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Abstract

We propose a method to recover the shape of a 3D room

from a full-view indoor panorama. Our algorithm can au-

tomatically infer a 3D shape from a collection of partially

oriented superpixel facets and line segments. The core part

of the algorithm is a constraint graph, which includes lines

and superpixels as vertices, and encodes their geometric

relations as edges. A novel approach is proposed to per-

form 3D reconstruction based on the constraint graph by

solving all the geometric constraints as constrained linear

least-squares. The selected constraints used for reconstruc-

tion are identified using an occlusion detection method with

a Markov random field. Experiments show that our method

can recover room shapes that can not be addressed by pre-

vious approaches. Our method is also efficient, that is, the

inference time for each panorama is less than 1 minute.

1. Introduction

A 360˝ full-view indoor panorama is shown in Fig.

1a. We intend to recover the 3D room shape from this

panorama. Several methods are available to solve this prob-

lem, either by adopting the Indoor World model, which con-

sists of a single floor, a single ceiling, and vertical walls

[3, 10], or by estimating a cuboid shape that fits the room

layout [6, 17, 7, 11, 2, 15, 16, 14, 20] 1. Intrinsically, most

of these approaches work in a discretized manner, that is,

the results are selected from a set of candidates based on

certain scoring functions. The generation rules of the can-

didates limit the scope of these algorithms. For example,

the corridor of the room in Fig. 1a cannot be modeled ei-

ther as part of a cuboid or within an Indoor World because

the ceiling of the corridor is lower than that of the room.

A method is proposed to address this problem in a geo-

metric manner. We extract lines and superpixels from the

panorama and estimate their orientation information under

1Most of these methods deal with normal photographs, however, mod-

ifying these methods to cope with panoramas is a straightforward process.

corridor

(a) Input indoor panorama (b) Line segments

(c) Superpixels (d) Recovered depths

(e) Reconstructed 3D room model

Figure 1: (a) Input indoor panorama, with detected lines shown

in (b). Red, green, and blue indicate Manhattan directions that

are assigned on lines in the preprocessing stage. (c) Superpixels

generated by over segmentation. Pure colors (except white) indi-

cate that the surface normals are restricted to certain Manhattan

directions, striped colors suggest that the surface plane should be

parallel with a Manhattan direction in 3D space. In particular, red

regions in (c) represent horizontal faces such as floors or ceilings,

whereas the striped red regions represent vertical faces such as

walls. White indicates that no orientation restriction is imposed.

(d) Automatically recovered layout depths and (e) reconstructed

3D lines (in black) and superpixel facets (all textured) from dif-

ferent views. Face culling is applied to better illustrate the inside

model in each view.

Manhattan world assumption, as shown in Figs. 1b and

1c. A constraint graph, which includes all the lines and

superpixels as vertices is then constructed; and geometric

relations are encoded among them. A 3D reconstruction

is performed in an iterative manner, which can solve con-

straints as constrained linear least squares (CLLS). We pro-

pose an occlusion detection method using a Markov random
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field (MRF) to select plausible constraints for reconstruc-

tion. The reconstructed lines and superpixel facets of the

room layout from Figs. 1b and 1c are shown in Fig. 1e.

1.1. Related Works

Interest in single-view reconstruction (SVR) problems

has been constant. Methods in this domain can be roughly

divided into two groups: geometric and semantic ap-

proaches. Most geometric approaches rely on lines. Lee

et al. [10] recovered indoor layout by computing orienta-

tion maps (OMs) from lines. Xue et al. [19] reconstructed

symmetric objects by detecting symmetric lines. Xiao et al.

[18] recognized cuboids from single photographs based on

both the appearance of corners and edges as well as their ge-

ometric relations. Ramalingam [13] proposed a method that

lifted 2D lines to 3D by identifying true line intersections in

space.

For semantic approaches, Hoiem et al. [8, 9] estimated

geometric context label on each image pixel. Delage et

al. [3] inferred room layout via floor–wall boundary esti-

mation. Gupta et al. [5] proposed blocks world to pre-

dict 3D arrangement by explaining their volumetric and

physical relations. Numerous studies have been presented

in recent years by assuming room shape as a single box

aligned with Manhattan direction. Hedau et al. [6] uti-

lized structured learning to improve prediction accuracy.

The inferences of both indoor objects and the box-like

room layout have been continuously improved thereafter in

[17, 7, 11, 2, 15, 16, 14] due to enhanced object presenta-

tion, novel features or more efficient inference techniques.

Zhang et al. [20] recently stressed the limitation of a narrow

view angle imposed by standard camera; they illustrated the

advantage of panoramic images over normal photographs,

where additional contexts could be considered. Cabral [1]

took multiple indoor panoramas as input and utilized struc-

tural cues from single image for floorplan reconstruction.

Our work focuses on 3D room shape recovery. The algo-

rithm is related to [13], in which a constraint graph is pro-

posed, its vertices are fully orientated lines, and its edges are

intersections/incidences between lines. In the present study,

we additionally consider other entities, including lines with

unknown orientation, and planar superpixels with varying

degrees of freedom (DOF). The constraints are also ex-

tended to include connections between two superpixels or

between a line and a superpixel. Hence, the graph is en-

hanced to be capable of representing a complex 3D shape

including line segments and planar facets.

1.2. Contributions

The main contributions of our work are as follows.

• An expressive constraint graph is designed to encode

the spatial configurations of line segments and super-

pixel facets in a uniform manner.

(a) Wall prior (b) Vanishing point prior

(c) Geometric context prior (d) All three merged

Figure 2: Orientation priors for Fig. 1a.

• An iterative algorithm is proposed to solve the con-

straint graph as CLLS to reconstruct both line seg-

ments and superpixel facets together.

• We propose a method to identify occluding lines using

an MRF, which helps select plausible constraints for

the graph.

2. Preprocessing

Our input is a panorama that covers a 360˝ horizontal

field of view represented in an equirectangular projection.

Under this projection, one-to-one correspondence occurs

between a panorama pixel and a 3D view direction 2 ; there-

fore, we use the term angle distance to measure the distance

between two pixels by computing the angle of their direc-

tions, and use angle length to measure the length of a pixel

sequence (like a line segment or a superpixel boundary) by

accumulating the vector angles between adjacent pixels.

An approach similar to that in [20] is used to detect lines,

estimate Manhattan vanishing points, and identify the spa-

tial directions of lines from the panorama. The vanishing

point direction which is the most vertical in space is denoted

as the vertical direction of the scene. A panorama version

of graph cut 3 is utilized to over segment the panorama into

superpixels. Orientations of the superpixels are restricted

according to the following three priors:

Wall prior. We assume regions near the horizon to be

parts of the walls. In particular, superpixels whose angle

distances to horizon ă θtiny are assigned to be vertical in

space with θtiny as a threshold; that is, their surface planes

must be parallel with the vertical direction. Fig. 2a illus-

trates the wall prior assignment for the superpixels gener-

ated from Fig. 1a.

2In our implementation, the correspondence is formulated as t “
pcosφsinθ, cosφcosθ, sinφq⊺ where φ and θ are the latitude and lon-

gitude of the point on the panorama and t is its corresponding spatial di-

rection. Under the equirectangular projection, we define φ “ πpy{h ´
0.5q, θ “ 2πx{w where px, yq are the coordinates of the 2D point in the

panorama, and pw, hq is the size of the panorama.
3We refer to the details in the supplementary material because they are

similar to [4]. A similar approach is also utilized by [1].
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superpixel DOF=1 DOF=2 DOF=3

line DOF=1 DOF=2

Figure 3: Five types of vertices in the constraint graph. Super-

pixels are categorized into three types with varying DOF, lines are

categorized into two types. First row: A superpixel with DOF=1

has a known plane normal, it can only slide within its viewing

cone; for example, the normal of a horizontal (floor/ceiling) super-

pixel is fixed to be vertical. By contrast, a superpixel with DOF=2

is restricted to be parallel with a known direction; for example,

the plane of a vertical (wall) superpixel must be parallel with the

vertical direction. No orientation restriction is imposed on super-

pixels with DOF=3. Second row: Lines are simpler; those with

DOF=1 can only slide on two fixed rays with a fixed orientation,

whereas those with DOF=2 are free. Note that the projection of

the contours of superpixels and the endpoints of lines must remain

unchanged in the panorama.

Vanishing point prior. We also assume that the super-

pixels with Manhattan vanishing points should face the cor-

responding Manhattan direction; therefore, their plane nor-

mals are assigned as indicated in Fig. 2b.

Geometric context prior. The geometric context (GC)

extraction [7] on panorama follows the same strategy with

[20]. We calculate the average label scores in each super-

pixel, and use the label with the maximum score to orient

the superpixel. Only superpixels that have high scores in

two labels are considered: ground and wall. The ground

superpixels are restricted to be horizontal whereas the wall

superpixels are all vertical. We do not utilize the wall fac-

ing information provided by GC. And only bottom half of

the panorama is assigned by this prior as recommended in

[20]. The assignment is illustrated in Fig. 2c.

Finally, all these three assignments are merged together

as shown in Fig. 2d4.

3. Constraint Graph

A graph G “ pV, Eq is constructed by encoding all lines

and superpixels as vertices V . Two types of lines and three

types of superpixels are considered to correspond to differ-

ent degrees of freedom (DOF) imposed in preprocessing, as

shown in Fig. 3. We consider two types of constraints:

the constraints of connectivity Econ and the constraints of

coplanarity Ecop. Econ exhibits four types of connection be-

4If any conflict occurs, the results of the geometric context prior is ap-

plied. No conflict will ever occur between the wall prior and the vanishing

point prior.

View Point

superpixel(sp)

line

l1

l2

l3

l4

adjacent sps

intersected lines
colinear lines

adjacent line and sp

Figure 4: Constraint graph. The graph encodes lines and superpix-

els as vertices, and their relations as edges.

tween vertices: 1) connections between adjacent superpix-

els that share the same boundaries, 2) intersections of lines

with different orientations, 3) collinearity of lines with the

same orientation and 4) connections between adjacent lines

and superpixels. By contrast Ecop is only concerned with

superpixel facets that may lie on the same plane. Fig. 4

shows an example that illustrates part of a constraint graph.

The following subsections are organized as follows. First

in Sec. 3.1, we explain how we parameterize each kind of

vertices to encode their types and orientation restrictions.

Then in Sec. 3.2, a novel iterative approach is proposed to

perform reconstruction by solving the constraints as CLLS.

In Sec. 3.3, an occlusion detection algorithm is provided.

Finally in Sec. 3.4, we explain how to build a constraint

graph based on the occlusions.

3.1. Vertex Parameterization

Our objective is to predict the depths of all the visible

surfaces to viewpoint. By assuming the surface planarity

within each superpixel, the task is simplified to inferring

the plane equations of the superpixels.

The number of parameters of each superpixel should cor-

respond to its DOF; therefore, various parameters are de-

signed for superpixels with different DOFs. We denote xi

as the vector that encodes the unknown parameters of ver-

tex i P V and use Ci to represent the set of known values of

i. Let dfi be the DOF of i.

df i xi Ci Pi

1 p1{diq tniu rnis

2 pai, biq
⊺ tuiu

»

–

1 0

0 1

´uix

uiz
´

uiy

uiz

fi

fl

3 pai, bi, ciq
⊺ H I3ˆ3

Table 1: Parameterizing vertices.

The proposed superpixel parameterization is presented

in Table 1, where for each superpixel i
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(1) If dfi “ 1, then let ni be the unit normal vector of

its plane and Ci “ tniu. Define xi “ p1{diq, where di
represents the distance from the plane to the viewpoint.

(2) If dfi “ 2, then Ci “ tuiu, where ui is the unit di-

rection vector that the surface plane must be parallel with.

Define xi “ pai, biq
⊺, which corresponds to the two param-

eters in pai, bi, ciq of the plane equation aix`biy`ciz “ 1.

(3) If dfi “ 3, then Ci is empty, because no restriction is

imposed regarding its orientation. xi is directly defined as

pai, bi, ciq
⊺ which corresponds to the plane parameters.

Numerous parameterization methods are undoubtedly

available for these superpixels. For example, we can sim-

ply define xi “ pdiq if dfi “ 1, or define xi “ pθi, diq
⊺

if dfi “ 2, where θi represents the angle of rotation along

direction ui and di is the distance of its plane to the view-

point. We decide to parameterize superpixels as shown in

Table 1 because a linear transformation is available from the

proposed superpixel parameter xi to its plane coefficients

πi “ pai, bi, ciq
⊺; this is required to solve constraints effi-

ciently in Sec. 3.2. These transformation matrices Pi are

presented in the fourth column of Table 1. All these matri-

ces satisfy

πi “ pai, bi, ciq
⊺ “ Pixi. (1)

For line segments, we propose using their supporting

planes to encode their spatial arrangement. The support-

ing plane of a line is defined by two requirements: 1) it

must contain the line in space, and 2) it must be orthogo-

nal to the plane that passes through the viewpoint and that

contains the line. For example, the supporting plane of line

pP1i, P2iq in Fig. 5 should always contains the correspond-

ing 3D line and should be orthogonal to the plane that con-

tains rays
ÝÝÝÑ
OP1i and

ÝÝÝÑ
OP2i.

A one-to-one correspondence exists between a lifted line

in 3D and its supporting plane, and they share the same

DOF value. Hence, we can regard lines as degenerated

forms of superpixels and use the same method presented

in Table 1 to parameterize them.

In particular, as shown in Fig. 5, for line i “ pP1i, P2iq
with DOF=1, ni in Table 1 denotes the normal of its sup-

porting plane. For a line i with DOF=2, ui in Table 1 repre-

sents the normal of the plane that contains line i and passes

through viewpoint O.

DOF=1

O

P1i

P2i
ni

ni

DOF=2

O

P1i

P2i
ui

ui

Figure 5: Supporting planes for lines.

sp sp
sp

line

line

line

Figure 6: Connection points are shown in red. Each connection

point in the panorama represents a view direction in space, along

this direction the depths of two related vertices should be equal.

3.2. Constraint Solving

In this section, we propose an algorithm to solve all the

constraints in G as CLLS, including Econ and Ecop.

All types of connection constraints under Econ share the

same objective: to equalize the depths of two vertices on

certain connection points. As shown in Fig. 6, if the con-

straint is a connection between two adjacent superpixels or

between a line and a superpixel, then its connection points

correspond to their common pixels on the boundary or on

the line in the panorama. If the constraint is an intersec-

tion or a collinear relation between two lines, then its con-

nection point corresponds to the point shared by these two

(extended) lines in the panorama.

Let Sij be the set of connection points of a constraint

pi, jq P Econ, and πi “ pai, bi, ciq πj “ paj , bj , cjq be

the two (supporting) plane coefficients of vertices i and j.

Assume that t P Sij is a unit vector representing the spa-

tial direction that corresponds to a connection point. Then,

the depth of vertex i on direction t, diptq, which is actually

the depth of its (supporting) plane πi, can be calculated as

diptq “ 1{t⊺πi or as diptq “ 1{ pt⊺Pixiq after substitut-

ing πi with Pixi using Equation 1.

To simplify the formulations, we denote vector x as the

concatenation of all the parameter vectors xi. Let N be

the length of x. Then we can construct a (0,1)-matrix Vi,

whose size is dfi ˆ N and satisfies xi “ Vix, by mapping

the position of each parameter in xi from its corresponding

position in x. Therefore, the plane coefficients of vertex i

can be written as πi “ PiVix, and the depth of vertex i on

direction t can be represented as diptq “ 1{ pKiptqxq with

Kiptq “ t⊺PiVi.

We utilize the squared sum energy to equalize the depths

diptq and djptq of the two vertices on each connection di-

rection t of all the constraints in Econ, which is formulated

as follows:

Econpxq “
ÿ

pi,jqPEcon

wcon
ij

ÿ

tPSij

}diptq ´ djptq}2

“
ÿ

pi,jqPEcon

wcon
ij

ÿ

tPSij

›

›

›

›

pKiptq ´ Kjptqqx

x⊺K
⊺

i ptqKjptqx

›

›

›

›

2

. (2)

The constraints of coplanarity are quantified by directly

measuring the difference between plane coefficients πi and
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πj of the related two superpixel vertices i and j as follows:

Ecoppxq “
ÿ

pi,jqPEcop

w
cop
ij }πi ´ πj}2

“
ÿ

pi,jqPEcop

w
cop
ij }pPiVi ´ PjVjqx}2. (3)

wcon
ij and w

cop
ij are the weights given to constraints on pi, jq.

Directly minimizing Econpxq`αEcoppxq (α is a weight)

is intractable due to the non-linearity of Econ. Instead,

we use an iterative approach which solves an approximated

CLLS in each iteration to converge to the solution.

The approach is described in Algorithm 1. In each iter-

ation: it first freezes the non-linear component φk
ijptq as a

constant and computes an approximated solution xk by ad-

dressing the CLLS problem described in Line a, where an

inequality is applied to avoid obtaining trivial results. Then,

it updates the frozen component φk
ijptq to φk`1

ij ptq based on

the current solution xk, as is formulated in Line b.

Algorithm 1: Solving Constraints with CLLS

k Ð 0; φ0
ijptq Ð 1,@t P Sij@pi, jq P Econ;

repeat

a xk Ð the result of a CLLS problem:

min
x

Ek
conpxq ` αEcoppxq

s.t . Kti,juptqx ě 1.0,@t P Sij , pi, jq P Econ

with

Ek
conpxq “

ÿ

pi,jqPEcon

wcon
ij

ÿ

tPSij

›

›

›

›

›

pKiptq ´ Kjptqqx

φk
ijptq

›

›

›

›

›

2

b φk`1

ij ptq Ð

xk⊺K
⊺

i ptqKjptqxk,@t P Sij@pi, jq P Econ;

k Ð k ` 1 ;

until convergence _k “ maximum iterations;

return xk ;

3.3. Occlusion Identification

Identifying constraints Econ and Ecop remains challeng-

ing because of occlusions. Room occlusions are likely to

be covered by detected line segments, and tend to follow

the rule of coherence. Using Fig. 7 for example, if any oc-

clusion exists on li, then the sidings of the occlusions will

likely remain coherent along li.

Therefore, we detect occlusions by labeling lines. Only

oriented lines are considered for simplicity. To each line li
with DOF=1, we assign label yi “ pyli, y

r
i q. yli, y

r
i P t0, 1u

are two flags that encode the occlusion status on the two

sides of li. We use y
tl,ru
i to indicate whether the superpix-

els on the {left, right} side of li are in front (“ 1) or are

li

(a)

F

F

B

B

B

B

B

F

F

F

(b) Plausible cases

B

F

F

F

B

F

F

B

F

B

(c) Implausible cases

Figure 7: Coherence of occlusions. (a) Segmented superpixels

near line li. (b) and (c) illustrate possible occluding statuses of

adjacent superpixels, where F indicates surface in front and B de-

notes surface occluded behind. The cases shown in (b) are rela-

tively more plausible than those in (c) based on logic.

occluded behind (“ 0). In particular, label yi “ p1, 1q in-

dicates that no occlusion exists on li, yi “ p1, 0q indicates

the left occludes the right, whereas yi “ p0, 1q indicates

that the right occludes the left. Finally, yi “ p0, 0q suggests

a dangling line that does not connect to the surfaces.

Three kinds of evidence are used in occlusion detection:

1) orientation violations between lines and superpixels, 2)

T-junctions formed by lines, and 3) the coherence between

collinear lines. Based on the preceding discussion, we con-

struct an MRF to infer the yi of each li by minimizing the

following objective:

y˚ “ argmin
y

ÿ

liPV1

L

E
unary
i pyiq `

ÿ

pli,ljqPEcolinear ,li,ljPV1

L

E
binary
ij pyi,yjq (4)

with

E
unary
i pyiq “ Eov

i pyiq ` E
tj
i pyiq ` τpyiq, (5)

where V1

L is the set of lines with DOF=1. The unary cost

E
unary
i on each line li consists of three terms: the orienta-

tion violation cost Eov
i , the T-junction cost E

tj
i , and a label

prior τpyiq to punish disconnections. E
binary
ij is the coher-

ence cost imposed on collinear lines.

Orientation Violation Cost Let ri be the spatial orienta-

tion of line li, vp
l
i and vpri be two closest vanishing points

to li that satisfy two conditions: 1) it lies on the {left, right}
side of li, and 2) its spatial direction is orthogonal to ri.

Then, we sweep li toward vp
tl,ru
i to an angle θ and form two

spherical quadrilaterals that represent the neighborhoods of

line li in the panorama, denoted as Ω
tl,ru
i pθq. Fig. 8 presents

an example wherein two lines sweep toward the same van-

ishing point.

N
tl,ru
i is then defined as the weighted number of nearby

pixels that cause violations on the {left, right} side of li:

N
tl,ru
i “

ÿ

pPΩ
tl,ru
i

pθmidq

wppqconflictpp, liq, (6)

where θmid is a threshold. wppq is the pixel weight used to

rectify panorama distortion. conflictpp, liq is 1 if the given

orientation of the superpixel with p conflicts with the direc-

tion of li, and 0 otherwise. A conflict occurs if the super-

pixel has DOF=1 and its plane normal coincides with the

direction of li.
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vpri pvpljq

Ωr
i pθq Ωl

jpθq
θ

θ

li lj

lk

Figure 8: Neighborhoods of lines. The right neighborhood of line

li, denoted as Ωr
i pθq, is generated by sweeping li toward its right

vanishing point vpri to angle θ. The left neighborhood Ω
l
jpθq of

line lj is similarly defined.

Eov
i is then defined as follows, where cov is a weight:

Eov
i pyiq “ cov

˜

yliN
l
i

2

maxtNr
i
2, 1u

`
yriN

r
i
2

maxtN l
i

2
, 1u

¸

. (7)

T-junction Cost T-junction is a commonly used evidence

for occlusion recognition [13]. For example, in Fig. 8 line

lk forms a T-junction on line li.

We detect T-junctions by collecting all pairs of lines with

different orientations, which form T-structures, and their

distances are ă θtiny . Define M
tl,ru
i “ expp´p

m
tl,ru
i

10
q2q,

where m
tl,ru
i is the number of T-junctions on the {left,

right} side of line li, and the T-junction cost is given by

E
tj
i pyiq “ ctj

`

p1 ´ yliqM
l
i ` p1 ´ yri qMr

i

˘

. (8)

Coherence Cost A binary term E
binary
ij is imposed on

each pair of collinear lines li and lj to encourage the co-

herence of labels, which is formulated as

E
binary
ij pyi,yjq “

cbinary

˜#

✶pyli ‰ yljq ` ✶pyri ‰ yrj q if li Ò lj

✶pyli ‰ yrj q ` ✶pyri ‰ yljq if li Ö lj

¸

, (9)

with ✶p¨q as the boolean to 0-1 conversion, Ò,Ö denotes

whether the two line directions are equal or opposite.

3.4. Graph Construction

Equation 4 is solved using the convex max product [12].

The resulting labels are used to build graph constraints.

A superpixel pair pi, jq that shares a same boundary is

collected into Econ and Ecop if its boundary is not covered

by any occluding line. Connection points Sij are set as

the turning points on the boundary. Let Lij be the angle

length of the boundary, then wcon
ij “ Lij{}Sij}. w

cop
ij “

Lij if there are no lines lying on the boundary; otherwise

w
cop
ij “ 0.1Lij because non-occluding lines always suggest

foldings.

(a) Annotation (b) Reconstruction from annotation

Figure 9: (a) shows the manually labeled face orientations (in red,

green and blue) and occlusions (in white) of the panorama in Fig.

1a. (b) displays the directly reconstructed 3D model based on the

annotation.

A line and a superpixel pi, jq that are adjacent in the

panorama are collected into Econ if the superpixel lies on

the front side of the line. Connection points Sij are set as

the endpoints of the shared segment. wcon
ij “ Lij{}Sij}

with Lij as the angle length of the shared segment.

Recognizing constraints between lines pi, jq is a slightly

complex process. We consider a pair of lines with different

orientations as intersecting if the angle distance between the

line segments is ă θtiny . Collinearity is considered for lines

with the same orientation that are separated by an angle ă
θlarge. Then, we connect the nearest points of these two

lines and check whether the connection is intercepted by

any occluding line. If any of i, j is an occluding line, then

we place them into Econ only if 1) the other line lies on

the front side of the occluding line, and 2) their connection

is not intercepted. If neither i, j is an occluding line, then

pi, jq is collected only if their connection is not intercepted.

The Sij of the two lines is set as the common pixel shared

by these two (extended) lines, and wcon
ij “ maxtJij , 1u, Jij

is the junction score proposed by [13].

Finally, we apply searches on the graph from vertices

with DOF=1 to find the largest determinable subgraph for

reconstruction 5.

4. Experiments

We collected 88 indoor panoramas for evaluations with

manual annotation of vps, room layout faces, face orienta-

tions and occluding lines (as is shown in Fig. 9a). In ex-

periments, thresholds θttiny,mid,largeu are set as 2˝, 5˝, 15˝.

In Algorithm 1, the maximum iteration number is set to be

5, the weight α is set as 10´6. In the MRF terms, the label

prior τpyiq in Equation 5 is defined as

$

’

&

’

%

0 if yi “ p1, 1q

5 if yi “ p0, 0q

2 otherwise

, the

pixel weight wppq in Equation 6 is formulated as sinp
py

H
πq,

where H is the height of the panorama. The coefficient cov

in Equation 7 is set to be 100, ctj in Equation 8 is set as 1

and cbinary in Equation 9 is set as 5.

Quantitative Evaluation

Surface Label First, the proposed method is evaluated in

the aspect of surface label inference.

5Details are deferred to the supplementary material.
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(a) Panorama in perspective

¨ ¨ ¨

(b) Ground-truth labels

¨ ¨ ¨

(c) GC labels

¨ ¨ ¨

(d) Our reconstruction

Figure 10: Perspective conversion to compare surface labels.

Each panorama is projected onto 12 overlapping per-

spective images to extract GC. Five GC labels are consid-

ered: floor, ceiling, and {front, left, right} wall. We also

project the surface normals of our reconstructed superpixels

and the ground-truth face normals in the same manner. Each

pixel is labeled in the aforementioned labels according to its

normal direction in the perspective image. The normals of

the superpixels that are not reconstructed in our algorithm

are computed by averaging their adjacent superpixels. Fig.

10 illustrates examples of surface labels predicted by vari-

ous methods.

We use the per-pixel classification error (i.e., the percent-

age of pixels that have been wrongly classified) to quantify

the predictions in each perspective image. Three types of

evaluation are performed: 1) consider all pixels, 2) only

considers pixels with GCclutter ă 0.7, 3) only considers

pixels with GCclutter ă 0.3. The average error ratios are

reported in Table 2, which shows that our result outperforms

GC in all three cases. We also show results of our algorithm

that do not use GC prior in the bottom row of Table 2, the

errors rise but are still lower than those of GC.

Depth Distribution Second, we compare 3D models us-

ing their depth maps. A 3D model is directly reconstructed

from the ground-truth annotation for each panorama, its

depth map is used as the reference (as shown in Fig. 11a).

Evaluations are performed by comparing depth maps with

the reference using two metrics: L2 distance which is for-

mulated as }da ´ db}2, and cosine distance which is com-

puted by 1´d
⊺

adb. d˚ is a normalized vector that comprises

all weighted (by wppq) depths of pixels in depth map.

Our method is compared with the cuboid of best fit

(COBF), which is used to represent the performance upper

bound of aligned-box-methods. We enumerate a discretized

parameter space of cuboids that are aligned with the Man-

hattan direction and select the one that best fits the reference

(measured by L2 distance) as the COBF of the panorama.

Results are presented in Table 3, showing that our

method (second row) outperforms COBF (first row). Indi-

rectly, this also suggests the advantage of the proposed ap-

proach in the aspect of room shape estimation over the algo-

rithms that estimate room shapes by fitting cuboids aligned

with Manhattan direction.

Results of the proposed method that assumes no occlu-

(a) Reference (b) Proposed (c) COBF

Figure 11: Depth maps of Fig. 1a. (a) The reference is set as the

depth map from the model which is reconstructed directly from

annotation, the corresponding model of (a) is shown in Fig. 9b.

(b) The depth map of the proposed reconstruction. (c) The depth

map of the corresponding COBF.
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Figure 12: Coverage of our reconstruction. The first graph shows

the ratios of recovered vertices; the second graph shows ratios of

superpixel areas reconstructed in each panorama.

sions are reported in the third row, and the results of that

utilizing the ground-truth occlusions are shown in the fourth

row. It could be observed that assuming no occlusions raises

prediction errors. However, using the ground-truth occlu-

sions does not bring meaningful improvement. We also

report the average errors of a uniform sphere (centered at

viewpoint) in the bottom row for comparison.

GCclutter: all ă 0.7 ă 0.3

test coverage 1.0 0.95 0.60

GC [6] 44.5 44.4 48.7

proposed 26.9 26.8 26.7

proposed(no gc prior) 31.8 31.7 28.6

Table 2: Surface label classification error (%).

metric cosine dist. L2 dist.

COBF 5.23 28.48

proposed 4.27 27.02

proposed(no occl) 4.53 27.85

proposed(gt occl) 4.23 27.09

sphere 7.54 37.23

Table 3: Depth distribution error (ˆ10
´2).

Reconstruction Coverage Algorithmically, our method

does not reconstruct all the superpixels and the lines; hence

we evaluate the coverage of the reconstruction. The statis-

tics is shown in Fig. 12. On average, 81.9% of the vertices

are reconstructed, and 97.5% of the superpixel areas are re-

covered.

Qualitative Evaluation

Some of the results are presented in Figs. 13 and 14, which

illustrate that our algorithm can reconstruct room shapes

with occlusions and even some non-Manhattan parts. Note

that in these cases lots of false occlusions are identified by
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Figure 13: Reconstruction results. In each case, the leftmost two images show the input panorama, the extracted lines and the superpixels.

Orientation restrictions of the lines and the superpixels are visualized in the same manner with Fig.1. Detected occlusions are rendered

on the second images of the leftmost columns as black jagged lines, wherein the jagged side of each line represents the side of the front

surface. The rest display reconstructed 3D models, the lines are all in black, the superpixels are colored by surface normals in the second

columns, and are textured with the input panoramas in the rest. Face culling is applied to better illustrate the inside shape in each view.

the proposed occlusion detection. However, the recovered

3D models show the robustness of our reconstruction algo-

rithm against the false occlusions. Fig. 14 shows two failed

cases, where our algorithm is misled by wrongly oriented

superpixels.

We invoke code of [6] to extract GC and use CVX to

solve the CLLS, the rest is implemented in C++. On a

PC with Intel Core i5 CPU (3.1/3.3GHz), the time cost

of occlusion identification is approximately 3 seconds per

panorama, and solving the CLLS costs less than 5 seconds

per iteration. The total time cost of inference (without pre-

processing stage) is within 1 minute for each panorama in

our dataset.

5. Conclusions

In this study a fully automatic method is proposed to re-

construct 3D room shape from a single indoor panorama.

The method performs reconstruction based on partially ori-

ented lines and superpixels; it identifies occlusions by label-

ing lines using an MRF. Geometric relations between lines

and superpixels, such as connections and coplanarity, are

identified using these labels. A constraint graph is then

built; and the constraints are solved as CLLS by a novel

iterative algorithm.

Experiments show that the proposed method outper-

forms geometric context in surface label inference; the pro-

Figure 14: Two failed cases. In the first case, the reconstruction is

misled by the false horizontal superpixels that cover the sofa in the

room. In the second case, some wall superpixels are incorrectly

identified as parts of the floor, which leads to a false illusion of

doors open on the wall.

posed method is also advantageous over algorithms that

model room layouts as aligned cuboids. The 3D recon-

struction results illustrate that the proposed method can re-

cover room shapes that include occlusions and even non-

Manhattan parts from a single indoor panorama.
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