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Abstract

Interactive object selection is a very important research

problem and has many applications. Previous algorithms

require substantial user interactions to estimate the fore-

ground and background distributions. In this paper, we

present a novel deep-learning-based algorithm which has

much better understanding of objectness and can reduce

user interactions to just a few clicks. Our algorithm trans-

forms user-provided positive and negative clicks into two

Euclidean distance maps which are then concatenated with

the RGB channels of images to compose (image, user in-

teractions) pairs. We generate many of such pairs by com-

bining several random sampling strategies to model users’

click patterns and use them to finetune deep Fully Convo-

lutional Networks (FCNs). Finally the output probability

maps of our FCN-8s model is integrated with graph cut op-

timization to refine the boundary segments. Our model is

trained on the PASCAL segmentation dataset and evaluated

on other datasets with different object classes. Experimen-

tal results on both seen and unseen objects demonstrate that

our algorithm has a good generalization ability and is supe-

rior to all existing interactive object selection approaches.

1. Introduction

Interactive object selection (also known as interactive

segmentation) has become a very popular research area over

the past years. It enables users to select objects of interest by

interactively providing inputs such as strokes and bounding

boxes. The selected results are useful for many applications

such as localized editing and image/video composition.

There are many algorithms proposed to solve this prob-

lem. One of the most famous algorithms is proposed by

Boykov and Jolly [2] where they formulate interactive seg-

mentation as the graph cut optimization and solve it via

max-flow/min-cut energy minimization. Rother et al. [21]

extend graph cut by using a more powerful, iterative version

of optimization. Bai and Sapiro [1] present a new algorithm

that computes weighted geodesic distances to the user-

provided scribbles. Grady [8] uses the graph theory to esti-

mate the probabilities of random walks from unlabeled pix-

els to labeled pixels. In order to get accurate segmentation,

all these algorithms require substantial user interactions to

have a good estimation of the foreground/background dis-

tributions. In contrast, our approach simplifies user interac-

tions to a few clicks, with one or two clicks usually giving

reasonably good results. The advantage of our approach

over the others is the capability to understand objectness

and semantics by leveraging deep learning techniques. To

our best knowledge, this is the first work that solves inter-

active segmentation in the framework of deep learning.

Our approach is inspired by recent successes of deep

fully convolutional neural networks (FCNs) on the semantic

segmentation problem [17, 29, 3, 16, 12]. Long et al. [17]

adapt popular deep classification networks into FCNs for

semantic segmentation and improve the architecture with

multi-resolution layer combinations. Built upon this, Chen

et al. [3] combine the outputs of FCNs with Conditional

Random Field (CRF) while Zheng et al. [29] formulate

mean-field approximate inference as Recurrent Neural Net-

work (RNN) and plug it on top of FCNs to get finer results.

A seemingly plausible transformation of those ap-

proaches to interactive segmentation is that we first perform

semantic segmentation on the whole image and then select

the connected components which contain user-provided se-

lections. However, there exists at least three problems with

this approach. First, it is not always clear how to response

to use inputs. For example, if the user places a foreground

click and background click inside the same class label, this

approach cannot response to that. Second, current seman-

tic segmentation methods do not support instance-level seg-

mentation while that is often the user’s desire. Last but not

the least, current semantic segmentation approaches do not
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generalize to unseen objects. This means that we have to

train a model for every possible object in the world, which

is obviously impractical.

In this paper, we present a novel algorithm for interac-

tive object selection (Fig. 1). To select an object in an

image, users provide positive and negative clicks which are

then transformed into separate Euclidean distance maps and

concatenated with the RGB channels of the image to com-

pose a (image, user interactions) pair. FCN models are fine

tuned on many of these pairs generated by random sam-

pling. Moreover, graph cut optimization is combined with

the outputs of our FCN models to get satisfactory boundary

localization. The key contributions of this paper are sum-

marized as follows:

• We propose an effective transformation to incorporate

user interaction with current deep learning techniques.

• We propose several sampling strategies which can rep-

resent users’ click behaviors well and obtain the re-

quired training data inexpensively.

• Our interactive segmentation system is real time given

a high-end graphics processing units (GPU).

The rest of the paper is organized as follows. Section 2

gives a brief review of related works. The proposed algo-

rithm is elaborated in Section 3. Experimental results are

presented in Section 4 and Section 5 concludes the paper.

2. Related works

There are many interactive segmentation approaches

proposed over the past decades, such as contour-based

methods [19, 10] and bounding box methods [21]. Stroke-

based methods are popular, and use a number of underlying

algorithms, including normalized cuts [22], graph cut [2,

11, 26], geodesics [1, 4], the combination of graph cut and

geodesics [20, 9] and random walks [8]. However, all these

previous algorithms estimate the foreground/background

distributions from low-level features. Unfortunately, low-

level features are insufficient at distinguishing the fore-

ground and background in many cases, such as in images

with similar foreground and background appearances, com-

plex textures and appearances, and difficult lighting condi-

tions. In such cases, these methods struggle and require ex-

cessive user interaction to achieve desirable results. In con-

trast, our FCN model is trained end-to-end and has a high

level understanding of objectness and semantics, therefore

simplifying user interactions to just a few clicks.

The task of semantic segmentation is closely related to

interactive segmentation. Many algorithms have been pro-

posed such as superpixel-based [28, 24, 25] and clustering-

based methods [23, 15, 14]. Due to the great improve-

ments on image classification and detection by deep neu-

ral networks especially the convolutional neural networks

(CNNs), many researchers have recently applied CNNs to

the problem of semantic segmentation. Farabet et al. [6]

use a multi-scale convolutional network trained from raw

pixels for scene labeling. Girshick et al. [7] apply CNNs

to bottom-up regions proposals for object detection and

segmentation and improve over previous low-level-feature-

based approaches greatly. Long et al. [17] adapt high-

capacity CNNs to FCNs which can be trained end-to-end,

pixels-to-pixels and leverage a skip architecture which com-

bines model responses at multiple layers to get finer re-

sults. However, as explained in the introduction, seman-

tic segmentation is not directable for interactive segmen-

tation. Our model is based on FCNs but different from

[17] in mainly two points. 1) Our model is trained on ran-

domly generated (image, user interactions) pairs which are

the concatenations of RGB channels and transformed Eu-

clidean distance maps. 2) Our model has only two labels –

“object” and “background”.

Other work has looked at improving the boundary local-

ization of CNN semantic segmentation approaches. Chen

et al. [3] combine the outputs of FCNs with fully connected

CRF. Zheng et al. [29] formulate mean-field approximate

inference as RNNs and train with FCNs end-to-end. They

improve the mean intersection over union (IU) accuracy of

FCNs from 62.2% to 71.6% and 72% respectively. Al-

though our FCN models are quite general to be combined

with their approaches, their segmentation results are far less

acceptable for the interactive segmentation task. Therefore,

we propose a simple yet effective approach that combine

graph cut with our FCN output maps, which enables our al-

gorithm achieve high IU accuracy with even a single click.

3. The proposed algorithm

We propose a deep-learning-based algorithm for interac-

tive segmentation. User interactions are first transformed

into Euclidean distance maps and then concatenated with

images’ RGB channels to fine tune FCN models. After the

models are trained, graph cut optimization is combined with

the probability maps of FCN-8s to get the final segmenta-

tion results. Figure 1 illustrates the framework of how we

train our FCN models.

3.1. Transforming user interactions

In our approach, a user can provide positive and negative

clicks (or strokes) sequentially in order to segment objects

of interest. A click labels a particular location as being ei-

ther “object” or “background”. A sequence of user inter-

actions S includes a positive click set S1 which contains

all user-provided positive clicks and a negative click set S0

which contains all user-provided negative clicks. Our al-

gorithm uses a Euclidean distance transformation to trans-

form S1 and S0 to separate channels U1 and U0 respec-

tively. Each channel is a 2D matrix with the same height
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FCN

Figure 1: The framework of learning our FCN models. Given an input image and user interactions, our algorithm first

transforms positive and negative clicks (denoted as green dots and red crosses respectively) into two separate channels,

which are then concatenated (denoted as ⊕) with the image’s RGB channels to compose an input pair to the FCN models.

The corresponding output is the ground truth mask of the selected object.

and width as the original image. To calculate the pixel

value ut
ij at the location (i, j), t ∈ {0, 1}, let us first de-

fine an operator f such that given a set of points pij ∈ A
where (i, j) is the point location, then for any point pmn,

f(pmn|A) = min∀pij∈A

√

(m− i)2 + (n− j)2. In other

words, the operator f calculates the minimum Euclidean

distance between a point and a set of points. Then,

ut
ij = f(pij |S

t), t ∈ {0, 1} (1)

For the efficiency of data storage, we truncate ut
ij to 255.

It should be noted that it is possible that S0 is a empty set

since in many scenarios our algorithm has perfect segmen-

tation results with even one single positive click. In this

case, all u0

ij are set to 255. Then we concatenate the RGB

channels of the image with U1,U0 to compose a (image,

user interaction) pair.

3.2. Simulating user interactions

It should be noted that different users tend to have dif-

ferent interaction sequences for selecting the same object.

Therefore our FCN models need a lot of such training pairs

to learn this. However, it is too expensive to collect many

interaction sequences from real users. We thus use random

sampling to automatically generate those pairs. Let O be

the set of ground truth pixels of the object and let us define

a new set G = {pij |pij ∈ O or f(pij |O) ≥ d}. Let Gc

denote the complementary set of G. It is easy to see that the

pixels in Gc have two properties: 1) they are background

pixels and 2) they are within a certain distance range to the

object. To sample positive clicks, we randomly select n

pixels in O where n ∈ [1, Npos]. The pixels in O are ac-

tually filtered in the way that 1) any two pixels are at least

dstep pixels away from each other and 2) any pixel is at least

dmargin pixels away from the object boundaries.

To sample negative clicks, we combine several sampling

strategies to model the complexity of users’ click patterns.

• Strategy 1: n negative clicks are randomly sampled in

the set Gc, where n ∈ [0, Nneg1]. Gc is filtered in the

same way as O.

(a) Strategy 1 (b) Strategy 2 (c) Strategy 3

Figure 2: A visual example of the three sampling strategies

for negative clicks. The person is the foreground object.

• Strategy 2: ni negative clicks are randomly sampled

on each negative object Oi in the same image, where

ni ∈ [0, Nneg2]. Each Oi is filtered in the same way as

O.

• Strategy 3: Nneg3 negative clicks are sampled to cover

the outside object boundaries as much as possible. In

detail, the first negative click is randomly sampled in

Gc. Then the following clicks are obtained sequentially

by

pnext = arg max
pij∈Gc

f(pij |S
0 ∪ G) (2)

where S0 includes all previously sampled negative

clicks.

Figure 2 presents an example of the three strategies. The

sampled negative clicks from Strategy 1 or 2 alone do not

always follow users’ typical click patterns, therefore mak-

ing them harder for our models to learn. The sampled neg-

ative clicks from Strategy 3 surround the object evenly,

which has a strong pattern but is easy to learn. We find that

using all three stategies provides better results than relying

on any one strategy, therefore we combine them together.

Specifically, for each object in an image we randomly sam-

ple Npairs training pairs of (image, user interactions). Each

pair is generated by one of the sampling strategies with an

equal probability.
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(a) (b) (c)

Figure 3: An example of Section 3.4. (a) An testing image

and user interactions. (b) The output probability map from

FCN-8s. (c) The result after graph cut.

3.3. Fine tuning FCN models

We leverage FCNs to learn the interactive segmentation

task. The training samples to our models are (image, user

interactions) pairs and the labels are the binary masks of

corresponding objects. We first fine tune a stride-32 FCN

model (FCN-32s) from the stride-32 semantic segmenta-

tion model of [17]. For the two extra channels of filters

in the first convolutional layer, we use zero initialization.

We also tried initialization with the mean value of those fil-

ter weights, but it shows no difference. After fine tuning

FCN-32s, we continue to fine tune a stride-16 FCN (FCN-

16s) from FCN-32s with the same training data. Finally we

fine tune a stride-8 FCN (FCN-8s) model from FCN-16s.

As suggested by [17], training finer-stride FCNs does not

provide further benefits, which we also observed.

It takes approximately three days to fine tune FCN-32s

and five days to fine tune FCN-16s and FCN-8s. By balanc-

ing the trade-offs between the performance and time, each

FCN model is trained about 20 epochs. FCN-32s converges

fast in the first two epochs while a longer training time gives

finer segmentation results. We also find that FCN-16s has

obvious improvements over FCN-32s especially in regions

close to object boundaries, but the accuracy of FCN-16s and

FCN-8s are similar.

3.4. Graph cut optimization

From the outputs at the last layer of FCN-8s we can ob-

tain a probability map Q, of which the entry qij indicates

how likely the pixel pij is labeled as “object” (e.g. Figure

3b). Directly thresholding qij at 0.5 gives us very coarse

segmentation masks, which are not useful for interactive

segmentation. Instead, we integrate Q into the graph cut

optimization [2]:

E(L) = λ ·R(L) +B(L) (3)

Where λ is a coefficient that specifies a relative importance

between R(L) and B(L).

The first term R(L) =
∑

pij∈P Rpij
(Lpij

), where

Rpij
(Lpij

) estimates the penalty of assigning pixel pij to

label Lpij
. Our algorithm defines

Rpij
(Lpij

) =

{

− log(qij), if Lpij
= “object”

− log(1− qij), otherwise
(4)

The second term B(L) =
∑

{pij ,pmn}∈N B{pij ,pmn} ·

δ(Lpij
, Lpmn

), where B{pij ,pmn} comprises the properties

of object boundaries. Our algorithm defines

B{pij ,pmn} ∝ exp(−
(Ipij

− Ipmn
)2

2σ2
)·

1

dist(pij , pmn)
(5)

Our algorithm solves Equation 3 via max-flow/min-cut en-

ergy minimization. Figure 3c illustrates the result after

graph cut optimization.

3.5. Evaluation and complexity

A user can provide positive and negative clicks sequen-

tially to select objects of interest. Each time a new click

is added, our algorithm recomputes the two distance maps

U1 and U0. Then the new (image, user interactions) pair

is sent to our FCN-8s model and a new probability map Q

is obtained. Graph cut uses Q to update the segmentation

results without recomputing everything from scratch. To

compare our algorithm with other approaches, we also de-

sign a method to automatically add a click given the current

segmentation mask and the ground truth mask. The method

places a seed at the mislabeled pixel that is farthest from

the boundary of the current selection and the image bound-

aries, mimicing a user’s behavior under the assumption that

the user clicks in the middle of the region of greatest error.

Given high-end GPUs like NVIDIA Titan X, the compu-

tation of Q is very fast and less than 100 millisecond. Graph

cut optimization is also very efficient on modern CPUs.

Therefore our algorithm satisfies the speed requirement for

the interactive segmentation task.

4. Experiments

4.1. Settings

We fine tune our FCN models on the PASCAL VOC

2012 segmentation dataset [5] which has 20 distinct ob-

ject categories. We use its 1464 training images which

have instance-level segmentation masks and their flipped

versions to sample the (image, user interactions) pairs. The

choices of some sampling hyper-parameters are: d is set to

be 40, Npos is set to be 5, Nneg1, Nneg2, Nneg3 are set to be

10, 5 and 10 respectively. Npairs is set to be 15. The total

number of sampled training pairs is about 80k. 200 valida-

tion images are randomly sampled from the whole training

set to control the learning of our models.

We compare our algorithm to several popular interactive

segmentation algorithms [2, 1, 8, 9, 26]. Since the other al-

gorithms cannot estimate foreground/background distribu-

tions with a single click, we enlarge every click to a big dot
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(b) Grabcut
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(c) Berkeley
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(d) MS COCO seen categories
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(e) MS COCO unseen categories

Graph cut [2]

Geodesic matting [1]

Random walker [8]

Euclidean star convexity [9]

Geodesic star convexity [9]

Growcut [23]

Ours

(f) Legend

Figure 4: The mean IU accuracy vs. the number of clicks on the (a) Pascal (b) Grabcut (c) Berkeley (d) MS COCO seen

categories and (e) MS COCO unseen categories datasets. The legend of these plots is shown in (f).

with a radius 5 for them. We use such big dots for our graph

cut refinement but only use single clicks for our FCN mod-

els. To evaluate, we record the updated IU accuracy of an

object given sequential clicks which are automatically gen-

erated in the way described in Section 3.5. The maximum

number of clicks on a single object is limited to 20. We

also record how many clicks are required to achieve a cer-

tain IU accuracy for the object. If the IU accuracy cannot

be achieved in 20 clicks, we will threshold it by 20. Finally,

we average each metric over all objects in a dataset.

4.2. Results

We evaluate all the algorithms on four public datasets:

Pascal VOC 2012 segmentation validation set, Grabcut

[21], Berkeley [18] and MS COCO [13]. The quantitative

results of the two metrics on different datasets are shown in

Figure 4 and Table 1 respectively.

Pascal: The validation set has 1449 images and many

of them contain multiple objects. From Figure 4a we can

see that our algorithm is better than all the other algorithms.

Since the validation set contains 20 object categories which

have been seen in our training set, we test our algorithm on

other datasets with different objects to prove the generaliza-

tion capability of our algorithm to unseen object classes.

Grabcut and Berkeley: These two datasets are bench-

mark datasets for interactive segmentation algorithms. On

the Grabcut dataset (Figure 4b), our algorithm achieves bet-

ter results with a few clicks and has a similar IU accu-

racy with Geodesic/Euclidean star convexity [9] with more

clicks. Since Grabcut only has 50 images and most im-

ages have distinct foreground and background distributions

which can be handled well by low-level-feature-based algo-

rithms, our advantage over other methods is smaller than it

is on more challenging datasets. On the Berkeley dataset

(Figure 4c), our algorithm achieves better IU accuracy at

every step and increases the IU accuracy much faster than

the others at the beginning of the interactive selection.

MS COCO: MS COCO is a large-scale segmentation

dataset and has 80 object categories. 60 of them are distinct

from the Pascal dataset. We randomly sample 10 images

per categories and test all the algorithms on the 20 seen cat-

egories and 60 unseen categories separately. Our algorithm

still consistently performs better than the other algorithms

by a large margin in both cases.

Our algorithm also requires the least number of clicks

to achieve a certain IU accuracy on all the datasets. Fig-
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Segmentation models
Pascal

(85% IU)

Grabcut

(90% IU)

Berkeley

(90% IU)

MS COCO

seen categories

(85% IU)

MS COCO

unseen categories

(85% IU)

Graph cut [2] 15.06 11.10 14.33 18.67 17.80

Geodesic matting [1] 14.75 12.44 15.96 17.32 14.86

Random walker [8] 11.37 12.30 14.02 13.91 11.53

Euclidean start convexity [9] 11.79 8.52 12.11 13.90 11.63

Geodesic start convexity [9] 11.73 8.38 12.57 14.37 12.45

Growcut [26] 14.56 16.74 18.25 17.40 17.34

Ours 6.88 6.04 8.65 8.31 7.82

Table 1: The mean number of clicks required to achieve a certain IU accuracy on different datasets by various algorithms.

The IU accuracy for different datasets is indicated in the parentheses. The best results are emphasized in bold.

Graph cut
Geodesic

matting

Random

walker

Euclidean

star convexity

Geodesic

star convexity
Growcut Ours

Ground

truth

Grabcut example

Berkeley example

Pascal example

Figure 5: The segmentation results by different algorithms given the same user interaction sequences. Each row is an testing

image from one dataset. Each of the first seven columns represent the segmentation results by one algorithm and the rightmost

column shows the ground truths. In each figure, green dots indicate positive clicks. Background regions are faded to black

and object boundaries are outlined in cyan.

ure 4 and Table 1 clearly demonstrate that 1) our algorithm

achieves more accurate results with less interaction than

other methods and 2) our algorithm has a good generaliza-

tion ability to all kinds of objects. Given the same user in-

teraction sequences, some segmentation results by different

algorithms are illustrated in Figure 5 and 9. In many exam-

ples, our algorithm obtains very good results in just one sin-

gle click while the others either only segment a part of the

object or completely fail. This is because our FCN models

have a high-level understanding of the objectness and se-

mantics, in contrary to the other approaches simply relying

on low-level features. We also show a failed segmentation

result by our algorithm in Figure 9. The failure is because

FCNs cannot capture thin structures and fine details very

well. Therefore the output probabilities from our FCN-8s

model are not accurate enough in those areas, which affects

the performance of graph cut in producing our final result.

4.3. Comparisons to semantic segmentation ap
proaches

Since all existing interactive segmentation algorithms are

only based on low-level features, we should also compare

our algorithm to some models that understand high-level se-

mantics, such as FCNs [17] and CRF-RNN [29]. However,
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FCN CRF-RNN Ours
Ground

truth

Figure 6: The segmentation results by the semantic segmen-

tation algorithms (FCN and CRF-RNN) and our algorithm.

The first row is a testing image from seen categories (i.e.

“person”). The second row is a testing image from unseen

categories (i.e. “banana”).

Segmentation

models

MS COCO

seen categories

MS COCO

unseen categories

FCN [17] 42.37% 16.14%
CRF RNN [29] 47.01% 13.28%
Ours 48.35% 42.94%

Table 2: The mean IU accuracy with a single positive click

on the MS COCO seen and unseen categories. The best

results are emphasized in bold.

they neither support instance-level segmentation nor can re-

spond to users’ interactions. To make them comparable, we

design a simple strategy such that the connected component

of a given label that contains the user click is selected as

foreground and the other areas are treated as background.

It is not straightforward how to respond to negative clicks,

therefore we only compare results by a single positive click.

The visual comparison results are shown in Figure 6. In

the first example, since “person” is a known category to

FCN and CRF-RNN, they are able to segment all the per-

sons in the image. But they cannot segment the man in the

middle who overlaps with other persons. In the second ex-

ample, “banana” is a new category to FCN and CRF-RNN.

Therefore they don’t recognize it at all. Table 2 presents

the mean IU accuracy with a single positive click on the

MS COCO dataset, which demonstrates the limitations of

semantic segmentation approaches directly applied to inter-

active segmentation. For seen categories, since many of the

class instances are non-overlapping, we only have a modest

improvement. However, remember that our algorithm was

given only one click, and with more clicks we can greatly

improve our results. For unseen classes, our algorithm per-

forms significantly better, proving both our ability to gener-

alize to new classes and the effectiveness of our algorithm in

combining user interactions with deep learning techniques.

Figure 7: The segmentation results of clothing parts by our

algorithm on the Fashionista dataset. The clothing parts

from the left image to the right image are “shirt”, “skirt”

and “jacket”.

1 click 2 clicks 3 clicks

T
h
re

sh
o
ld

ed
G

ra
p
h

C
u
t

Figure 8: The sequential segmentation results before and af-

ter our graph cut refinement. The first row shows the results

by thresholding the output probability maps of our FCN-8s

model without using graph cut. The second row shows our

final results after graph cut.

4.4. Segmenting object parts

Previous results demonstrate that our algorithm performs

very well on general objects. Moreover, although our FCN

models are only trained on whole objects, our algorithm

can still select their subparts. In Figure 7 we show some

segmentation results of clothing parts on the Fashionista

dataset [27]. This demonstrates the flexibility of our algo-

rithm and the effectiveness of our learning framework that

enables our models to understand users’ intentions well. In

addition, compared with the other interactive segmentation

approaches, there is no doubt that they need many user in-

teractions to achieve the results. Compared with automatic

semantic segmentation methods like FCNs, they are trained

to segment entire people and thus cannot get the subparts.

This again shows the advantages of our algorithm.

4.5. Refinement by Graph Cut

We illustrate the differences of segmentation results be-

fore and after our graph cut refinement in Figure 8. The

first row shows the output probability maps of our FCN-8s
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Graph cut
Geodesic

matting

Random

walker

Euclidean

star convexity

Geodesic

star convexity
Growcut Ours

Ground

truth

Seen categories

Unseen categories

Failure case

Figure 9: The segmentation results by different algorithms given the same user interaction sequences on the MS COCO

dataset. The first to third rows are testing images from seen categories (i.e. “cow”, “dog”, “motorcycle”). The forth to sixth

rows are testing images from unseen categories (i.e. “elephant”, “apple”, “teddy bear”). The last row is a failure example

(i.e. “bicycle”) by our algorithm. Each of the first seven columns represent the segmentation results by one algorithm and

the rightmost column shows the ground truths. In each figure, green dots indicate positive clicks and red crosses indicate

negative clicks. Background regions are faded to black and object boundaries are outlined in cyan.

model thresholded at 0.5. We can see our model responds

correctly to the user interactions and selects most parts of

the bus. But the results along object boundaries are not very

accurate. Therefore our algorithm leverages graph cut to re-

fine the results. The second row shows the final results of

our algorithm. Clearly the results are more satisfactory and

have better boundary localization.

5. Conclusion

The proposed algorithm is the first work that solves the

interactive segmentation problem by combining user inter-

actions with current deep learning models. Our algorithm

transforms user interactions to Euclidean distance maps and

trains FCN models to recognize “object” and “background”

based on many synthesized training samples. Our algorithm

also combines graph cut optimization with the output of the

FCN-8s model to refine the segmentation results along ob-

ject boundaries. Experimental results clearly demonstrate

the superiority of the proposed deep algorithm over existing

interactive methods using hand designed, low level features.

Our method can achieve high quality segmentations with a

small amount of user effort, often just a few clicks.
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