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Abstract

The way people look in terms of facial attributes (ethnic-

ity, hair color, facial hair, etc.) and the clothes or acces-

sories they wear (sunglasses, hat, hoodies, etc.) is highly

dependent on geo-location and weather condition, respec-

tively. This work explores, for the first time, the use of this

contextual information, as people with wearable cameras

walk across different neighborhoods of a city, in order to

learn a rich feature representation for facial attribute clas-

sification, without the costly manual annotation required by

previous methods. By tracking the faces of casual walkers

on more than 40 hours of egocentric video, we are able to

cover tens of thousands of different identities and automat-

ically extract nearly 5 million pairs of images connected by

or from different face tracks, along with their weather and

location context, under pose and lighting variations. These

image pairs are then fed into a deep network that preserves

similarity of images connected by the same track, in order

to capture identity-related attribute features, and optimizes

for location and weather prediction to capture additional

facial attribute features. Finally, the network is fine-tuned

with manually annotated samples. We perform an exten-

sive experimental analysis on wearable data and two stan-

dard benchmark datasets based on web images (LFWA and

CelebA). Our method outperforms by a large margin a net-

work trained from scratch. Moreover, even without using

manually annotated identity labels for pre-training as in

previous methods, our approach achieves results that are

better than the state of the art.

1. Introduction

Describing people based on attributes, such as gender,

age, hair style and clothing style, is an important problem

for many applications, including suspect search based on

eyewitness descriptions [11], fashion analytics [30, 18, 5],

face retrieval and verification [27, 2, 31], and person re-

identification [22, 38]. In this work, we address the problem

of learning rich visual representations (i.e., “good features”)

for modeling person attributes without manual labels, with

a focus on facial attribute prediction.

The state of the art in facial attribute classification, as

demonstrated by standard evaluation benchmarks [31], has

been advanced by methods that use deep convolutional neu-

ral networks (CNNs) pre-trained on massive amounts of im-

ages that have been manually annotated with identity labels.

In fact, it has been shown that identity-related attributes

such as gender, hair color, and age are implicitly encoded

in nodes of CNNs that are trained for identity discrimina-

tion [31, 42]. Despite the excellent performance, the fea-

ture representation learned by these methods requires costly

manual annotation of hundreds of thousands or even mil-

lions of images in the pre-training stage. Moreover, the pre-

trained network fails to encode attributes that are not related

to identity, such as eyewear and different types of hats.

In this paper, we address these issues by taking a dif-

ferent approach. Instead of relying on manually annotated

images from the web, we learn a discriminative facial at-

tribute representation from egocentric videos captured by

a person walking across different neighborhoods of a city,

while leveraging discretized geo-location and weather in-

formation readily available in wearable devices as a free

source of supervision. The motivation for using location

and weather data to construct facial attribute representations

is illustrated in Figure 1. In New York City, for example,

the likelihood of meeting an Afro-American casual walker

in certain regions of Harlem is more than 90%. The same

is true for Hispanics in Washington Heights, East Asians in

Flushing, South Asians in India Square, East Europeans in

Brighton Beach, and so on. These groups are characterized

by their unique facial attributes (hair color, hair length, fa-

cial and eyes shape, etc.). Moreover, the weather conditions

influence the facial appearance changes due to lighting vari-

ations and also dictate the clothing and accessories people

wear. As an example, on sunny and warm days, the like-

lihood that a person will wear sunglasses, baseball hats, t-

shirts, and shorts increases, whereas the presence of scarfs,

beanies, and jackets is much more frequent in cold days.
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Figure 1: Top: Casual walkers as imaged by people with wearable cameras walking across different neighborhoods of New

York City. Due to changes in demographics, the expected appearance of facial attributes is highly dependent on location.

Moreover, the weather conditions change facial appearance due to different lighting, and influence the choice of outfit and

the use of accessories such as sunglasses, hats, and scarfs. Bottom: Face images obtained via face detection and landmark

tracking. Note the large variations in lighting, expression, face pose, ethnicities, and accessories. We exploit this information

to build rich visual feature representations for facial attribute classification.

Our goal is to leverage data about location and weather as

weak labels to construct rich facial attribute representations.

Overview of our Approach. Our proposed feature

learning method relies on processing identity-unlabeled

data and learning feature embeddings from a few supervised

tasks. We first track the faces of casual walkers using fa-

cial landmark tracking in more than 40 hours of egocentric

video, obtaining face images under a variety of conditions,

as shown in Figure 1. These face images are then arranged

into pairs, where information from tracking is used to label

the pairs as belonging to the same individual or not. Nearly

5 million pairs are generated and fed into a network that en-

codes identity-related features through a Siamese structure

with contrastive loss, while further embedding contextual

features based on location and weather prediction. Finally,

the obtained feature representation is fine-tuned with man-

ual labels for the task of facial attribute classification.

Generally, our proposed feature representation learning

for person attribute modeling has the following advantages

over previous methods: First, it does not require costly man-

ual annotation in the pre-training stage. Second, by leverag-

ing location and weather information, it encodes facial fea-

tures beyond identity, in contrast to methods pre-trained on

large image repositories with identity labels [2, 31]. Third,

it leverages the rich appearance of faces from a large num-

ber of casual walkers at different locations and lighting con-

ditions, which may not be captured by images available on

the web.

Our main contributions can be summarized as follows:

1. We introduce a new Ego-Humans dataset containing

more than 40 hours of egocentric videos captured by people

with wearable cameras walking across different regions of

New York City. The data covers tens of thousands of casual

walkers and includes both the weather and location context

associated with the videos.

2. To the best of our knowledge, this is the first time a

“walk and learn” approach that leverages discretized geo-

location and weather information has been proposed for

constructing deep visual representations for person attribute

modeling. Our method seamlessly embeds this contextual

information in a Siamese network that measures similarity

of face pairs automatically extracted from tracks.

3. We show that our self-supervised approach can match

or exceed the performance of state-of-the-art methods that

rely on supervised pre-training based on hundreds of thou-

sands or millions of annotated images with identity labels.

In addition, we show that facial attributes are implicitly en-

coded in our network nodes as we optimize for location,

weather, and face similarity prediction.

2. Related Work

Egocentric Vision. First-person vision methods have re-

ceived renewed attention by the computer vision commu-

nity [26, 28, 35]. Current methods and datasets have fo-

cused on problems such as video summarization [26, 45],
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activity recognition [10, 52], and social interaction [9]. In

contrast, our work is focused on the problem of looking at

people and modeling facial attributes from a first-person vi-

sion perspective. Compared to existing egocentric datasets

[3], our Ego-Humans dataset is the first of its kind; it deals

with a different task, it is larger in scale, and it also has as-

sociated geo-location and weather information, which could

be relevant for many other tasks.

Facial Attribute Modeling. Kumar et al. [21] pro-

posed a method based on describable facial attributes to

assist in face verification and attribute-based face search.

Siddiquie et al. [39] and Luo et al. [32] exploited the

inter-dependencies of facial attributes to improve classifica-

tion accuracy. Chen et al. [4] built a feature representation

that relies on discrimination of images based on first names,

and showed improved results in age and gender classifica-

tion. Berg and Belhumeur [2] introduced part-based one-

vs.-one features (POOFs) and showed that features con-

structed based on identity discrimination are helpful for fa-

cial feature classification. Li et al. [27] proposed a method

that jointly learns discriminative binary codes and attribute

prediction for face retrieval.

More recently, deep convolutional neural networks have

advanced the state of the art in facial attribute classifica-

tion. N. Zhang et al. [55] proposed pose-aligned networks

(PANDA) for deep attribute modeling. Z. Zhang et al. [56]

proposed a deep model based on facial attributes to per-

form pairwise face reasoning for social relation prediction.

Luo et al. [31] achieved state-of-the-art performance on the

LFWA and CelebA datasets using a network pre-trained on

massive identity labels. Our work, instead, achieves the

same or superior performance without requiring manually

annotated identity labels for the pre-training step.

Geo-Tagged Image Analysis. Many methods have been

proposed for geo-tagged image analysis. In particular, im-

age geo-localization, i.e., the problem of predicting the lo-

cation of a query image, has received increased attention in

the past few years [13, 12, 29, 25]. Other related research

includes discovering architectural elements and recogniz-

ing city attributes from large geo-tagged image repositories

[8, 58] and using location context to improve image classi-

fication [44]. More closely related to our work, Islam et al.

[50] investigated the geo-dependence of facial features and

attributes; however they used off-the-shelf facial attribute

classifiers for this analysis, whereas the goal of our work is

to build feature representations so as to improve the accu-

racy of facial attribute classifiers.

Representation Learning. Most high-performance

computer vision methods based on deep learning rely on

visual representations that are learned based on supervised

pre-training, for example, using networks trained on mil-

lions of annotated examples such as the ImageNet dataset

for general object classification [6, 19], or relying on mas-

sive amounts of identity labels for facial analysis tasks

[31, 42]. Our work, instead, is focused on building rich vi-

sual representations for person attribute classification with-

out using manual annotations in the pre-training step.

There is a long history of methods for unsupervised

learning of visual representations based on deep learning

[14, 54, 57]. When large collections of unlabeled still im-

ages are available, auto-encoders or methods that optimize

for reconstruction of the data are popular solutions to learn

features without manual labeling [23, 57, 46]. Doersch et al.

[7] proposed learning supervised “pretext” tasks between

patches within an image as an embedding for unsupervised

object discovery. These approaches, however, have not yet

proven effective in matching the performance of supervised

pre-training methods.

When video data is available, additional regularization

can be imposed by enforcing temporal coherence [33, 47]

or through the so called slow feature analysis [49]. More

recently, Srivastava et al. [40] used multilayer Long Short

Term Memory (LSTM) networks to learn representations of

video sequences, combining auto-encoders and prediction

of future video frames.

Our work is related to other methods that learn visual

representations from videos captured by wearable cameras

or vehicle-mounted cameras [16, 1], where awareness of

egomotion can be used as a supervisory signal for feature

learning. In contrast to those methods, however, we lever-

age the geo-location and weather data that are readily avail-

able in wearable sensors as a source of free supervisory sig-

nal to learn rich visual representations which are suitable to

facial attribute classification.

3. Ego-Humans Dataset

Data Collection. The Ego-Humans dataset was col-

lected in New York City over a period of two months, from

August 28 to October 26 (during the summer and fall sea-

sons). The data consists of videos captured by three peo-

ple with chest-mounted cameras, walking across different

neighborhoods of the city. Two camera models were used: a

GoPro camera (higher-quality) and a Vievu camera (lower-

quality), both with 1080p resolution, capturing data at 30

frames per second. Within the two-month period, 25 days

were selected for data collection, covering different regions

of Manhattan and nearby areas, including the Financial

District, Times Square, Central Park, Harlem, Little Italy,

Brooklyn Bridge, Chinatown, Flushing, and others. In each

day, one or more hours of video were recorded, at different

times of the day and in different weather conditions. In to-

tal, we recorded more than 40 hours of egocentric videos,

split into chunks of 15 minutes. In association with these

videos, we recorded location using a GPS sensor and de-

tailed weather information, such as temperature, precipita-

tion, and weather condition, using an open weather API that
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Figure 2: Grouping of GPS coordinates based on an ethnic-

ity map defined by census data (best viewed in color).

retrieves this information based on geographic coordinates.

Discretization of Contextual Data. Rather than rely-

ing on fine-grained GPS coordinates, our learning algorithm

considers a coarse set of locations as class labels. More

specifically, we cluster GPS coordinates according to pub-

lished census/ethnicity data 1. In particular, we consider

four ethnical groups: White, Black, Asian, and Indian. Fig-

ure 2 shows an ethnicity map segmented based on census

data, where each cluster has its own peculiar predominance

of facial attributes. We are currently expanding this set (in-

cluding Hispanics, for example) as we capture more data in

other locations. Regarding weather, our data includes a vari-

ety of temperatures and conditions, but for training we have

used two classes: sunny/hot and cloudy/cold. We note that

other partitions of our data could be used for other tasks. As

an example, for clothing attributes, GPS clustering based on

socio-economic factors could be relevant, as well as finer-

grained weather conditions and temperatures.

In addition to extracting the weather and location labels,

it is also important to generate face pairs (similar and dis-

similar) for encoding identity features, which are helpful

for discriminating several facial attributes. This procedure

consists of two steps: 1) tracking casual walkers via face de-

tection and landmark tracking and 2) image pair selection.

Tracking Casual Walkers. We used the OpenCV

frontal face detector and facial landmark tracking based on

the supervised descent method (SDM) [51] to track casual

walkers in the videos. The detector was tuned to output only

high-confidence detections, with virtually no false alarms,

at the expense of more false negatives. We used the in-

traface implementation of the SDM landmark tracking 2,

which works remarkably well, greatly expanding the set of

captured face poses, lighting, and expressions as illustrated

in Figure 1, without drifting. In total, we collected 15,000

face tracks, for a total of 160,000 face images.

Selecting Informative Pairwise Constrains: Given the

face images extracted by face detection and tracking, we

1http://projects.nytimes.com/census/2010/explorer
2 http://www.humansensing.cs.cmu.edu/intraface/

Table 1: Statistics of the Ego-Humans Dataset.

Collection period 08/28 – 10/26

No. of days 25

Video footage 4̃0 hours

Contextual info GPS and Weather Data

No. of face tracks 15,000

No. of face images 160,000

No. of generated face pairs 4.9 million

consider the following pairwise constraints:

• Temporal information: two faces connected by the

same track can be assumed to belong to the same per-

son. Conversely, two faces detected at the same video

frame at different locations do not belong to the same

person.

• Geo-location: two faces captured from totally differ-

ent geographic areas are assumed to be from different

people.

Based on these constraints, we generate nearly 5 million

face pairs, along with their same/not same labels. As de-

tailed in the next section, preserving similarity of face pairs

connected by the same track improves robustness to light-

ing and pose variation, and learning features to discrimi-

nate different individuals is important for the final facial at-

tribute classification task. Table 1 summarizes the informa-

tion about our data.

4. Facial Attribute Representation Learning

In the previous section, we introduced our unique Ego-

Humans dataset. Next, we describe how we use this data

to build a rich visual representation for facial attribute clas-

sification, based on a deep network that encodes features

related to facial similarity, as well as weather and location

information, without requiring manual annotations in the

pre-training stage.

4.1. Learning Objective

Our learning framework builds upon the millions of face

pairs automatically generated based on face detection and

landmark tracking as described in the previous section,

along with weather and location information. Our goal

is to learn good features for facial attribute classification

by leveraging this data. Specifically, given a face image

xi ∈ X in the original pixel space, our goal is to obtain its

associated facial representation ri ∈ RN, so that a facial

attribute classifier can be constructed on top of ri (e.g., via

network fine-tuning with a small set of manual labels).

In our learning algorithm, we have a training set U of

Nu face pairs, U = {(xi,xj); yi,j}, where yi,j ∈ {1,−1}
indicates whether (xi,xj) are images of the same person or

not. In addition, we also have another two training sets Lw
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Figure 3: (a) Overview of the proposed network for facial attribute learning. (b) The base deep architecture model. (c) The

network for location/weather prediction

of Nw images, Lw = {xk; ck}
Nw

k=1, where ck ∈ {1, ..., Cw}

indicates the label of weather; and Lg = {xl; cl}
Ng

g=1, where

cl ∈ {1, ..., Cg} indicates the label of geo-location. We

use discretized values for weather and location labels as de-

scribed in the previous section.

The learned feature ri should capture identity-related at-

tributes (embedding in U ) and also preserve the high-level

factors in Lw and Lg . Towards this goal, the deep network

is initially trained over U by minimizing the verification

loss de(·) (to be described next) for face verification using

a Siamese network structure. To learn high-level features

from Lw and Lg , we train weather and location networks

independently by minimizing their own softmax loss func-

tions. The two contextual networks are initialized by the

weights from the verification-trained model on the bottom

layers and fine-tuned with individual contextual labels. The

feature ri is the concatenation of the learned feature vectors

of the top layer from each network and is further applied to

train the facial attribute model.

4.2. Deep Network Structure

To learn the embedding in U we design a Siamese net-

work. A Siamese network consists of two base networks

which share the same parameters. The Siamese structure is

depicted in Figure 3(a). For our experiments, we take im-

ages with a size of 90×90×3 as input. The size of the face

is constrained by the image quality and the resolution from

the videos. The base network uses the GoogLeNet style ar-

chitecture in [37]. This deep architecture contains two con-

volutional layers and six layers of inception modules [43]

as shown in Figure 3(b). Due to the small input size, our

architecture removes 5 × 5 filters from the inception mod-

els from layer inception 4a to inception 4d. The network

contains around 4 million parameters. In the Siamese net-

work, we connect the deep architecture with three inception

modules and one fully connected layer.

The weather and location models share the same base ar-

chitecture as the Siamese network, but do not share param-

eters at the top layers. In particular, as illustrated in Figure

3(c), we feed the fully-connected layer with inception mod-

ules 4c and 4d. This allows us to capture more localized

features in the weather and location models, while encoding

more global similarity in the identity verification model. In

the three models (identity verification, weather, and loca-

tion), the output feature vectors of the top fully connected

layer are all 1024-dimensional vectors and are further con-

catenated to form the final facial attribute feature represen-

tation. We implemented the network using the Caffe deep

learning toolbox [17]. The complete network structure is

shown in Figure 3(a).

Loss Function: The Siamese network used to gener-

ate identity-related attribute features uses contrastive loss

to preserve visual similarity of faces connected by the same

track and dissimilarity to other tracks. The contrastive loss

de(·) is defined as:

de(xi,xj, yi,j) = ✶(yi,j = 1)d(xi,xj) + (1)

✶(yi,j = −1)max(δ − d(xi,xj), 0)
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Figure 4: Example of annotated wearable data with pre-

dicted attributes
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Table 2: Attribute prediction results of training the base net

from scratch and with models after pre-training based on

identity verification using the Ego-Humans dataset and the

CASIA dataset.

where ✶(·) is the indicator function. This contrastive loss

penalizes the distance between xi and xj in positive mode,

and pushes apart pairs in negative mode up to a minimum

margin distance specified by the constant δ. We use the l2
norm for the distance measure. The parameters of the net-

work are updated using stochastic gradient descent (SGD)

[48] by standard error back-propagation [24, 36]. The

weather and location prediction models use the softmax loss

as mentioned earlier.

Fine-Tuning for Attribute Learning. After we obtain

our pre-trained model based on the optimization described

previously, the next step is to use standard fine-tuning with

images manually labeled with facial attribute labels. Addi-

tional output layers are added for fine-tuning and the cross-

entropy loss is used for attribute classification.

5. Experiments

5.1. Ablation Studies on Wearable Data

In this section, we first analyze the effectiveness of each

component of our network on our wearable dataset. We

have manually annotated 2714 images from 25 egocentric

videos randomly selected from the data described in Sec-

tion 3. The faces in this dataset have large variations in

pose and resolution. Each annotated image contains seven-

Figure 5: Results of various baseline methods on the an-

notated wearable dataset. The embedding of location and

weather net features help boost the performance, especially

on ethnicity and non-identity related attributes.

teen facial attributes covering global attributes (e.g., gender,

ethnicity, age) and local features (e.g., eyewear, hair color,

hat). All attributes are further categorized into binary class

tasks. For this dataset, we randomly select 80% of the data

as the training set and keep the rest for testing.

Analysis of the Verification Model. We first consider

our base network (without the location and weather mod-

els). We evaluate the performance of training (fine-tuning)

this network with the few available manual labeled exam-

ples, considering the following cases:

1) training from scratch: The network is initialized with

random weights and the global learning rate is set as 0.001.

2) id(Ego-Humans): Training with our pre-trained model

based on identity verification with 5M image pairs automat-

ically extracted from our Ego-Humans dataset. After pre-

initializing the network with the weights learned from the

verification models, we set the fine-tuning global learning

rate with 0.0001, but with a learning rate in the top two lay-

ers of 10 times the global learning rate.

Both cases run through the whole wearable training data

with 100 epochs in attribute learning. The results in Table 2

demonstrate that the pre-trained model outperforms train-

ing from scratch by a large margin. This is not surprising,

given the relatively small training size of the dataset and the

large variations in pose and lighting. This demonstrates the

richness of our verification model obtained from unlabeled

egocentric videos.

Analysis of the Geo-Location and Weather Models.

Now we evaluate the benefit of features learned from geo-

location and weather models. We perform experiments on

the annotated wearable dataset by fine-tuning the network,

considering the identity verification model only (id-verify),

the inclusion of geo-location (id-verify + geo-loc), weather

(id-verify + weather) and geo-location and weather models

concatenated (id-verify + weather + geo-loc). The results

are shown in Figure 5. The performance indicates average

improvements of 2%, 2% and 4% when concatenating the

base-net with the features fine-tuned from the geo-location,
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Table 3: Performance comparison with state of the art methods on 40 binary facial attributes

weather, and geo-location + weather, respectively. The geo-

location model provides more complementary information

to the verification network on ethnicities like East Asian and

South Asian. And the weather model adds in weights for

non-identity-related but weather-related attributes like sun-

glasses and hat. Figure 4 illustrates some examples of at-

tribute prediction in our data.

5.2. Comparison with the State of the Art

In this section we evaluate the effectiveness of our net-

work with quantitative results on two standard facial at-

tribute datasets, CelebA and LFWA, constructed based on

face datasets CelebFaces [41] and LFW [15], respectively.

Both datasets have forty binary facial attributes, as listed in

Table 3. We use the exact same partition of data as in [31]:

160k images of CelebA are used to fine-tune the network.

In the remaining 40k CelebA images and the LFWA dataset,

50% of the images are used to extract the learned top-layer

fc features from the network and to train a linear SVM clas-

sifier for attribute classification, and the other 50% are used

for testing.

We evaluate the performance of our network on the

two datasets with four state-of-the-art methods: Face-

Tracer [20], two versions of PANDA [55] network,

PANDA-w and PANDA-l, based on the setting described

in [31]; and LNet+ANet [31]. The same data was used

for all approaches. FaceTracer utilizes hand-crafted fea-

tures (HOG + color histogram) on face functional regions

to train an SVM classifier. LNet+ANet uses a massive set

of images with manually labeled identities for pre-training

and cascades two networks to automatically detect the face

region and consequently learn the facial attributes from the

detected part.Apart from LNet+ANet, all the methods ob-

tain cropped faces externally either from given landmark

points (FaceTracer and PANDA-l) or based on off-the-shelf

detection (PANDA-w and ours).

As shown in Table 3, our approach significantly outper-

forms the four other methods on LFWA and reaches com-

parable performance with LNet+ANet on CelebA on aver-

age score, without using manual labeling in the pre-training

stage. Our approach achieves better results than the prior

methods on most of the forty attributes.

5.3. Visual Attribute Discovery

The quantitative results for the above three datasets show

that the pre-trained models on identity verification, geo-

location, and weather classification boost the prediction

of facial attributes despite the fact they are not explicitly
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Figure 6: Top selected images in each class with max acti-

vations on layer inception 4e after pre-training loc-net. The

discretized geo-location classes according to census from

left to right are: White, Black, Asian, and Indian.

Figure 7: Visualized feature of top ranked neurons in

models after pre-training identity verification (a) and pre-

training weather classification (b). Best viewed in electronic

form.

trained for attribute classification. To better understand the

attribute-related contextual information the pre-trained nets

have learned, we show some qualitative examples of the top

activated neurons in the pre-training phase.

Given a layer in the pre-trained net, for example incep-

tion 4d in loc-net, we get top class-related neurons with high

activations across all images within a class. For each se-

lected neuron, we further select the most related image with

highest value across the whole dataset. Figure 6 shows the

corresponding selected images of the top nine neurons in

each class. We can see that the selected images in differ-

ent geo-locations are from different races, which means the

neurons in loc-net are learning strong priors about the con-

cept of ethnicity in the location classification.

To better visualize attributes discovered by neurons,

we construct the deconvnet framework following the ideas

in [53] and project selected top neurons back to the input

pixel space. Figure 7 presents the visualized features of the

top nine neurons of specific layers after pre-training identity

verification and weather classification separately. Recover-

ing the whole face contour with clear discriminative parts

such as the eyes and mouth, the visualized results of the

selected neurons in the verification model from layer incep-

tion 4d in Fig 7(a) reveal that the neurons capture global

identity-related face features. Therefore, facial attributes

that are intrinsic to the identity, such as “gender”, can be

discovered by the network. The illustrated neurons in the

weather model are from layer inception 4c and 4d. The vi-

sualizations of the selected neurons partially recover the up-

per face and focus on similar local components. By captur-

ing local attributes such as “sunglasses” or “hat”, the visual-

ization explicitly demonstrates that the pre-trained weather

model provides complementary features on identity-non-

related attributes to the model from identity verification.

6. Discussion

In the next few years, the amount of egocentric video

associated with contextual information will grow signifi-

cantly. As an example, many police officers around the

world are already using body-worn cameras in patrol opera-

tions. This growth may be even greater as wearable devices

become mainstream among ordinary people. We believe

our work offers novel ways to learn rich facial representa-

tions from the ever-growing pool of unlabeled egocentric

videos with contextual data. Although we have considered

only the case of people walking across different neighbor-

hoods of a city, our method could be applied at different

geo-scales (e.g. worldwide) to capture larger variations.

One could argue that the face pairs generated by our ap-

proach inherit some bias. To the contrary, we have shown

that in practice this is not an issue. In fact, we observed

that faces across the same track exhibit large variations in

pose and lighting, helping our approach to be more robust

against these factors.

We would like to point out that our approach only re-

quires location and weather data at the training stage. Al-

though this contextual information could be useful at test

time to improve accuracy, it may not always be available.

Finally, we are currently applying our approach to learn

representations for fine-grained clothing attribute classifi-

cation [5], as weather and location clearly influence cloth-

ing choices. By learning with diverse contextual informa-

tion, the framework could be also applied to other high-level

analysis tasks such as urban perception [34].

7. Conclusions

In this paper we have proposed a novel deep learning

framework for learning facial attributes. Different from pre-

vious approaches, our method can capture good representa-

tions/features for facial attributes by exploiting videos and

contextual data (geo-location and weather) captured by a

wearable sensor as the person walks. The proposed frame-

work can leverage the rich appearance of faces from tens of

thousands of casual walkers at different locations and light-

ing conditions without requiring the cost of manual labels.

We demonstrate our approach in several real-world datasets,

showing substantial improvement over other baselines.
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