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Abstract

Large-scale action recognition and video categorization

are important problems in computer vision. To address

these problems, we propose a novel object- and scene-based

semantic fusion network and representation. Our semantic

fusion network combines three streams of information us-

ing a three-layer neural network: (i) frame-based low-level

CNN features, (ii) object features from a state-of-the-art

large-scale CNN object-detector trained to recognize 20K

classes, and (iii) scene features from a state-of-the-art CNN

scene-detector trained to recognize 205 scenes. The trained

network achieves improvements in supervised activity and

video categorization in two complex large-scale datasets -

ActivityNet and FCVID, respectively. Further, by examining

and back propagating information through the fusion net-

work, semantic relationships (correlations) between video

classes and objects/scenes can be discovered. These video

class-object/video class-scene relationships can in turn be

used as semantic representation for the video classes them-

selves. We illustrate effectiveness of this semantic represen-

tation through experiments on zero-shot action/video clas-

sification and clustering.

1. Introduction

The ubiquitous availability and use of devices that can

capture and share videos on social platforms is astounding;

an estimated 1 − 5 hours of videos are being uploaded to

YouTube per second by the users. Such growth in visual

media requires robust and scalable approaches for video in-

dexing, search and summarization. However, general video

understanding in unconstrained and, often, user-generated

videos is extremely challenging. Videos vary greatly in

terms of both the semantic content (e.g., concert) and ap-

pearance of that content (e.g., as observed from audience or

backstage). The same or similar content can be recorded

from a variety of views (e.g., front-row or obstructed-view

seat in the back), under a breadth of viewing conditions

(e.g., natural or stage lighting), and can be of nearly arbi-
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Figure 1. Illustration of the proposed Object-Scene semantic Fu-

sion (OSF) network and its application on several tasks.

trary length (e.g., an hour long professional recoding, ego-

centric snippet, or iPhone highlight). Hence appearance

variability within a given topic is often greater than vari-

ability across topics making recognition difficult.

In computer vision, video understanding is often ad-

dressed in the form of action/activity recognition or local-

ization (this limits the scope to human-centric events and

video content); generic video categorization [12] has been

much less thoroughly explored. In both domains the focus,

over the years, has been largely on learning video-based

representations (e.g. HoG, HoF or MBH [35]), combined

with supervised (or weakly supervised [5, 25, 29]) clas-

sifiers for recognition/categorization. Recent successes in

deep learning, particularly Convolutional Neural Networks

(CNNs), opened opportunities for learning discriminative

hierarchical frame-based [13] or spatio-temporal represen-

tations [31, 34] jointly with the classifiers in an end-to-

end fashion. Recent CNN approaches have shown remark-

able improvements in performance on datasets where large

amount of labeled data is available [31]. However, ability to

learn from limited labeled data or scale such approaches up

from at most few hundred classes to thousands, if not tens of

thousands, of classes, presents significant challenges for the

community; the latter, in particular, due to insurmountable
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efforts to scale up annotation to tens of millions of videos

and practical inability to find and label rare events.

Semantic representations provide one way of bridging

the current challenges. Semantic representations, in the

form of attributes [15] or objects [16], are becoming in-

creasingly popular in object categorization [42] and scene

understanding [16]. Such representations typically improve

generalization by representing classes that may potentially

have only few, or even no, training instances in terms of

semantic entities that are much easier to train classifiers

for. One challenge is that relationship between seman-

tic entities and classes often needs to be defined by hand,

which is costly and non-trivial (e.g., there may not be a

general agreement on whether horse is furry1); techniques

have been proposed to solve for correlations algorithmically

(e.g., sparse-coding [8]) at the cost of model expressive-

ness2. In video categorization the use of such semantic rep-

resentations has been much more limited, with few recent

works focusing on attribute-based event recognition [17],

joint actor-action based reasoning [37], object-action rela-

tionships [10], and at a very limited scale object + scene

features to improve action classification [9]. However, these

works focus largely on the improved video classification

performance, with semantic entities as black-box features,

and not finding robust semantic decompositions of actions

for other tasks (e.g., zero-shot prediction and clustering).

To address these issues we introduce a novel Object-

Scene semantic Fusion (OSF) network for large-scale video

categorization. OSF combines three streams of information

using a three-layer fusion neural network: (i) frame-based

low-level CNN features, (ii) object features from a state-

of-the-art large-scale CNN object-detector with 20K classes

and (iii) scene features from a state-of-the-art CNN scene-

detector trained to recognize 205 scenes. This framework

(see Figure 1) has a number of appealing properties. First,

it is defined as an end-to-end network and hence joint train-

ing of all streams and the fusion layers is possible. Second,

complex non-linear relationships between semantic enti-

ties (objects and scenes) and the video class labels can be

learned and need not be specified by hand. Third, by exam-

ining and back propagating information through the fusion

layers, semantic relationships between video classes and

objects/scenes can be discovered. This Object and Scene

semantic Representation (OSR), in the form of video class-

object/video class-scene relationships, can be used for a va-

riety of tasks, including zero-shot recognition of novel cat-

egories and measuring similarity (clustering). In addition to

appealing conceptual properties OSF/OSR improves both

supervised and zero-shot classification on two challenging

and large-scale datasets for activity (ActivityNet [7]) and

generic video categorization (FCVID [12]).

1See http://www.1freewallpapers.com/furry-black-white-horse.
2Linear model needs to be assumed.

2. Related Works

The fields of action recognition and video classification

are too broad to review completely; we focus only on the

most relevant literature.

Traditional action/video classification: There is a variety

of works in the field of video classification, with most fo-

cusing on developing more discriminative features and bet-

ter classifiers [11]. A typical video classification pipeline in

recent literatures usually relies on the state-of-the-art dense

trajectory features [35], which are local descriptors (e.g.,

HoG, HoF and MBH) computed around densely extracted

frame patch trajectories. Bag-of-words and more advanced

feature encoding strategies such as Fisher Vector [28] have

been adopted to quantize the local descriptors for classifica-

tion (normally by an SVM classifier).

Deep models (CNNs/LSTMs): More recently, driven by

the great success of Convolutional Neural Networks (CNN)

on image analysis tasks [6, 31, 32], a few works attempted

to leverage CNN models to learn feature representations for

video classification. For instance, Karparthy et al. extended

CNN models into the time domain by stacking frames [13].

To better explore the motion information, Simonyan et

al. [31] recently proposed to train two CNNs on still images

and optical flow fields separately to capture appearance and

motion information. Final predictions were generated by

averaging scores from the two corresponding CNN streams.

In order to model the temporal dynamics in videos, there are

also a few works utilizing recurrent networks like the long-

short term memory (LSTM) for recognition [3, 21, 36]. All

these works, however, focused on extracting and encoding

videos directly, using neural networks, and result in the rep-

resentations that are neither semantic nor inherently inter-

pretable. None of these works investigate or utilize object

and/or scene semantics.

CNN model visualization: Our work is also partly in-

spired by the techniques for visualization and understand-

ing of CNN networks. Zeiler et al. [39] proposed Decon-

volutional Network (DeconvNet) to approximately recon-

struct the input of each layer from the corresponding out-

put. More advanced recent visualization techniques are dis-

cussed in [30, 40]; Deep Dream3 has also been influen-

tial. We use visualization-inspired technique for discover-

ing object-video class and scene-video class relationships

from the proposed OSF network.

Semantic (Object/Scene) Context: Complex video se-

mantics like activities and events have been shown to

strongly correlate with their involved objects and scenes,

which provide strong semantic context prior for video clas-

sification [4, 18]. For example, in Figure 1, symphony per-

3http://googleresearch.blogspot.fr/2015/06/

inceptionism-going-deeper-into-neural.html
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formance often takes place in a concert hall, whilst ski-

ing commonly happens outdoors. Prest et al. [25] used a

weakly supervised method to model human actions as in-

teractions between humans and objects. Ikizler-Cinbis et

al. [9] proposed an approach for understanding human ac-

tivities by integrating multiple feature clues from objects,

scenes and people. Li et al. [16] developed a large number

of pre-trained generic object detectors named ObjectBank

to generate high-level visual representations. ActionBank

was proposed in [27] as a semantic feature for video classi-

fication. These semantic representations have largely been

explored on smaller datasets and almost exclusively as con-

text for improving supervised classification.

Perhaps the closest to ours is a more recent work of

[10], where relations between 15,000 object categories and

high-level video categories like complex events are sys-

tematically studied. The authors conclude that objects are

important for action and event recognition, and object-

action/event relations are generic. However, the relations

were discovered using relatively simple generative learning

method (sum of averaged object response vectors per action

class), and hence the obtained relations tend to be noisy. In

contrast, we learn the relations using a more advanced and

robust discriminative neural network classifier with a spe-

cial architecture tailored for the task. Discriminative nature

of the learning allows us to focus on relationships that tend

to improve classification performance. In addition, we also

look at importance of scenes.

3. Approach

Our goal is to learn a semantic model for video classi-

fication that enables effective supervised classification and,

at the same time, allows us to discover semantic representa-

tions of our classes that are useful for other (unsupervised)

tasks, like zero-shot learning or clustering. To this end, we

first introduce an Object-Scene semantic Fusion (OSF) net-

work (Sec. 3.1). OSF consists of a three-layer neural net-

work that fuses information from three CNN streams: (i) a

generic image feature stream, designed to capture low-level

features of video frames, such as texture and color, (ii) an

object stream that captures confidences among 20K object

categories it is pre-trained to detect, and (iii) a scene stream,

that similarly captures confidences among 205 scene cate-

gories it is pre-trained to detect.

Given the learned OSF model, we analyze it to dis-

cover, in Sec. 3.2, Object and Scene semantic Representa-

tion (OSR) which captures relationships (correlations) be-

tween video class labels and semantic entities (objects and

scenes). This procedure is not as trivial as it may sound,

as unlike with linear models, discovering such relations in

our non-linear fusion architecture requires optimization. Fi-

nally, we show how discovered OSR can be utilized for

zero-shot video classification (Sec. 3.3).

...... ............
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Figure 2. Object-Scene semantic Fusion (OSF) network.

Notation: Suppose we have a large-scale video dataset, D,

where each video Vi is associated with a class label zi ∈
ZTr from the training label set ZTr:

D = {(Xi, zi)}i=1,··· ,nTr
,

where nTr is the total number of training videos; each video

is represented by a set of frames: Vi = {fi,1, · · · , fi,ni
},

where ni is the total number of frames in video V i.

3.1. Object­Scene Semantic Fusion (OSF) Network

As stated above, OSF network has four components: ob-

ject stream, scene stream, generic feature stream, and a

three-layer neural network that fuses information from the

three streams. The overall structure of the network is illus-

trated in Figure 2.

Object stream (O−stream) extracts the object-related in-

formation for video classification. We use a VGG-19 CNN

model, proposed in [32], which consists of 16 convolutional

and 3 fully connected layers. VGG-19 for this stream is pre-

trained by using all ImageNet 20,574 object classes [2]. We

note that since humans can distinguish 30,000 basic object

categories [1], our 20,574-class model is a good proxy for

generic object cognition (covering roughly 2/3 of human

distinguishable objects). We use output of the last fully con-

nected layer (FC8) as the input for the fusion network; in

other words, for the j-th frame of video i, fi,j , this stream

outputs fi,j 7→ x
O
i,j ∈ R

20574.

Scene stream (S−stream) extracts the scene-related in-

formation to help video classification. Here we use VGG-

16 CNN model provided by [41]. VGG-16 consists of 13

convolutional and 3 fully connected layers. The model is

pre-trained using Places205 dataset [41] (205 scene classes

and 2.5 million images). We again use the output of the last

fully connected layer (FC8) as the input for the fusion net-

work; in other words, for the j-th frame of video i, fi,j , this

stream outputs fi,j 7→ x
S
i,j ∈ R

205.
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Figure 3. Objects with highest responses for the class horse riding;

size indicates importance. See text for discussion.

Generic feature stream (F−stream) extracts more generic

visual information that maybe directly relevant for video

class prediction (e.g., texture, color) that the other two

streams may overlook by suppressing object/scene irrele-

vant feature information. Once again we use a VGG-19

CNN model pre-trained on all of ImageNet. However,

for this stream we take features of the first (not last) fully

connected layer as input to the fusion network. In other

words, for the j-th frame of video i, fi,j , this stream out-

puts fi,j 7→ x
F
i,j ∈ R

4096. Note that this stream could easily

adopt more advanced networks (e.g., motion network) to

better account for the temporal structures in videos.

Fusion network is composed of three layers neural net-

work (two hidden layers and one output layer) designed

to fuse O−stream, S−stream and F−stream features de-

fined above. Specifically, video-level feature representation

is first generated by averaging the frames of each video for

each stream. Since we do not fine-tune the network end-

to-end, this is done explicitly; but can be equivalently im-

plemented by a pooling operation inserted between each

stream and the first layer of the fusion network. For ex-

ample, video Vi we represent as x̄
O
i =

∑ni

k=1
x
O
i,k, x̄S

i =
∑ni

k=1
x
S
i,k, x̄F

i =
∑ni

k=1
x
F
i,k.

The averaged representations x̄O
i , x̄S

i , x̄F
i are fed into a

first hidden layer of the fusion network, consisting of 250,

50, and 250 neurons respectively for each stream (550 neu-

rons total). We use fewer neurons for S−stream because it

has fewer dimensions. The output of the first hidden layer

is fused by the second (250 neurons) fully connected layer

across all streams. Then a softmax classifier layer is added

for video classification. Note that we normalize the ground

truth labels with L1 norm when a sample has multiple la-

bels. We denote f (·) as the non-linear function approxi-

mated by semantic fusion network and fz (x̄i) as the score

of video instance Vi belong to the class z. The most likely

class label ẑi of Vi is hence inferred as:

ẑi = argmaxz∈ZTr
fz (x̄i) . (1)

3.2. Object and Scene Semantic Representation

Once the OSF network is trained, the correlation be-

tween objects/scenes and video classes can be mined us-

ing the “visualization” of the network [30]. The goal is to

find from object and scene streams a pseudo video repre-
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Figure 4. The visualization of a part from the Π
O learned on

FCVID, where each entry denotes the response score between each

object and video class pair.

sentation that maximizes the neuron activity of each of the

classes. Such object/scene representation identifies the most

discriminative objects for the specified video class4.

More formally, let fz (x̄i) be the score of the class z
computed by the fusion network for video Vi. We need to

find an L2-regularized feature representation, such that the

score fz (x̄i) is maximized with respect to object or scene:

x̂
k
z = argmax

x̄
k

i

fz (x̄i)− λ
∥

∥x̄
k
i

∥

∥

2
(2)

where λ is the regularization parameter and k ∈ {O,S}.

The locally-optimal representation x̄
k
i can be obtained by

back-propagation with randomly initialized x̄i. We set

λ = 1e−3, learning rate to 0.8 and also fix the maximum

iterations to 1000 to maximize the classification score of

each class, aiming to find the representative objects/scenes

associated with those classes. This way we can obtain

object-video class / scene-video class semantic representa-

tion (OSR) matrices:

Πk =
[

(

x̂
k
z

)T
]

z
; k ∈ {O,S} . (3)

Interpretability of OSR: Given the object scene represen-

tation matrix, we try to answer the following question: what

4Note that the method in Eq.(2) is also applicable to generic feature

stream which, however, has no semantic meaning and hence is less useful

as confirmed in Sec 4.4 (Table 3).
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are intrinsic semantic properties of a video concept? Fig-

ure 3 presents a depiction of the objects with the highest

value for the category horse riding, including Piaffe, Ara-

bian Horse and horseback Rider. It is appealing that these

objects are semantically meaningful for horse riding and

can help discriminate the class. Interestingly, we also find

horse riding is related to bassFiddle, which is largely due to

similar visual (e.g., shape and color) appearance.

To further validate the effectiveness of the learned rep-

resentation, we illustrate part of the ΠO matrix in Figure 4,

where each entry indicates the response score between the

object and the video class. Objects with high scores tend to

be semantically meaningful for corresponding classes.

3.3. Zero­shot Learning via OSR Correlations

One of the perhaps most interesting applications of the

discovered OSR correlation matrices Π =
[

ΠO,ΠS
]

, com-

puted using Eq.(2), is zero-shot learning. Different from the

the supervised learning, this task is defined as transferring

knowledge from known (source) classes to a disjoint set of

unknown (target) classes in order to improve recognition.

Specifically, zero-shot learning attempts to do this without

having any labeled instances of the unknown classes avail-

able. We denote ZTe as the label set of testing instances,

under assumption that ZTr ∩ ZTe = ∅.

One of the key assumptions we make for zero-shot

recognition is that object-scene semantic space is a good

proxy for measuring semantic distance of video content. In

other words, video samples that contain similar objects and

scenes are likely to belong to the same video class. In this

sense, if we are able to represent a video sample by a vec-

tor containing probability (or confidences) of it containing

objects and scene we can do classification by a simple near-

est neighbor approach; comparing this object-scene vector

representation to video class prototypes represented in the

same object-scene semantic space. Matrix Π implicitly de-

fines prototypes for all training video classes. For testing

zero-shot classes, however, we have no data and hence can-

not learn prototypes directly, but can synthesize them using

some knowledge of similarity between zero-shot and train-

ing video categories.

Testing-class Prototype: The prototype of testing classes

can be defined using the OSR matrix,

Πz̃ =

|ZTr|
∑

z=1

sim (z̃, z) ·Πz (4)

where z ∈ ZTr and z̃ ∈ ZTe (remember ZTr

⋂

ZTe =
∅); sim (z̃, z) is the semantic similarity between the testing

class z̃ and the training class z; Πz is the the column of Π
corresponding to class z. Similarity function can be defined

manually [38], using WordNet [26], or by semantic word

vectors [19, 23]. Here we use word2vec [19] to define the

similarity function sim (z̃, z) between the known (source)

and unknown (target) classes.

Zero-shot Recognition: Given the synthesized testing pro-

totypes and the representation of the test sample g(V ), the

class label can be inferred using a simple nearest neighbor

lookup:

ẑ = argmaxz̃∈ZTe
cos (g (V ) ,Πz̃) (5)

cos (·) indicates the cosine similarity, which takes scale into

account and works better than a dot product (as we illustrate

in Table 3). The only missing part we have not discussed is

how to obtain representation of the test video g(V ).
The simplest approach is to define g(V ) using the

O−stream and S−stream directly. This approach would

correspond to g(V ) =
[

x̄
O, x̄S

]

. However, as we show

in the experiments this tends to produce poor performance.

One of the reasons is that contextual information among all

three streams and the fusion network are not utilized and

hence the individual predictions obtained using the object

and scene streams tend to be noisier. The alternative which

works much better in practice, is to define g(V ) with re-

spect to the training class prototypes, by forming a “pseudo-

instance” prototype. This approach is inspired by ConSE

[22] and we describe it in details below.

Probability Calibration: We first employ Platt Scal-

ing [24] to calibrate the output of the fusion network f (·)
into a probability distribution p (·), defined for each of the

training classes. Hence the probability of video Vi belong-

ing to a class label z ∈ ZTr is denoted p (z|x̄i), such that

the sum across all training classes is
∑|ZTr|

z=1
p (z|x̄i) = 1.

Pseudo-Instance Prototype: For a testing instance, we

synthesize a “pseudo” prototypes as in ConSE [22]. We use

zt to denote the tth most likely training label for video V
according to p (·) function; and p (zt|x̄) is the probablity of

video V belonging to training label zt, which is also the tth

largest probability for the posterior of video V over all train-

ing classes. Thus given the top T predictions, the pseudo

prototype of the testing instance V can be synthesized by

using our OSR matrix Π, formally we have

g(V ) =
1

∆

T
∑

t=1

p (zt|x̄) ·Πzt (6)

where ∆ =
∑T

t=1
p (zt|x̄) is a normalization factor; and

Πzt indicates the zt-th column of Π.

4. Experiment

We conduct a number of experiments to explore the ben-

efits of our semantic formulation. We start by showing that

our object-scene semantic fusion (OSF) network is effective

for supervised action and video categorization (Sec. 4.2).
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We then show effectiveness of object and scene semantic

representation (OSR) that OSF allows us to discover from

data. Specifically, we show that OSR is effective for (i)

computing semantic distance among video classes by us-

ing it to discover class group structure through clustering

(Sec. 4.3) and (ii) that it can be utilized for effective zero-

shot classification (Sec. 4.4) .

4.1. Experimental Setup

Datasets: We adopt two challenging large-scale video

benchmark datasets to evaluate our approach.

ActivityNet [7] is a recently released large-scale video

dataset for human activity recognition and understanding.

ActivityNet consists of 27, 801 video clips annotated into

203 activity classes, totaling 849 hours of video. Compared

with existing action recognition benchmarks (e.g., UCF101

[33] or HMDB51 [14]), ActivityNet is more challenging,

since it contains fine-grained action categories that require

subtle details to differentiate among (e.g., drinking beer and

drinking coffee). ActivityNet provides both trimmed and

untrimmed videos for its classes. Trimmed videos con-

sist of hand annotated segments that contain frames cor-

responding to given actions; untrimmed videos have much

longer videos which contain frames irrelevant to the dom-

inant action or multiple actions. We use the more chal-

lenging untrimmed setting for our experiments. ActivityNet

consists of training, validation and test splits, however, test

split is not made available by the authors. To this end we

use validation split as our test set.

Fudan-Columbia Video Dataset (FCVID) [12] contains

91,223 web videos annotated manually into 239 categories.

Categories cover a wide range of topics (not only activities),

such as social events (e.g., tailgate party), procedural events

(e.g., making cake), object appearances (e.g., panda) and

scenic videos (e.g., beach). We use standard split of 45,611
videos for training and 45,612 videos for testing.

Evaluation Metrics: To evaluate our OSF network for su-

pervised classification, we adopt the standard training and

testing splits and compute average precision for each class

as suggested in [7, 12]. Mean average precision (mAP) is

used to measure the overall performance on both datasets.

For zero-shot learning, since there is no off-the-shelf splits

defined on these datasets, we split the video datasets into

source and target categories. More precisely, we split Ac-

tivityNet into 140 source and 63 target classes; FCVID into

160 source and 79 target classes. Mean accuracy (the mean

of the diagonal of the confusion matrix) is used to measure

the zero-shot learning performance.

Word2Vec Embedding: To generate semantic word repre-

sentations, we compute 1,000-dimensional embedding vec-

tor by training word2vec [19] on a large text corpus, in-

cluding UMBC WebBase (3 billion words) and the latest

Wikipedia articles (3 billion words).

4.2. OSF Network for Supervised Recognition

In this section we focus on exploring the effectiveness of

our object-scene fusion network.

Baselines: We compare with a number of alternative meth-

ods to combine multiple features in supervised classifica-

tion. Among them, early and late fusions are two straight-

forward ways to integrate multiple features and are two vari-

ants of our model.

1. Early Fusion-NN, concatenates all three streams into

a long vector and then uses it as the input to train a

neural network for categorization;

2. Late Fusion-NN, trains a neural network classifier us-

ing each of three streams independently and then the

outputs from all the networks are averaged to obtain

the final prediction scores;

3. Early Fusion-SVM, utilizes the χ2-kernel SVM for

classification, where kernel matrices are first computed

for each stream and then averaged for classification;

4. Late Fusion-SVM, learns a χ2-kernel SVM classifier

for each stream and then combines prediction results;

5. SVM-MKL [20], combines the multiple stream features

using multiple kernel learning with χ2-kernel.

We note that most of these baselines are very strong as they

are using exactly the same features as our fusion network

and complex state-of-the-art non-linear classifiers.

Results: Table 1 summarizes the comparisons of our ap-

proach and alternative methods. As can be seen from the ta-

ble, our OSF network achieves 56.8% and 76.5% mAP on

ActivityNet and FCVID respectively, outperforming other

fusion baselines by clear margins. For early fusion, direct

concatenation of features is the most straightforward way of

combining representations; this, however, suffers from high

dimensionality (> 25k dimensions) which leads to overfit-

ting. Late fusion suffers from the “heterogeneous” classi-

fication scores coming from each stream; each stream has

varying discriminative capacity and (may) results in incom-

parable classification scores. In contrast to the alternative

fusion methods, our OSF network can implicitly explore the

correlations among the streams to derive a fused represen-

tation, which is more semantically discriminative for recog-

nition. In addition, compared with the state-of-the-art pub-

lished results 42.5% [12] and 73.0% [7], our OSF frame-

work achieves 3.5% and 14.3% (percentage points) im-

provement on FCVID and ActivityNet respectively. Note,

results in [12] and [7] are obtained by combining multiple

state-of-the-art handcrafted visual features (e.g., improved

dense trajectories) and deep features. Our network achieves

superior performance by jointly modeling semantic repre-

sentations (objects and scenes) with low-level deep features.

Further improvement can be obtained by considering mo-

tion features, which we currently omit.
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ActivityNet FCVID

Early Fusion-NN 55.9 75.2
Late Fusion-NN 54.4 73.3

Early Fusion-SVM 55.8 75.5
Late Fusion-SVM 54.6 73.4
SVM-MKL [20] 56.3 74.9

Heilbron et al. [7] 42.5 –

Jiang et al. [12] – 73.0

OSF Network 56.8 76.5
Table 1. Comparisons with alternative baselines on ActivityNet

and FCVID datasets.

To further evaluate the contribution of each stream in our

network, we break down our network with different com-

binations of the three streams. The results are reported in

Table 2. We adopt a 3-layer NN classifier for each single

stream (similar in structure to our fusion network); and a

variant network with two streams. We can see that the per-

formance of F − stream > O − stream > S − stream,

which indicates that though the high-level semantic infor-

mation expressed in objects and scene is important, the

generic feature stream (F − stream) still has significant

low-level discriminative information which is very useful

for classification. In addition, since scene detectors are usu-

ally prone to noise, especially in complex long videos with

cluttered background, the performance of S − stream is

lower. Notice that S − stream achieves significantly better

results on FCVID than ActivityNet, since categories in Ac-

tivityNet are all actions while FCVID contains more generic

video classes, where scene clues are more important. In ad-

dition, the three streams are complementary. Combining

arbitrary two streams offers better performance than single

stream. Our OSF network result is further improved perfor-

mance over pair-wise combinations.

4.3. Object and Scene Semantic Representation

We now investigate the object and scene semantic repre-

sentation derived from the trained OSF network on FCVID.

For each class of interest, we obtain a pseudo video rep-

resentation that maximizes the neuron activity, identifying

the most discriminative objects for the specified video class.

Since related classes share certain objects and scenes, we

expect their pseudo representations to be similar. To val-

idate the effectiveness of the derived video representation,

we compute the cosine similarity between each pair of video

classes using the pseudo representations and then obtain the

similarity matrix of all the categories. We perform Normal-

ized Cut method to group and order the categories of the

similarity matrix for visualization in Figure 5.

As we can see from the figure, the pseudo video repre-

sentation can indeed discover some group structures of the

video classes. We also compare with the groups discovered

using word vectors (blue dashed lines). Comparing all rows

ActivityNet FCVID

F − stream 47.4 67.7
O − stream 44.8 55.5
S − stream 18.8 41.3

F − stream+O − stream 56.2 75.6
F − stream+ S − stream 52.6 72.3
O − stream+ S − stream 55.4 72.8

OSF Network 56.8 76.5
Table 2. Results of variants of our network. “+” denotes two

streams used in network fusion.

in the figure, the group structure generated by the object

and scene semantic representations can identify more fine-

grained categories, while similarity computed by word vec-

tors seems to group too many classes together. Since word

vectors are trained on large text corpus, they fail to distin-

guish categories with similar class names that are visually

and semantically different (e.g., make juice and make paper

plane). In the first two groups of the second row, clearly

the scene information played an important role to separate

classes baseball, sportsTrack and soccer Professional (out-

door sports) into a separate group from classes of barbell

workout, fencing, and pull ups (indoor sports). This result

validates the superiority of our object and scene representa-

tion. Interestingly, our grouping results are even better than

the manually labeled hierarchy provided by the dataset. For

example, our method can group the following classes to-

gether: rafting, fishing, mountain, since these classes have

similar objects appearing (e.g., mountain, raft and water)

and highly coherent scene information (e.g., outdoor, sky).

Nevertheless, manual defined ontology categorizes them as

extreme sports, sceneries and leisure sports respectively.

4.4. Zero­shot Learning

Baselines: We compare the following methods for large-

scale zero-shot recognition:

1. DAP-word. Support vector regressors are used to

learn to regress from concatenated features from three

streams to each dimension of 1000-d word vector rep-

resenting a class. For zero-shot learning, the predicted

word vectors of testing instances are matched against

the 1000-d word vector prototypes of unknown classes,

obtained using word2vec, with nearest neighbor ap-

proach. This is a generalization of DAP [15].

2. ConSE [22] uses the same p (·) function to predict

the posterior of one testing instance belonging to each

known class. Eq.(6) is utilized to synthesize the

pseudo-instance prototypes from known classes by re-

placing the semantic representations (Πzt ) with 1000-

d word vectors for each class; the testing class proto-

types, Eq.(5), are also replaced by 1000-d word vec-

tors.
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makeJuice makeSalad dinnerAtHome makeBookmark makePaperPlane makePencilCase painting

eyeMakeup faceMassage hairDesign accordionPerf. guitarPerf. singOnStage mountain

bird butter�y groupDance fashionShow cleanCarpet cleanWindows �shing

baseball sportsTrack soccerProfessional barbellWorkout fencing pullUps rafting

Figure 5. Left: Similarity matrix of categories in FCVID computed with the derived OSR, where the red boxes indicate the automatically

generated category groups. Right: Visual examples of the groups indicated on the similarity matrix, with the red arrows indicating the

correspondence of the similarity matrix with the class examples. Groups we discovered are separated by black lines; groups discovered by

word vectors are circled by blue dashed lines.

3. ConSE-pseudo is a variant of ConSE which is more

comparable to our method. The main steps of ConSE-

pseudo are the same as ours, while the difference is that

ConSE-pseudo replaces our semantic representation of

known and unknown classes with 1000-d word vectors

for zero-shot recognition in both Eq.(6) and Eq.(5).

4. Nearest neighbor (NN): uses Eq.(4) to synthe-

size the prototypes of testing classes and ẑi =
argmaxz̃∈ZTe

cos
([

x̄
O
i , x̄

S
i

]

,Πz̃

)

to infer the class

label for Vi. This alternative is discussed in Sec. 3.3.

We compare these methods to our proposed model (Ours)

that uses OSR and the two variants discussed in Section 3.3.

Results: The zero-shot learning results are summarized

in Table 3. Our method is better than all the other base-

lines on both datasets. We can see that using the semantic

representation derived by Eq.(2) can offer better zero-shot

recognition performance. This is validated by two obser-

vations: (1) Our results improve by 1.4% and 1.3% per-

centage points (or 13% and 12% respectively) over ConSE,

which is a state-of-the-art approach for zero-shot learning.

The improvements are largely due to our semantic represen-

tation obtained by mining visual video class-object/video

class-scene correlations, which therefore is more semanti-

cally discriminative than word vectors trained with text cor-

pus. (2) This improvement does not come from the way

we generate testing-class prototype by Eq.(5): our results

are 3.5% and 2.6% higher than those of ConSE-pseudo;

the only difference between our method and ConSE-pseudo

is that ConSE-pseudo replaces our semantic representation

with semantic word vectors. (3) The results of all meth-

ods are better than those of NN. This is in part due to the

contextual information shared across streams, which can be

ActivityNet FCVID

Chance 1.6 1.3
DAP-word [15] 11.3 9.0

ConSE [22] 10.7 10.6
ConSE-pseudo 8.6 9.3

NN 8.5 8.8

Ours (Dot Product) 11.8 11.4
Ours (+F-Stream) 11.6 11.8

Ours 12.1 11.9
Table 3. Zero-shot Learning Accuracy(%).

discovered in the OSF network, is not fully utilized.

5. Conclusion

We present a novel Object-Scene semantic Fusion (OSF)

framework for large-scale video understanding, which has

a number of appealing properties. Our fusion network com-

bines three streams (i.e., object, scene and generic feature)

of information using a three-layer neural network to model

object and scene dependencies. This results in supervised

video classification improvements in two large-scale bench-

mark datasets. Further, by examining and back propagating

information through the fusion layers, semantic relation-

ships (correlations) between video classes (or activities) and

objects/scenes can be identified. These relationships can, in

turn, be utilized as semantic representation for the video

classes themselves. We empirically evaluate the learned

representations in the task of zero-shot learning and clus-

tering, and the results corroborate the effectiveness of the

discovered relationships.
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