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Abstract

This paper presents a hierarchical composition ap-

proach for multi-view object tracking. The key idea is to

adaptively exploit multiple cues in both 2D and 3D, e.g.,

ground occupancy consistency, appearance similarity, mo-

tion coherence etc., which are mutually complementary

while tracking the humans of interests over time. While fea-

ture online selection has been extensively studied in the past

literature, it remains unclear how to effectively schedule

these cues for the tracking purpose especially when encoun-

tering various challenges, e.g. occlusions, conjunctions,

and appearance variations. To do so, we propose a hi-

erarchical composition model and re-formulate multi-view

multi-object tracking as a problem of compositional struc-

ture optimization. We setup a set of composition criteria,

each of which corresponds to one particular cue. The hier-

archical composition process is pursued by exploiting dif-

ferent criteria, which impose constraints between a graph n-

ode and its offsprings in the hierarchy. We learn the compo-

sition criteria using MLE on annotated data and efficiently

construct the hierarchical graph by an iterative greedy pur-

suit algorithm. In the experiments, we demonstrate superior

performance of our approach on three public datasets, one

of which is newly created by us to test various challenges in

multi-view multi-object tracking.

1. Introduction

Multi-view multi-object tracking has attracted lots of at-

tentions in the literature [22]. Tracking objects from mul-

tiple views is by nature a composition optimization prob-

lem. For example, a 3D trajectory of a human can be hier-

archically decomposed into trajectories of individual views,

trajectory fragments, and bounding boxes. While exist-

ing trackers have exploited the above principles more or

less, they enforced strong assumptions over the validity of
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Figure 1. An illustration of utilizing different cues at different pe-

riods for the task multi-view multi-object tracking.

a particular cue, e.g. appearance similarity [1], motion

consistency [9], sparsity [30, 50], 3D localization coinci-

dence [24], etc., which are not always correct. Actually,

different cues may dominate different periods over object

trajectories, especially for complicated scenes. In this pa-

per, we are interested in automatically discovering the op-

timal compositional hierarchy for object trajectories from

various cues, in order to handle a wider variety of tracking

scenarios.

As illustrated in Fig. 1, suppose we would like to track

the highlighted subject and obtain its complete trajectory

(e). The optimal strategy for tracking may vary over space

and time. For example, in (a), since the subject shares the

same appearance within certain time period, we apply an

appearance based tracker to get a 2D tracklet; in (b) and (c),

since the subject can be fully observed from two differen-

t views, we can group these two boxes into a 3D tracklet

by testing the proximity of their 3D locations; in (d), since

the subject is fully occluded in this view, we consider sam-

pling its position from the 3D trajectory curve constrained

by background occupancy.

In this work, we formulate multi-view multi-object

tracking as a structure optimization problem described by

a hierarchical composition model. As illustrated in Fig. 2,

our objective is to discover composition gradients of each
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object in the hierarchical graph. We start from structureless

tracklets, i.e., object bounding boxes, and gradually com-

pose them into tracklets of larger size and eventually into

trajectories. Each trajectory entity may be observed in s-

ingle view or multiple views. The composition process is

guided by a set of criteria, which describe the composition

feasibility in the hierarchical structure.

Each criterion focuses on one certain cue and in fac-

t is equivalent to a simple tracker, e.g., appearance track-

er [29, 45], geometry tracker [35], motion tracker [2], etc.,

which groups tracklets of the same view or different views

into tracklets of larger sizes. Composition criteria lie in the

heart of our method: feasible compositions can be conduct-

ed recursively and thus the criteria can be efficiently uti-

lized.

To infer the compositional structure, we divest MCMC

sampling-based algorithms due to their heavy computation

complexity. We approximate the hierarchy by a progressive

composing process. The composition scheduling problem

is solved by an iterative greedy pursuit algorithm. At each

step, we first greedily find and apply the composition with

maximum probability and then re-estimate parameters for

the incremental part.

In the experiments, we evaluate the proposed method on

a set of challenging sequences and the results demonstrate

superior performance over other state-of-the-art approach-

es. Furthermore, we design a series of comparison exper-

iments to systematically analyze the effectiveness of each

criterion.

The main contributions of this work are two-fold. First-

ly, we re-frame multi-view multi-object tracking as a hier-

archical structure optimization problem and present three

tracklet-based composition criteria to jointly exploit differ-

ent kinds of cues. Secondly, we establish a new dataset to

cover more challenges, to present richer visual information

and to provide more detailed annotations than existing ones.

The rest of this paper is organized as follows. We review

the related work in Section 2, introduce the formulation of

our approach in Section 3, and discuss the learning and in-

ference procedures in Section 4. The experiments and com-

parisons are presented in Section 5, and finally comes the

conclusion in Section 6.

2. Related Work

Our work is closely related to the following four research

streams.

Multi-object tracking has been extensively studied in

the last decades. In the literature, the tracking-by-detection

pipeline [47, 20, 33, 41, 7, 8] attracts wide-spreaded atten-

tions and acquires impressive results, thanks to the consid-

erable progress in object detection [12, 37, 34], as well as

in data association [48, 32, 6]. In particular, network flow

based methods [32, 6] organize detected bounding boxes in-

to directed multiple Markov chains with chronological or-

der and pursue the trajectory as finding pathes. Andriyenko

et al. [2] propose to track objects in discrete space and use

splines to model trajectories in continuous space. Our ap-

proach also follows this pipeline but considers bounding

boxes as structureless elements. With preliminary associa-

tions to preserve locality, we can better explore the nonlocal

properties [23] of trajectories in the time domain. For ex-

ample, tracklets with evident appearance similarities can be

grouped together without considering the time interval.

Multi-view object tracking is usually addressed as a

data association problem across cameras. The typical solu-

tions include, homography constraints [24, 4], ground prob-

abilistic occupancy [14], network flow optimization [42, 6,

25], marked point process [38], joint reconstruction and

tracking [19], multi-commodity network [36] and muti-

view SVM [49]. All these methods have certain strong as-

sumptions and thus are restricted to certain specific scenar-

ios. In contrast, we are interested in discovering the optimal

composition structure to obtain complete trajectories in a

wide variety of scenarios.

Hierarchical model receives heated endorsement for its

effectiveness in modeling diverse tasks. In [17], a stochas-

tic grammar model was proposed and applied to solve the

image parsing problem. After that, Zhao et al. [51] and Liu

et al. [27] introduced generative grammar models for scene

parsing. Pero et al. [31] further built a generative scene

grammar to model the constitutionality of Manhattan struc-

tures in indoor scenes. Ross et al. presented a discriminative

grammar for the problem of object detection [15]. Grosse

et al. [16] formulated matrix decomposition as a structure

discovery problem and solved it by a context-free gram-

mar model. In this paper, our representation can be analo-

gized as a special hierarchical attributed grammar model,

with similar hierarchical structures, composition criteria as

production rules, and soft constraints as probabilistic gram-

mars. The difference lies in that our model is fully recursive

and without semantics in middle levels.

Combinatorial optimization receives considerable at-

tentions in the surveillance literature [43]. When the so-

lution space is discrete and the structure cannot be topo-

logically sorted (e.g., loopy graphs), there comes the prob-

lem of combinatorial optimization. Among all the solution-

s, MCMC techiques are widely acknowledged. For exam-

ple, Khan et al. [24] integrated the MCMC sampling within

the particle filer tracking framework. Yu et al. [46] utilized

the single site sampler for associating foreground blobs to

trajectories. Liu et al. [28] introduced a spatial-temporal

graph to jointly solve the region labeling and object tracking

problem by Swendsen-Wang Cut [5]. In this work, though

facing a similar combinatorial optimization problem, we

propose a very efficient inference algorithm with acceptable

trade-off.
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3. Representation

In this section, we first introduce the compositional hi-

erarchy representation, and then discuss the proposed prob-

lem formulation for multi-view multi-object tracking.

3.1. Hierarchical Composition Model

Given an input sequence containing videos shot by mul-

tiple cameras, we follow a default tracking-by-detection

pipeline and apply [34] to obtain detected bounding box-

es. After that, we associate them into short trajectory frag-

ments, i.e., tracklets, similar to [20, 40]. Tracklets preserve

better local properties of appearance and motion as well as

better robustness against errors and noises, compared with

bounding boxes.

We denote a tracklet as O, which contains the appearance

and geometry information over a certain period of time:

O = {(ai, li, ti) : i = 1, 2, . . . , |O|}, (1)

where ai is the appearance feature, li the location informa-

tion (i.e., 2D bounding box and 3D ground position) and ti
the time stamp. Note that the 3D ground position is calcu-

lated by projecting the foot point of the 2D bounding box

onto the world reference frame. For convenience, we de-

note the start time and end time of a tracklet by ts and te,

respectively. We further augment a set of states x(O) for

each tracklet O

x(O) = {ωi : i = 1, . . . , |O|}, (2)

where ωi ∈ {1, 0} indicates the state of visibili-

ty/invisibility on the 3D ground plane at time ti. x(0) de-

scribes the sparsity of a trajectory and can be utilized to en-

force the consistency of object appearing and disappearing

over time.

As shown in Fig. 2, we organize the scene as a composi-

tional hierarchy G to recover the trajectory for each object

in both single views and 3D ground. The compositional hi-

erarchy G is denoted as

G = (VN , VT , S,X), (3)

where VT denotes the set of terminal nodes, VN indicates

the set of non-terminal nodes, S is the root node represent-

ing the scene, and X represents the set of states of both

terminal and non-terminal nodes.

A non-terminal node O is constructed by composing two

nodes O1 and O2 together, that is

O ← f(O1, O2), gi(x(O)) = fi(x(O1), x(O2)), (4)

where gi(·) and fi(·) are associated operations on states.

Note that gi(·) and fi(·) can assign states in either bottom-

up or top-down direction, which act like functions of pass-

ing messages.

…

SceŶe

TrajectorǇ

Tracklet

BouŶdiŶg Boǆ

S :  AppearaŶce CohereŶce

: GeoŵetrǇ ProǆiŵitǇ

: MotioŶ CoŶsisteŶcǇ

…

IŶput

Figure 2. An illustration of the hierarchical compositional struc-

ture.

3.2. Bayesian Formulation

According to Bayes’ rule, we can solve the problem of

inferring the hierarchical composition model by maximiz-

ing a posterior, that is,

G
∗ = arg max

G

p(G|I) ∝ arg max
G

p(I|G) · p(G),

(5)

where I denotes the input video data.

Prior. Due to the property of hierarchy, we can further

factorize the prior p(G) as

p(G) =
∏

Oi∈VN

p(x(Oi))
∏

k

p
cp
k (Oi1, Oi2)

δi==k, (6)

where δi is an indicator for the type of criterion used in

composition, and Oi1 and Oi2 are two children nodes of

tracklet Oi.

p(x(O)) is a unary probability defined on the state of

O. We employ a simple Ising/Potts model to penalize the

discontinuity of the trajectory, i.e.,

p(x(O)) ∝ exp{−β

|O|−1
∑

i=1

1(ωi �= ωi+1) }, (7)

where β is a coefficient. p(x(O)) in fact constrain the num-

ber of times a trajectory switches between visible and invis-

ible.
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p
cp
k (Oi, Oj) represents the composition probability us-

ing the k-th type of cue. We will discuss details about of

composition criteria in Section 3.3.

Likelihood. The video data I is only dependent on the

terminal nodes VT and can be further decomposed as

p(I|G) =

⎛

⎝

∏

Oi∈VT

∏

aj∈Oi

pfg(aj)

⎞

⎠ ·
∏

aj∈I\VT

pbg(aj)

=
∏

Oi∈VT

∏

aj∈Oi

pfg(aj)

pbg(aj)
·
∏

aj∈I

pbg(aj),

(8)

where pfg(·) and pbg(·) are foreground and background

probabilities, respectively. The second term
∏

aj
pbg(aj)

measures the background probability over the entire video

data and thus can be treated as a constant, and the first ter-

m measures the divergence between foreground and back-

ground, which can be analogous to a probabilistic fore-

ground/background classifier. We use the detection scores

to approximate this log-likelihood ratio.

3.3. Composition Criteria

In this section, we introduce details of the proposed com-

position criteria.

Appearance Coherence. Instead of using traditional

descriptors (e.g., SIFT, color histograms, MSCR) to mea-

sure the appearance discrepancy, we employ the powerful

DCNN to model people’s appearance variations. Notice

that most DCNNs are trained over generic object categories

and insufficient to provide fine-grained level of information

about peoples identities [44]. We therefore fine-tune the

CaffeNet [21] using people image samples with identity la-

bels. The new DCNN consists of 5 convolutional layers,

2 max-pooling layers, 3 fully-connected layers and a final

1000-dimensional output. The last two layers are discarded

and replaced by random initializations. The output is new

1000 labels on people’s identities. Note the training sam-

ples are augmented from unlabeled data and identity labels

are obtained in an unsupervised way.

Similar to bag-of-words (BoW), our DCNN plays the

role of a codebook, which codes a person image with

common people appearance templates. We use this 1000-

dimensional output as our appearance descriptor. Given two

tracklets Oi and Oj , the appearance coherence constraint

p
cp
1 (Oi, Oj) is defined as

p
cp
1 (Oi, Oj) ∝ exp{−

∑

an∈Oi

∑

am∈Oj
‖an − am‖2

|Oi| · |Oj |
}.

(9)

p
cp
1 (Oi, Oj) actually measures the mean complete-link ap-

pearance dissimilarities among object bounding boxes be-

longing to two tracklets.

Geometry Proximity. Given tracklets from a single

view or cross views, we first project them on the world refer-

ence frame to measure their geometric distances uniformly.

However, considering tracklets with different time stamps

and lengths, it is not a trivial task to determine whether the

two given tracklets belong to the same object or not. The

reason lies in: i) the time stamps of tracklet pairs might not

be well aligned; ii) the localizations across views usually

lead to remarkable amount of errors.

In order to address these issues, we introduce a kernel to

measure these time series samples. The kernel K(Oi, Oj)
to measure the distance between two tracklets Oi and Oj is

defined as the product of two kernel distances in space and

time

K(Oi, Oj) =
∑

(ln,tn)∈Oi

∑

(lm,tm)∈Oj

φl(ln, lm) · φt(tn, tm)

|Oi| · |Oj |
,

(10)

where φl(ln, lm) and φt(tn, tm) are two RBF kernels be-

tween two points. We use different σl and σt values for

the two kernels, respectively. This new kernel acts like a

sequential convolution filter and takes both spatial and tem-

poral proximities into consideration.

Given a set of training samples D,

D = {(Oi, Oj , yn) : n = 1, . . . , |D|}, (11)

where yn ∈ {1, 0} indicates whether or not the two tracklets

Oi and Oj belong to the same identity, we can train a kernel

SVM with the energy function

min
w

1

2
<w,w>+ C

∑

n

max(0, 1− yn<w,K(Oi, O)>),

(12)

where C is a regularization factor.

We therefore interpret the normalized classification mar-

gin as the composition probability p
cp
2 (Oi, Oj).

Motion Consistency. We model the motion information

of a tracklet O as a continuous function of its 3D ground

positions l w.r.t. time t, i.e., l = τ(t). We define a con-

straint on two tracklets that they can be interpreted with the

same motion function. However, finding this motion pattern

is a challenging problem. The reason lies in two-fold: i) i-

naccurate 3D positions due to perspective effects, detection

errors and false alarms; ii) missing detections and objec-

t inter-occlusions in certain views, especially for crowded

scenarios. In this paper, we address these issues in the fol-

lowing two aspects.

Firstly, we employ the b-spline function to represent the

motion pattern of the trajectory. B-spline functions can

enforce high-order smoothness constraints, which enables

learning from sparse and noisy data. Considering a tracklet

O with 3D positions {li : i = 1, . . . , |O|}, starting time ts

and ending time and te, the spline function τ(t) uses some

quadratic basis functions Bk(t), and represents the motion

4259



(a) (b)

(c) (d)

Figure 3. An illustration of finding feasible regions (polygons) for

interacting people.

path as a linear combination of Bk(t):

τ(t) =
∑

k

αkBk(t),

s.t. τ ′′(ts) = τ ′′(te) = 0,

(13)

where τ ′′(t) denotes the second derivative of τ(t). The con-

straints enforce zero curvature at the starting and the ending

point.

Secondly, we take advantages of the multi-view setting

and derive feasible regions for object 3D positions to fur-

ther confine the fitted motion curve. As illustrated in Fig. 3,

given bounding boxes of a single object in the views (a), (b)

and (c), we first perform exhaustive search to find the two

anchor points (yellow dots in the image) along two sides of

the foot position of each object. An anchor point is defined

as a position where the surrounding 8×8 area contains most

of background regions. Note that we generate background

masks by GMM background modeling.

Once obtaining all the anchor points for an object, we

can find the union area Ω, i.e., a polygon on the world

ground plane, as shown the shaded area in (d). These poly-

gons serve as additional localization feasibility constraints

on the motion pattern. That is, the spline fitting is formulat-

ed as minimizing the following objective function:

min
αk,Bk

E(Oi, Oj) =
∑

(ln,tn)∈Oi∪Oj

(

ln −
∑

k

αkBk(tn)

)2

,

s.t. αkBk(tn) ∈ Ωn.
(14)

This is a constrained convex programming problem consid-

ering that all polygons are convex. We refer the readers

to find more details about b-spline and robust fitting algo-

rithms in [10].

The probability p3(Oi, Oj) is defined upon the averaged

residuals for spline fitting, i.e.,

p
cp
3 (Oi, Oj) ∝ exp{−

E(Oi, Oj)

|Oi ∪Oj |
}. (15)

4. Learning and Inference

In this section, we first discuss the learning procedure for

our constraints and then introduce how to infer the hierar-

chical compositional structure.

4.1. Learning Constraints

Appearance Coherence. Even for fine-tuning a DCNN,

fair amount of training samples are required. We therefore

augment the training data by external samples from public

people detection datasets, e.g., CaltechPedestrians, NICTA,

ETH and TUD-Brussels. The augmented training set con-

tains around 30,0000 samples of cropped people images.

We resize all the samples to 128×256 and horizontally flip

them to double the training set size. And then we extrac-

t dense HSV color histograms with 16 bins from 16×16

non-overlapping patches for each image. The computed

histograms are concatenated into a 6144-dimensional fea-

ture vector. We perform K-means clustering on the data and

obtain 1000 clusters. Each cluster is regarded as a class and

we utilize them to fine tune our DCNN. In general, the fine-

tuning process converges after 100000 iterations and costs

about 8 hours.

Geometry Proximity. Given the training data and

groundtruth of a scenario, we first generate initial tracklet-

s and then associate them with the groundtruth. A tracklet

is treated as a fragment of a groundtruth trajectory if more

than 50% of its bounding boxes are correctly assigned (i.e.,

hit/miss cutoff with 50% IoU ratio). The training data set

D can thus be constructed using tracklets from the same

trajectory as positive pairs samples and those from differ-

ent trajectories as negative pairs. We learn the parameters

of our kernel SVM for each pair of views (including self-

to-self). The kernel parameters σl and σt are also tuned by

cross-validation.

Note we also estimate the normalization constant for

each constraint p
cp
k (Oi, Oj) using the training data.

4.2. Inferring Hierarchy

Our objective is to find a compositional hierarchy G by

maximizing the posterior probability formulated in Equa-

tion (5). The optimization algorithm should accomplish two

goals: i) composing hierarchical structures, and ii) estimat-

ing states for terminal and non-terminal nodes.

The main challenge in optimizing Equation (5) lies in

the size of the solution space. For example, if there are

n terminal nodes, even a single group can be formed in

2n−1 different ways, which is exponential. Although M-

CMC sampling-based algorithms [28, 43] are favored to
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Figure 4. Comparison charts using CLEAR metrics on EPFL and PETS 2009 datasets.

solve such kinds of combinatorial optimization problems,

they are typically computationally expensive and difficult

to converge, especially for our case, with thousands of ter-

minal nodes and numerous possible compositions.

Hereby, we approximate the construction of the hierar-

chical structure by a progressive composing process. In the

beginning, given a set of initial tracklets VT , we initialize

the state ωi ∈ x(O) for each tracklet O as visible. We then

enumerate all the tracklets over all composition criteria, and

find two tracklets Oi and Oj with maximum probability to

be composed into a new tracklet On, that is,

max
Oi,Oj ,δn

p(x(On))
∏

k

p
cp
k (Oi, Oj)

δn==k, (16)

where δn is an indicator for which cue is selected. We then

group these two tracklets Oi and Oj together, and create

their parent node On.

The states for this newly merged node On are re-

estimated by

x(On) = x(Oi) ∪ x(Oj),

tsn = min(tsi , t
s
j), ten = max(tei , t

e
j),

|x(On)| = ten − tsn + 1.

(17)

Note we set all the states of missing time stamps within

the time scope [tsn, t
e
n] to 0, i.e., invisible. This encourages

future filling-in operations.

If a composition performed based on motion consistency

constraint, we then fill in the missing fragments by interpo-

lations, and create a corresponding tracklet Om ∈ VT . The

new tracklet Om will be naturally incorporated into the hi-

erarchical structure by subsequent compositions.

We continue this process iteratively. If the maximum

composition probability reaches the lower limit, we termi-

nate the algorithm and connect all the top non-terminal n-

odes to the root node S. Each sub-tree connected to the root

node is essentially an object trajectory.

5. Experiment

In this section, we first introduce the datasets and the

parameter settings, and then show our experimental results

as well as component analysis of the proposed approach.

5.1. Datasets and Settings

We evaluate our approach on three public datasets:

(i) EPFL dataset1 [14]. We adopt the Terrace sequence

1, Passageway sequence and Basketball sequence in our ex-

periments. In general, each sequence consists of 4 differ-

ent views and films 6-11 pedestrians walking or running

around, lasting 3.5-6 minutes. Each view is shot at 25fps

and in a relatively low resolution 360×288.

(ii) PETS 2009 dataset2 [13]. This dataset is widely

used in evaluating tracking tasks and sequence S2/L1 is spe-

1Available at cvlab.epfl.ch/data/pom/
2Available at www.cvg.reading.ac.uk/PETS2009/a.html
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Sequence Method MODA(%) MODP(%) MOTA(%) MOTP(%) MT(%) PT(%) ML(%) IDSW FRAG

Garden1

Our-full 49.30 72.02 49.03 71.87 31.25 62.50 6.25 299 200

Our-3 44.63 72.35 44.36 72.20 18.75 68.75 12.50 296 202

Our-2 42.10 71.08 41.69 70.97 12.50 75.00 12.50 448 296

Our-1 41.21 71.06 37.21 70.94 12.50 75.00 12.50 4352 4390

[6] 30.47 62.13 28.10 62.01 6.25 68.75 25.00 2577 2553

[14] 24.52 64.28 22.43 64.17 0.00 56.25 43.75 2269 2233

Garden2

Our-full 27.81 71.74 25.79 71.59 21.43 78.57 0.00 94 73

Our-3 23.39 71.13 22.50 71.08 14.29 85.71 0.00 92 72

Our-2 18.76 70.20 17.27 70.12 14.29 78.57 7.14 142 97

Our-1 17.68 70.12 10.24 70.11 14.29 78.57 7.14 700 733

[6] 24.35 61.79 21.87 61.64 14.29 85.71 0.00 268 249

[14] 16.51 63.92 13.95 63.81 14.29 78.57 7.14 241 216

Auditorium

Our-full 20.84 69.26 20.62 69.21 33.33 55.56 11.11 31 28

Our-3 18.83 68.99 18.62 68.95 22.22 61.11 16.67 30 28

Our-2 18.02 68.32 17.29 68.25 16.67 66.67 16.67 104 94

Our-1 17.78 68.33 14.11 68.28 16.67 66.67 16.67 523 536

[6] 19.46 59.45 17.63 59.29 22.22 61.11 16.67 264 257

[14] 17.90 61.19 16.15 61.02 16.67 66.67 16.67 249 235

ParkingLot

Our-full 24.46 66.41 24.08 66.21 6.67 66.67 26.67 459 203

Our-3 19.23 66.50 18.84 66.38 0.00 53.33 46.67 477 191

Our-2 12.85 65.70 12.23 65.61 0.00 46.67 53.33 754 285

Our-1 10.86 65.77 8.74 65.72 0.00 46.67 53.33 2567 2600

[6] 14.73 58.51 13.99 58.36 0.00 53.33 46.67 893 880

[14] 11.68 60.10 11.00 59.98 0.00 46.67 53.33 828 812

Table 1. Quantitative results and comparisons on CAMPUS dataset. Our-1, Our-2, Our-3 are three benchmarks set up for component

evaluation. See text for detailed explanations.

cially designed for multi-view-based tasks. With 3 surveil-

lance cameras and 4 DV cameras, 10 pedestrians are record-

ed entering, passing through, staying and exiting the pic-

tured area. The video is downsampled to 720×576 and the

frame rate is set to 7fps.

(iii) CAMPUS dataset. To cover more complete chal-

lenges not presented in existing databases, we design this

dataset based on the idea of dense foreground (around 15-

25 objects, frequent conjunctions and occlusions), complex

scenarios (objects conducting diverse activities, dynamic

background, interactions between objects and background),

various object scales (tracking targets sometimes either too

tiny or huge to be accommodated in certain cameras). We

incorporate 4 sequences into this dataset: Garden 1, Gar-

den 2, Auditorium and Parking Lot. Each sequence is shot

by 3-4 high-quality DV cameras mounted around 1.5m-

2m above ground and each camera covers both overlap-

ping regions and non-overlapping regions with other cam-

eras. The videos are recorded with frame rate 30fps and

duration about 3-4 minutes. The resolution is preserved in

1920×1080, for better precision and richer information.

For all three datasets, videos in each sequence are syn-

chronized. We fully annotate the groundtruth trajectories

for all the videos in all the sequences using [39]. Note

that we assign an unique ID for each object, whether it ap-

pears once or several times in the scene. Since the ultimate

task of multi-view multi-object tracking is to discover the

complete 3D trajectory of any targeted individual under a

camera network, we believe uniquely assigned ID should be

the groundtruth to fully evaluate the trackers, which poses

higher requirements than conventional tracking tasks [22].

In experiments, we use the beginning 10% video data for

training and the rest for testing.

All the parameters are fixed in the experiments. For

object detection, we use the PASCAL VOC fine-tuned ZF

net, score threshold 0.3 and NMS threshold 0.3, which ob-

tains proper trade-off between the efficiency and effective-

ness. As for tracklet initialization, we construct a graph with

edges only connected among successive frames and with-

in limited scale changes. That is, sizes of two successive

bounding boxes should not change more than 25% larger or

smaller, in either height or width. We then run the succes-

sive shortest path algorithm [32] to generate tracklets. Em-

pirically, this produces short but identity consistent tracklet-

s. β = 0.05 in the unary probability p(x(O)). The motion

consistency constraint is conducted on tracklets with time

interval no longer than 2 seconds, with the B-spline of or-

der at most 3 and breaks at most 4. In the hierarchical com-

position, the lower limit is set to 0.2, which obtains good

results.

5.2. Experimental Results

We employ the widely used CLEAR metrics [22], Mul-

tiple Object Detection Accuracy (MODA), Detection Pre-

cision (MODP), Tracking Accuracy (MOTA) and Tracking

Precision (MOTP) to measure three kinds of errors in track-

ing: false positives, false negatives and identity switches.

Besides, we also report the percentage of mostly tracked
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Figure 5. Results generated by the proposed method on CAMPUS, EPFL and PETS 2009 datasets.

(MT), partly tracked (PT) and mostly lost (ML) groundtruth

(referring to [26]), as well as the number of identity switch-

es (IDSW) and fragments (FRAG). Hit/miss for the assign-

ment of tracking output to groundtruth is set to a threshold

of Intersection-over-Union (IoU) ratio 50%.

We compare the proposed approach with 4 state-of-the-

arts methods: Probabilistic Occupancy Map (POM) [14],

K-Shortest Path (KSP) [6], Branch-and-Price [25] and

Discrete-Continuous Optimization [3]. We adopt the public

code of POM detection and implement the data association

algorithms ”DP with appearance” [14] and KSP [6] accord-

ing to their descriptions. The reported metrics for compar-

ing methods are quoted on PETS 2009 dataset from [11]

and computed on the rest by conducting experiments.

Quantitative evaluations on EPFL and PETS 2009

datasets is shown in Fig. 4 and CAMPUS dataset in Ta-

ble 1, as well as qualitative results in Fig. 5. From the re-

sults, our method demonstrates superior performance over

the competing methods. We can also observe the proposed

method acquires significant margins on MODP, MOTP,

IDSW and FRAG, which indicates two empirical conclu-

sions: i) detection-based tracklet initialization is more ben-

eficial to object overall localization than foreground-blob-

based methods which mainly concerns ground positions; ii)

when it comes to occlusions, multiple cues (e.g., appear-

ance, geometry, and motion) are all neccessary to keep the

trajectory identity consistent, which has also been approved

in [18]. Competing methods do not work well on CAM-

PUS dataset mainly due to their strong dependence on clear

visibility of ground plane and uniform object size.

Component Analysis. We set up three benchmarks

to further analyze the benefits of each production rule on

CAMPUS dataset. Our-1 outputs the initial tracklets di-

rectly, i.e., no composition performed; Our-2 composes the

hierarchy only using the appearance coherence criterion;

Our-3 further incorporates the geometry proximity crite-

rion; Our-full employs all criteria proposed in this paper.

From the results, it is apparent that each constraint con-

tributes to a better hierarchical composition model.

Efficiency. Our method is implemented in MATLAB

and runs on a desktop with Intel I7 3.0GHz CPU, 32GB

memory and Nvidia GTX780Ti GPU. Given a 1080P se-

quence, the runtime on average is 15-20fps for object de-

tection, 1000-1500fps for tracklet initialization, and 2-4fps

for optimizing the hierarchical structure. Overall, the pro-

posed algorithm obtains 1-3fps, which is related to the ob-

ject density of the sequence. With proper code migration

and optimization, e.g., batch processing, we believe the re-

altime processing can be achieved.

6. Conclusion

This paper studies a novel formulation for multi-view

multi-object tracking. We represent object trajectories as

a compositional hierarchy and construct it with probabilis-

tic constraints, which characterize the geometry, appear-

ance and motion properties of trajectories. By exploiting

multiple cues and composing them with proper scheduling,

our method handles challenges in multi-view multi-object

tracking well. Furthermore, we will explore more powerful

inter-tracklet relations and better composition algorithms in

the future.
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