [256,∞) and [0,∞). We use 4 scale image pyramid

for FRCN [13]+AlexNet, and 1 and 2 scale image input for the others. 07 \ diff: training without difficult examples. ms: multi-scale

training and testing. Best numbers are bold-faced.
KITTI Train/Validation

Car Pedestrian Cyclist mAP

Methods Inputs S1 S2 S3 S4 S S1 S2 S3 S4 S S1 S2 S3 S4 S S

FRCN [13]+AlexNet 4 52.8 60.7 75.8 55.5 61.6 19.7 47.5 88.4 24.1 61.4 42.0 51.6 44.9 0.0 46.5 56.5

FRCN [13]+VGG16

1 (400) 33.9 68.3 82.8 68.8 57.3 7.9 50.4 95.3 55.8 64.6 19.0 63.8 66.6 0.0 42.3 54.7

1 (500) 42.2 70.0 85.1 65.9 62.3 12.6 55.9 94.6 44.9 66.8 29.1 63.8 68.7 0.0 48.8 59.3

1 (800) 47.6 70.0 84.8 60.5 64.5 14.7 54.5 94.5 47.2 66.4 34.9 61.2 67.4 0.0 50.4 60.4

2 47.4 70.2 83.1 54.5 64.1 14.9 55.2 94.5 63.1 66.5 35.8 61.2 65.9 0.0 50.4 60.3

SDP

1 (400) 59.1 73.8 84.7 73.6 70.7 12.6 54.8 94.9 70.7 65.7 29.3 65.6 71.7 0.0 49.4 61.9

1 (500) 64.2 74.4 86.0 68.4 73.7 17.3 58.4 94.9 44.8 66.9 37.5 67.3 68.6 0.0 54.6 65.1

1 (800) 65.2 73.5 86.0 61.0 73.8 16.9 57.1 94.3 44.1 65.5 36.5 61.5 61.9 0.0 49.9 63.1

SDP+CRC 1 (500) 63.9 74.3 85.8 68.2 73.5 17.5 52.0 93.7 45.9 65.5 35.1 65.7 69.2 0.0 52.9 64.0

SDP+CRC ft 1 (500) 63.9 74.2 85.5 62.9 73.7 17.6 50.0 93.4 61.0 65.9 35.8 66.5 67.6 0.0 53.1 64.2

Inner-city Dataset

Car Pedestrian Bike Truck mAP

Methods Inputs S1 S2 S3 S4 S S1 S2 S3 S4 S S1 S2 S3 S4 S S1 S2 S3 S4 S S

FRCN [13]+AlexNet 4 74.6 78.9 82.9 94.9 82.4 43.9 69.1 77.8 75.4 63.7 26.2 42.3 45.9 2.2 36.3 28.7 51.5 60.0 67.0 48.7 55.0

FRCN [13]+VGG16 1 63.9 80.0 86.4 93.7 80.5 35.2 71.3 83.3 77.3 64.3 28.2 57.5 68.7 0.5 50.6 26.0 62.1 70.0 54.0 53.6 62.2

SDP 1 76.2 84.2 86.9 95.2 85.5 51.1 78.0 83.0 81.5 73.9 40.3 65.4 65.2 43.2 57.9 44.1 67.0 71.5 75.1 65.6 70.7

SDP+CRC 1 75.7 83.8 86.5 95.0 85.0 50.9 75.9 80.2 78.3 71.7 38.4 61.5 63.7 41.5 55.1 43.9 66.8 71.0 75.6 65.5 69.3

SDP+CRC ft 1 75.0 84.1 87.2 95.6 84.9 51.1 76.7 80.2 77.8 72.2 41.6 64.6 64.7 46.9 58.2 45.8 69.1 69.9 74.2 66.4 70.4

VOC2007 Dataset

Methods train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [16] 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [14] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [13] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [13] ms 07 74.5 78.5 66.8 57.8 38.0 80.1 78.7 83.5 43.3 74.5 67.4 81.5 82.8 72.6 66.8 32.4 67.1 70.6 75.9 68.9 68.1

SDP 07 73.2 78.1 68.4 50.3 47.4 78.1 75.0 80.9 45.5 68.5 68.3 79.2 80.8 76.5 74.2 38.6 65.2 66.1 76.3 73.0 68.2

SDP ms 07 74.9 77.4 68.1 55.0 49.8 80.1 76.4 82.2 47.3 70.4 67.1 80.2 82.7 75.8 75.3 40.6 66.8 69.7 75.2 73.8 69.4

SDP+CRC 07 74.4 75.5 66.8 49.5 43.9 77.0 75.5 79.6 43.8 68.6 65.3 76.7 79.9 76.5 75.6 36.5 63.1 62.8 77.1 72.1 67.1

SDP+CRC ms 07 74.8 77.6 66.8 51.7 47.1 76.0 77.7 80.1 45.5 69.8 63.2 76.7 79.4 75.0 76.4 39.3 63.3 65.7 76.2 71.9 67.7

SDP+CRC ft 07 75.4 77.3 68.6 51.3 44.0 77.3 76.7 80.3 45.6 71.7 65.8 77.4 81.2 77.0 76.8 36.8 65.1 63.2 77.1 72.8 68.1

SDP+CRC ms ft 07 76.1 79.4 68.2 52.6 46.0 78.4 78.4 81.0 46.7 73.5 65.3 78.6 81.0 76.7 77.3 39.0 65.1 67.2 77.5 70.3 68.9

fine-tuning. We believe that it will achieve more improve-

ment if all the model parameters including CRC modules

are trained. We plan to explore this as a future direction.

Test set evaluation. To compare with existing approaches

on KITTI test set, we train our SDP and CRC model on

the full training set, and evaluate it on the test set. The

results are shown in Table 2. We use the same configura-

tion and learning parameters as in the previous experiments.

Without using any stereo information, our approach outper-

forms all compared methods on all levels of difficulties and

achieves the best results. In particular, Our method using

SDP again outperforms the Fast RCNN baseline by 9% on

average, verifying the effectiveness of SDP module. No-

tably, our method improves AP by 16.7% over Fast RCNN

baseline on Hard case of Car category, where most samples

are of small size or occluded. This is a clear evidence show-

ing the discriminative power of our SDP module.

5.2. Discussions

Rejection ratio. By using CRCs, we aim to improve the

efficiency for the proposal evaluation by progressively re-

Table 3. Percentage (%) of surviving proposals after applying

CRC, and the corresponding recall rate (%) on KITTI validation

set. R[n1,n2) refers to the rejection classifier for the scale group

[n1, n2).

R[0,64) R[64,128) R[128,∞) Overall

Layer ratio recall ratio recall ratio recall ratio recall

conv1 2 66.2 97.6 83.9 98.1 94.8 100 81.6 98.6

conv2 2 44.2 95.5 59.2 96.2 92.9 99.7 65.4 97.1

conv3 3 16.7 92.1 25.1 93.4 72.3 96.5 38.0 94.0

conv4 3 - - 12.6 90.3 48.6 92.0 30.6 91.2

conv5 3 - - - - 28.8 89.9 28.8 89.9

ducing the number of proposals. In Table 3, we analyze

the percentage of surviving proposals with respect to the

initial number of input proposals after applying CRCs, as

well as the corresponding recall rate of positives after each

CRC. The table shows that our CRCs successfully reject a

large number of input proposals while keeping a high recall

for the true objects. For each scale group, CRCs can re-

move over 70 ∼ 80% input proposals, so that only around

20 ∼ 30% proposals go through fc layers.

Run-time efficiency. We investigate the efficiency gain in-
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KITTI Examples: Car, Pedestrian, Cyclist

Inner-city Examples: Car, Person, Bike, Truck

Figure 4. Qualitative results on KITTI validation set and Inner-city dataset using FRCN [13]+VGG16 baseline and our SDP model. We

obtain the detection threshold for visualization at the precision 0.8. The color of bounding boxes means the types of objects. Notice that

our method with SDP detects small objects much better than the baseline method. The figure is best shown in color.

troduced by CRCs. Table 4 analyzes detailed computational

break-down of various methods. We measure the time spent

in each component of the network, such as convolutional

operations, fc layer computations, pre- and post-processing,

etc. We compare our CRCs with the truncated SVD ap-

proach [13] that aims to reduce the dimensionality of the

fc layers. We follow the strategy in [13] to keep the top

1024 singular values from the 1st fc layer and the top 256

singular values from the 2nd fc with respect to each SDP

branch. In addition, we combine CRC and SVD, i.e., using

CRC to eliminate proposals and SVD to compress fc layers

in SDPs, to achieve further speed-up. We include the base-

line methods without SVD as a reference. The truncated

SVD approach alone achieves about 2.3× gain in proposal

evaluations. The CRC modules alone obtain 3.2× speed up

for the same operation. We gain 4 ∼ 5× for each SDP by

rejecting 70 ∼ 80% of proposals, but the additional compu-

tation introduced by CRC reduces the overall gain slightly.

When combined with the SVD and CRC, we obtain 4.6×
efficiency gain in proposal evaluations and 2.4× in total (in-

cluding conv operations).

6. Conclusion

In this paper, we investigate two new strategies to de-

tect objects efficiently using deep convolutional neural net-

work, 1) scale-dependent pooling and 2) layer-wise cas-

Table 4. Run-time comparison (ms per image) among the baseline

methods, our method with truncated SVD [13], our method with

CRC and SVD+CRC on KITTI dataset. fcS , fcM , and fcL refer

to the SDP classifiers for the scale group [0, 64), [64, 128), [128,

∞), respectively. ”box eval.” represents the time spent for indi-

vidual box evaluation including fc layers and CRC rejections. The

times were measured using an Nvidia K40 GPU under the same

experimental environment.

Component conv fc fcS fcM fcL rej. box eval. misc. total

[13]+AlexNet 799 512 0 0 0 0 512 164 1476

[13]+VGG16 282 719 0 0 0 0 719 21 1022

SDP 286 0 204 254 283 0 741 90 1117

SVD 285 0 97 116 114 0 327 95 707

speedup 1.0 - 2.10 2.19 2.48 - 2.27 0.95 1.58

CRC 282 0 44 46 63 79 232 27 541

speedup 1.0 - 4.64 5.52 4.49 - 3.19 3.33 2.06

SVD+CRC 283 0 24 25 31 81 161 27 471

speedup 1.0 - 8.50 10.16 9.13 - 4.60 3.33 2.37

caded rejection classifiers. The scale-dependent pooling

(SDP) improves detection accuracy especially on small ob-

jects by fine-tuning a network with scale-specific branches

attached after several convolutional layers. The cascaded

rejection classifiers (CRC) effectively utilize convolutional

features and eliminate negative object proposals in a cas-

caded manner, which greatly speeds up the detection while

maintaining high accuracy. Our experimental evaluation

clearly demonstrates the benefits of SDP and CRC in CNN

based object detection.
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