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Abstract

In this paper, we address the problem of searching for

semantically similar images from a large database. We

present a compact coding approach, supervised quanti-

zation. Our approach simultaneously learns feature se-

lection that linearly transforms the database points into

a low-dimensional discriminative subspace, and quantizes

the data points in the transformed space. The optimization

criterion is that the quantized points not only approximate

the transformed points accurately, but also are semantically

separable: the points belonging to a class lie in a cluster

that is not overlapped with other clusters corresponding to

other classes, which is formulated as a classification prob-

lem. The experiments on several standard datasets show the

superiority of our approach over the state-of-the art super-

vised hashing and unsupervised quantization algorithms.

1. Introduction

Similarity search has been a fundamental research topic

in machine learning, computer vision, and information re-

trieval. The goal, given a query, is to find the most similar

item from a database, e.g., composed of N d-dimensional

vectors. The recent study shows that the compact cod-

ing approach, including hashing and quantization, is ad-

vantageous in terms of memory cost, search efficiency, and

search accuracy.

The compact coding approach converts the database

items into short codes in which the distance is efficiently

computed. The objective is that the similarity computed

in the coding space is well aligned with the similarity that

is computed based on the Euclidean distance in the in-

put space, or that comes from the given semantic sim-

ilarity (e.g., the data items from the same class should

be similar). The solution to the former kind of similar-

ity search is unsupervised compact coding, such as hash-
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ing [1,5–7,9–12,16,20,22,28,29,34,36–38] and quantiza-

tion [8, 26, 39]. The solution to the latter problem is super-

vised compact coding, which is our interest in this paper.

Almost all research efforts in supervised compact cod-

ing focus on developing hashing algorithms to preserve se-

mantic similarities, such as LDA Hashing [30], minimal

loss hashing [24], supervised hashing with kernels [21],

FastHash [18], triplet loss hashing [25], and supervised dis-

crete hashing [27]. In contrast, there is less study in quan-

tization, which however already shows the superior perfor-

mance for Euclidean distance and cosine-based similarity

search. This paper makes a study on the quantization solu-

tion to semantic similarity search.

Our main contributions are as follows: (i) We propose

a supervised composite quantization approach. To the best

of our knowledge, our method is the first attempt to explore

quantization for semantic similarity search. The advantage

of quantization over hashing is that the number of possi-

ble distances is significantly higher, and hence the distance

approximation, accordingly the similarity search accuracy,

is more accurate. (ii) Our approach jointly optimizes the

quantization and learns the discriminative subspace where

the quantization is performed. The criterion is the semantic

separability: the points belonging to a class lie in a cluster

that is not overlapped with other clusters corresponding to

other classes, which is formulated as a classification prob-

lem. (iii) Our method significantly outperforms many state-

of-the-art methods in terms of search accuracy and search

efficiency under the same code length.

2. Related work

There are two main research issues in supervised hash-

ing: how to design hash functions and how to preserve se-

mantic similarity. In essence, most algorithms can adopt

various hash functions, e.g., an algorithm using a linear hash

function usually can also use a kernel hash function. Our

review of the supervised hashing algorithms focuses on the

semantic similarity preserving manners. We roughly divide

them into three categories: pairwise similarity preserving,

multiwise similarity preserving, and classification.
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Pairwise similarity preserving hashing aligns the simi-

larity over each pair of items computed in the hash codes

with the semantic similarity in various manners. Repre-

sentative algorithms include LDA Hashing [30], minimal

loss hashing [24], binary reconstructive embedding [15], su-

pervised hashing with kernels [21], two-step hashing [19],

FastHash [18], and so on. The recent work [4], supervised

deep hashing, designs deep neural network as hash func-

tions to seek multiple hierarchical non-linear feature trans-

formations, and preserves the pairwise semantic similarity

by maximizing the inter-class variations and minimizing the

intra-class variations of the hash codes.

Multiwise similarity preserving hashing formulates the

problem by maximizing the agreement of the similarity or-

ders over more than two items between the input space and

the coding space. The representative algorithms include or-

der preserving hashing [34], which directly aligns the rank

orders computed from the input space and the coding space,

triplet loss hashing [25], listwise supervision hashing [32],

and so on. Triplet loss hashing and listwise supervision

hashing adopt different loss functions to align the similarity

order in the coding space and the semantic similarity over

triplets of items. The recent proposed deep semantic rank-

ing based method [40] preserves multilevel semantic simi-

larity between multilabel images by jointly learning feature

representations and mappings from them to hash codes.

The recently-developed supervised discrete hashing

(SDH) algorithm [27] formulates the problem using the rule

that the classification performance over the learned binary

codes is as good as possible. This rule seems inferior com-

pared with pairwise and multiwise similarity preserving, but

yields superior search performance. This is mainly thanks

to its optimization algorithm (directly optimize the binary

codes) and scalability (not necessarily do the sampling as

done in most pairwise and multiwise similarity preserving

algorithms). Semantic separability in our approach, whose

goal is that the points belonging to a class lie in a cluster that

is not overlapped with other clusters corresponding to other

classes, is formulated as a classification problem, which can

also be optimized using all the data points.

Our approach is a supervised version of quantization.

The quantizer we adopt is composite quantization [39],

which is shown to be a generalized version of product quan-

tization [8] and cartesian k-means [26], and achieves better

performance. Rather than performing the quantization in

the input space, our approach conducts the quantization in a

discriminative space, which is jointly learned with the com-

posite quantizer.

3. Formulation

Given a d-dimensional query vector q ∈ R
d and a

search database consisting ofN d-dimensional vectors X =
{xn}

N
n=1 with each point xn ∈ R

d associated with a class

label, denoted by a binary label vector yn ∈ {0, 1}C in

which the 1-valued entry indicates the class label of xn, the

goal is to find K vectors from the database X that are near-

est to the query so that the found vectors share the same

class label with the query. This paper is interested in the

approximate solution: converting the database vectors into

compact codes and then performing the similarity search in

the compact coding space, which has the advantage of lower

memory cost and higher search efficiency.

Modeling. We present a supervised quantization approach

to approximate each database vector with a vector selected

or composed from a dictionary of base items. Then the

database vector is represented by a short code composed of

the indices of the selected base items. Our approach, rather

than directly quantizing the database vectors in the original

space, learns to transform the database vectors to a discrim-

inative subspace with a matrix P ∈ R
d×r, and then does

the quantization in the transformed space.

We propose to adopt the state-of-the-art unsupervised

quantization approach: composite quantization [39]. Com-

posite quantization approximates a vector x using the sum

of M elements with each selected from a dictionary, i.e.,

x̄ =
∑M

m=1 cmkm
, where cmkm

is selected from the mth

dictionary with K elements Cm = [cm1 cm2 · · · cmK ],
and encodes x by a short code (k1 k2 · · · kM ). Our ap-

proach uses the sum to approximate the transformed vector,

which is formulated by minimizing the approximation error,

‖PTx− x̄‖22 = ‖PTx−
∑M

m=1
cmkm

‖22. (1)

We learn the transformation matrix P such that the quan-

tized data points are semantically separable: the points be-

longing to the same class lie in a cluster, and the clusters

corresponding to different classes are disjointed. We solve

the semantic separation problem by finding C linear deci-

sion surfaces to divide all the points into C clusters1, each

corresponding to a class, which is formulated as a classifi-

cation problem given as follows,

∑N

n=1
ℓ(yn,W

T x̄n) + λ‖W‖2F , (2)

where λ is the parameter controlling the regularization term

‖W‖2F ; W = [w1 w2 · · · wC ] ∈ R
r×C ; ℓ(·, ·) is a classi-

fication loss function to penalize the cases where the point

x̄n is not assigned to the cluster corresponding to yn based

on the C associated decision functions {wT
k x̄n}

C
k=1. In this

paper, we adopt the regression loss:

ℓ(yn,W
T x̄n) = ‖yn −WT x̄n‖

2
2 (3)

1C linear decision surfaces can divide the points into more than C clus-

ters.
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The proposed approach combines the quantization with

the feature selection, and jointly learns the quantization pa-

rameter and the transform matrix. The overall objective

function is given as follows,

min
W,P,C,{bn}N

n=1
,ǫ

∑N

n=1
‖yn −WTCbn‖

2
2 + λ‖W‖2F

+ γ
∑N

n=1
‖Cbn −PTxn‖

2
2 (4)

s. t.
∑M

i 6=j
bT
niC

T
i Cjbnj = ǫ,

n = 1, 2, · · · , N,

where γ is the parameter controlling the quantization term;

Cbn is the matrix form of
∑M

m=1 cmkn
m

and bn =
[bT

n1 bT
n2 · · · bT

nM ]T ; bnm ∈ {0, 1}K is an indicator vec-

tor with only one entry being 1, indicating that the corre-

sponding dictionary element is selected from the mth dic-

tionary. The equality constraint,
∑M

i 6=j b
T
niC

T
i Cjbnj =

∑M

i 6=j c
T
ikn

i
cjkn

j
= ǫ, called constant inter-dictionary-

element-product, is introduced from composite quantiza-

tion [39] for fast distance computation (reduced from O(d)
to O(M)) in the search stage, which is presented below.

Querying. The search process is similar to that in com-

posite quantization [39]. Given a query q, after transfor-

mation, the approximate distance between q (represented

as q′ = PTq) and a database vector x (represented as

Cb =
∑M

m=1 cmkm
) is computed as

‖q′ −

M∑

m=1

cmkm
‖22 = (5)

M∑

m=1

‖q′ − cmkm
‖22 − (M − 1)‖q′‖22 +

M∑

i 6=j

cTiki
cjkj

.

Given the query q′, the second term −(M − 1)‖q′‖22
in the right-hand side of Equation 5 is a constant for all

database vectors. Meanwhile, the third term
∑M

i 6=j c
T
iki

cjkj
,

which is equal to ǫ thanks to the introduced constant con-

straint, is also a constant. Hence these two constant terms

can be ignored, as they do not affect the sorting results.

As a result, it is enough to compute the distances be-

tween q′ and the selected dictionary elements {cmkm
}Mm=1:

{‖q′ − cmkm
‖22}

M
m=1. We precompute a distance table of

length MK recording the distances between q′ and the dic-

tionary elements in all the dictionaries before examining the

distance between q′ and each approximated point x̄ in the

database. Then computing
∑M

m=1 ‖q
′−cmkm

‖22 takes only

O(M) distance table lookups and O(M) addition opera-

tions.

4. Optimization

Our problem (4) consists of five groups of unknown vari-

ables: classification matrix W, transformation matrix P,

dictionaries C, binary indicator vectors {bn}
N
n=1, and the

constant ǫ. We follow [39] and combine the constraints∑M

i 6=j b
T
niC

T
i Cjbnj = ǫ into the objective function using

the quadratic penalty method:

ψ(W,P,C, {bn}
N
n=1, ǫ) =

N∑

n=1

‖yn −W
T
Cbn‖

2

2 + λ‖W‖2F

+ γ

N∑

n=1

‖Cbn −P
T
xn‖

2

2 + µ

N∑

n=1

(

M∑

i 6=j

b
T
niC

T
i Cjbnj − ǫ)2,

(6)

where µ is the penalty parameter.

We use the alternative optimization technique to itera-

tively solve the problem, with each iteration updating one

of W,P, ǫ,C, and {bn}
N
n=1 while fixing the others. The

initialization scheme and the iteration details are presented

as follows.

Initialization. The transformation matrix P is initialized

using principal component analysis (PCA). We use the dic-

tionaries and codes learned from product quantization [8]

in the transformed space to initialize C and {bn}
N
n=1 for

the shortest code (16 bits) in our experiment, and we use

the dictionaries and codes learned in the shorter code to do

the initialization for longer code with setting the additional

dictionary elements to zero and randomly initializing the

additional binary codes.

W-Step. With C and {bn}
N
n=1 fixed, W is solved by

the regularized least squares problem, resulting in a closed-

form solution:

W∗ = (X̄X̄T + λIr)
−1X̄YT , (7)

where X̄ = [Cb1 · · · CbN ] ∈ R
r×N , Y = [y1 · · · yN ] ∈

R
C×N , and Ir is an identity matrix of size r × r.

P-Step. With C and {bn}
N
n=1 fixed, the transformation

matrix P is solved using the normal equation:

P∗ = (XXT )−1XX̄T , (8)

where X = [x1 · · · xN ] ∈ R
d×N .

ǫ-Step. With C and {bn}
N
n=1 fixed, the objective function

is a quadratic function with respect to ǫ, and it is easy to get

the optimal solution to ǫ.

ǫ∗ =
1

N

N∑

n=1

M∑

i 6=j

bT
niC

T
i Cjbnj . (9)

C-Step. With other variables fixed, the problem is an un-

constrained nonlinear optimization problem with respect to
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C. We use the quasi-Newton algorithm and specifically

the L-BFGS algorithm, the limited version of the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. The imple-

mentation is publicly available2. The derivative with respect

to C and the objective function value need to be fed into the

solver. L-BFGS is an iterative algorithm and we set its max-

imum iterations to 100. The partial derivative with respect

to Cm is :

∂ψ

∂Cm

=

N∑

n=1

[2W(WTCbn − yn)b
T
nm+ (10)

2γ(Cbn −PTxn)b
T
nm+

4µ(

M∑

i 6=j

bT
niC

T
i Cjbnj − ǫ)(

M∑

l=1,l 6=m

Clbnl)b
T
nm].

B-Step. The optimization problem with respect to {bn}
N
n=1

could be decomposed to N subproblems,

ψn(bn) = ||yn −WTCbn||
2
2 + γ||Cbn −PTxn||

2
2

+ µ(
M∑

i 6=j

bT
niC

T
i Cjbnj − ǫ)2. (11)

bn is a binary-integer-mixed vector, and thus the optimiza-

tion is NP-hard. We use the alternative optimization tech-

nique again to solve the M subvectors {bnm}Mm=1 itera-

tively. With {bnl}
M
l=1,l 6=m fixed, we exhaustively check all

the elements in the dictionary Cm, finding the element such

that ψn(bn) is minimized, and accordingly set the corre-

sponding entry of bnm to be 1 and all the others to be 0.

Convergence. Every update step in the algorithm assures

that the objective function value weakly decreases after

each iteration, and the empirical results show that the al-

gorithm takes a few iterations to converge. Figure 1 shows

the convergence curves on NUS-WIDE and ImageNet with

16 bits, which indicates that our algorithm gets converged

in a few iterations.

5. Discussions

Connection with supervised sparse coding. It is pointed

in [39] that composite quantization is related to sparse cod-

ing: the binary indicator vector b is a special sparse code,

containing only M non-zero entries (valued as 1) and each

non-zero entry distributed in a subvector. The proposed su-

pervised quantization approach is close to supervised sparse

coding [23], which introduces supervision to learn the dic-

tionary and the sparse codes, but different from it in the mo-

tivation and the manner of imposing the supervision: our

approach adopts the supervision to help separate the data

2http://users.iems.northwestern.edu/ nocedal/lbfgsb.html
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Figure 1: Convergence curves of our algorithm on NUS-

WIDE and ImageNet with 16 bits. The vertical axis repre-

sents the value of the objective function (6) and the horizon-

tal axis corresponds to the number of iterations.

points into clusters with each corresponding to a class; our

approach imposes the supervision on the approximated data

points while supervised sparse coding imposes the supervi-

sion on the sparse codes.

Classification loss vs. rank loss. There are some hashing

approaches exploring the supervision information through

rank loss [33], such as the triplet loss in [25, 32], and the

pairwise loss in [24,31]. In general, compared with the clas-

sification loss, those two rank losses might be more helpful

to learn the compact codes as they directly align the rank or-

der in the coding space with the given semantic rank infor-

mation. However, they yield a larger number of loss terms,

e.g., O(N2) for pairwise loss and O(N3) for triplet loss,

requiring prohibitive computational cost which makes the

optimization difficult and infeasible. Therefore, sampling

is usually adopted for training, which however makes the

results not as good as expected. A comparison with triplet

loss is shown in Section 6.3.

6. Experiment

6.1. Datasets and settings

Datasets. We perform the experiments on four standard

datasets: CIFAR-10 [13], MNIST [17], NUS-WIDE [2],

and ImageNet [3].

The CIFAR-10 dataset consists of 60, 000 32× 32 color

tinny images, and includes 10 classes with 6, 000 images

per class. We represent each image by a 512-dimensional

GIST feature vector available on the website3. The dataset

is split into a query set with 1, 000 samples and a training

set with all the remaining samples as done in [27].

The MNIST dataset consists of 70, 000 28×28 greyscale

images of handwritten digits from ’0’ to ’9’. Each image

is represented by the raw pixel values, resulting in a 784-

3http://www.cs.toronto.edu/ kriz/cifar.html
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dimensional vector. We split the dataset into a query set

with 1, 000 samples and a training set with all remaining

samples as done in [27].

The NUS-WIDE dataset contains 269, 648 images col-

lected from Flickr, with each image containing multiple se-

mantic labels from 81 concept labels. The 500-dimensional

bag-of-words features provided in [2] are used. Follow-

ing [27], we collect 193,752 images that are from the 21
most frequent labels for evaluation, including sky, clouds,

person, water, animal, grass, building, window, plants, lake,

ocean, road, flowers, sunset, relocation, rocks, vehicles,

snow, tree, beach, and mountain. For each label, 100 images

are uniformly sampled as the query set, and the remaining

images are used as the training set.

The dataset ILSVRC 2012 [3], named as ImageNet in

this paper, contains over 1.2 million images of 1, 000 cat-

egories. We use the provided training set as the retrieval

database and the provided 50, 000 validation images as the

query set since the ground-truth labeling of the test set is

not publicly available. Similar to [27], we use the 4096-

dimensional feature extracted from the convolution neural

networks (CNN) in [14] to represent each image.

Evaluation criteria. We adopt the widely used mean

average precision (MAP) criterion, defined as MAP =
1
Q

∑Q

i=1AP (qi), where Q is the number of queries, and

AP is computed as AP (q) = 1
L

∑R

r=1 Pq(r)δ(r). Here L
is the number of true neighbors for the query q in the R
retrieved items, where R is the size of the database except

that R is 1500 on the ImageNet dataset for evaluation effi-

ciency. Pq(r) denotes the precision when top r data points

are returned, and δ(r) is an indicator function which is 1
when the rth result is a true neighbor and otherwise 0. A

data point is considered as a true neighbor when it shares at

least one class label with the query.

Besides the search accuracy, we also report the search

efficiency by evaluating the query time under various code

lengths. The query time contains the query preprocessing

time and the linear scan search time. For hashing algo-

rithms, the query preprocessing time refers to query en-

coding time; for unsupervised quantization algorithms, the

query preprocessing time refers to distance lookup table

construction time; for our proposed method, the query pre-

processing time includes feature transformation time and

distance lookup table construction time. For all methods,

we use C++ implementations to test the query time on a 64-

bit windows server with 48 GB RAM and 3.33 GHz CPU.

Parameter settings. There are three trade-off parameters in

the objective function (6): γ for the quantization loss term,

µ for penalizing the equality constraint term, and λ for the

regularization term. We select γ and µ via validation. We

choose a subset of the training set as the validation set (the

size of the validation set is the same to that of the query set),

and the best parameters γ and µ are chosen so that the aver-

age search performance in terms of MAP, by regarding the

validation vectors as queries, is the best. It is feasible that

the validation set is a subset of the training set, as the vali-

dation criterion is not the objective function but the search

performance [39]. The empirical analysis about the two pa-

rameters will be given in Section 6.3. The parameter λ is

set to 1, which already shows the satisfactory performance.

We set the dimension r of the discriminative subspace to

256. We do not tune r and λ for saving time while we think

that tuning it might yield better performance. We choose

K = 256 to be the dictionary size as done in [8, 26, 39], so

that the resulting distance lookup tables are small and each

subindex fits into one byte.

6.2. Comparison

Methods. Our method, denoted by SQ, is compared with

seven state-of-the-art supervised hashing methods: super-

vised discrete hashing (SDH) [27], FastHash [35], super-

vised hashing with kernels (KSH) [21], CCA-ITQ [6],

semi-supervised hashing (SSH) [31], minimal loss hash-

ing (MLH) [24], and binary reconstructive embedding

(BRE) [15], as well as the state-of-the-art unsupervised

quantization method, composite quantization (CQ) [39]. To

the best of our knowledge, there do not exist supervised

quantization algorithms. We use the public implementa-

tions for all the algorithms except that we implement SSH

by ourselves as we do not find the public code, and follow

the corresponding papers/authors to set up the parameters.

For FastHash, we adopt hinge loss as loss function in the

binary code inference step and boosted tree as classifier in

the hash function learning step, which is suggested by the

author to achieve the best performance.

Implementation details. It is infeasible to do the training

over the whole training set for the pairwise-similarity-based

hashing algorithms (SSH, BRE, MLH, KSH, FastHash), as

discussed in [27]. Therefore, for CIFAR-10, MNIST, and

NUS-WIDE, following the recent work [27], we randomly

sample 5000 data points from the training set to do the op-

timization for the pairwise similarity-based algorithms, and

use the whole training set for SDH and CCA-ITQ. For Im-

ageNet, we use as many training samples for optimization

as possible if the 256G RAM in our server is enough for

optimization: 500, 000 for CCA-ITQ, 100, 000 for SDH,

10, 000 for the remaining hashing methods. There are two

hashing algorithms, KSH and SDH, that adopt the kernel-

based representation, i.e., select h anchor points {aj}
h
j=1

and use φ(x) = [exp(−||x − a1||
2
2/2σ

2) . . . exp(−||x −
ah||

2
2/2σ

2)]T ∈ R
h to represent x. Our approach also uses

the kernel-based representation for CIFAR-10, MNIST, and

NUS-WIDE. Following [27], h = 1000 and σ is chosen

based on the rule σ = 1
N

∑N

n=1 min{‖xn − aj‖2}
h
j=1.
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Figure 2: Search performance (in terms of MAP) comparison of different methods on CIFAR-10, MNIST, and NUS-WIDE

with code length of 16, 32, 64, and 128.

Search accuracy. The results on CIFAR-10, MNIST, and

NUS-WIDE with the code length of 16, 32, 64, and 128,

are shown in Figure 2. It can be seen that our approach,

SQ, achieves the best performance, and SDH is the second

best. In comparison with SDH, our approach gains large im-

provement on CIFAR-10 and NUS-WIDE, e.g., 23.66% im-

provement on CIFAR-10 with 64 bits, and 4.65% improve-

ment on NUS-WIDE with 16 bits. It is worth noting that

on these two datasets, the performance of SQ with 16 bits

is even much better than that of SDH with 128 bits. Our

approach gets relatively small improvement over SDH on

MNIST. The reason might be that SDH already achieves a

high performance, and it is not easy to get a large improve-

ment further. Compared with the unsupervised quantiza-

tion algorithm, composite quantization (CQ), whose perfor-

mance is lower than most of the supervised hashing algo-

rithms, our approach obtains significant improvement, e.g.,

42.57% improvement on CIFAR-10 with 16 bits, 46.14%
on MNIST with 16 bits, and 15.39% on NUS-WIDE with

16 bits. This shows that learning with supervision indeed

benefits the search performance.

The result on ImageNet is shown in Figure 3. The perfor-

mance of our approach again outperforms other algorithms,

and CQ is the second best. The reason might be the power-

ful discrimination ability of the original CNN features. To

achieve a comprehensive analysis, we provide the Euclidean

baseline (see Figure 3) that simply computes the distances

between the query and the database vectors using the orig-

inal CNN features and returns the top R retrieved items.

As shown in Figure 3, our proposed SQ also outperforms

the Euclidean baseline by a large margin, and CQ is a lit-

tle lower than the baseline. This shows that our approach is

able to learn better quantizer through the supervision though

it is known that the CNN features are already good. The best

supervised hashing algorithm, SDH, uses the kernel-based

representation in our experiment as suggested in its original

paper [27]. To further verify the superiority of our approach
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Figure 3: Search performance (in terms of MAP) compari-

son of different methods on ImageNet with code length of

16, 32, 64, and 128.

over SDH, we also report the result of SDH without us-

ing the kernel representation (denoted by “SDH-Linear” in

Figure 3), and find that it is still lower than our approach.

This further shows the effectiveness of quantization: quan-

tization has much more different differences compared with

hashing, which has only a few Hamming distances for the

same code length.

Search efficiency. We report the query time of our pro-

posed approach SQ, the unsupervised quantization method

CQ, and the supervised hashing method SDH, which out-

performs other supervised hashing algorithms in our exper-

iments. Figure 4 shows the search performance and the cor-

responding query time under the code length of 16, 32, 64,

and 128 on the four datasets.

Compared with CQ, our proposed SQ obtains much

higher search performance for the same query time. It can
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Figure 4: Query time comparison of SQ, CQ, and SDH under various code lengths on CIFAR-10, MNIST, NUS-WIDE, and

ImageNet. The vertical axis represents the search performance, and the horizontal axis corresponds to the query time cost

(milliseconds). The markers from left to right on each curve indicate the code length of 16, 32, 64, and 128 respectively.

be seen that on CIFAR-10, MNIST, and NUS-WIDE, SQ

takes more time than CQ under the code length of 16 and

32, and less time under the code length of 128: SQ takes ex-

tra time to do feature transformation; the querying process,

however, is carried out in a lower-dimensional transformed

subspace, therefore the search efficiency is still compara-

ble to CQ. It can also be observed that SQ takes almost

equal time as CQ on ImageNet. This is because CQ also

takes time to do feature transformation here and the query-

ing process is carried out in the 256-dimensional PCA sub-

space (it is cost prohibitive to tune the parameter of CQ on

high-dimensional large-scale dataset).

Compared with SDH, SQ outperforms SDH for the same

query time on ImageNet and NUS-WIDE. For example, SQ

with 32 bits outperforms SDH with 16 bits by a margin

of 40.82% on ImageNet, and SQ with 16 bits outperforms

SDH with 128 bits by a margin of 2% on NUS-WIDE, while

they take almost the same query time.

On CIFAR-10, SQ with 16 bits outperforms SDH with

128 bits by 12.4% while taking slightly more time (0.16
milliseconds), and this trend indicates that for the same

query time, SQ could also obtain higher performance. On

MNIST, SQ achieves the same performance as SDH while

taking slightly more query time. The reason is that the

query preprocessing time of SQ (mainly refers to distance

lookup table construction time here) is relatively long com-

pared with the linear scan search time on the small-scale

database. In real-word scenarios, retrieval tasks that require

quantization solution usually are conducted on large-scale

databases, and the scale usually is at least 200, 000.

6.3. Empirical analysis

Classification loss vs. triplet loss. We empirically

compare the performances between the proposed formula-

tion (4) that uses the classification loss for semantic sep-

aration, and an intuitive formulation that uses triplet loss

Table 1: MAP comparison of classification loss (denoted by

“c-loss”) and triplet loss (denoted by “t-loss”).

Datasets Methods 16 bits 32 bits 64 bits 128 bits

CIFAR-10
t-loss 0.3284 0.3679 0.5305 0.5469

c-loss 0.6045 0.6855 0.7042 0.7120

MNIST
t-loss 0.4347 0.5286 0.6442 0.7500

c-loss 0.9329 0.9374 0.9377 0.9400

to discriminate a semantically similar pair and a semanti-

cally dissimilar pair. The triplet loss formulation is written

as
∑

(i,j,l)[||Cbi − Cbj ||
2
2 − ||Cbi − Cbl||

2
2 + ρ]+. The

triplet (i, j, l) is composed of three points where i and j are

from the same class and l is from a different class; ρ ≥ 0 is

a constant indicating the distance margin; [·]+ = max(0, ·)
is the standard hinge loss function.

We optimize the formulation with triplet loss using the

alternative optimization algorithm similar to that for opti-

mizing problem (4). The parameters γ and µ are chosen

through validation. It is infeasible to do the optimization

with all the triplets. Therefore we borrow the idea of ac-

tive set, and select the triplets that are most likely to trigger

the hinge loss at each iteration, which is efficiently imple-

mented by maintaining an approximate nearest neighbor list

for each database vector.

The results on CIFAR-10 and MNIST under various

code lengths are shown in Table 1. It is observed that the

results with classification loss are much better than those

with triplet loss. It seems to us that the triplet loss is better

than classification loss, as the search goal is essentially to

rank similar pairs before dissimilar pairs, which is explicitly

formulated in triplet loss. The reason of the lower perfor-

mance of triplet loss most likely lies in the difficulty of the

optimization (e.g., too many (O(N3)) loss terms results in

the sampling technique used for training, which makes the
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Figure 5: Illustration of the effect of γ and µ on the search performance in the validation sets of CIFAR-10, MNIST, NUS-

WIDE, and ImageNet with 16 bits. γ ranges from 1e-7 to 1e+2 and µ ranges from 1e-1 to 1e+2.

Table 2: MAP comparison of the formulation with feature

transformation (denoted by “with fea.”) and that without

feature transformation (denoted by “no fea.”).

Datasets Methods 16 bits 32 bits 64 bits 128 bits

CIFAR-10
no fea. 0.5140 0.5174 0.5274 0.5301

with fea. 0.6045 0.6855 0.7042 0.7120

MNIST
no fea. 0.4534 0.4538 0.4617 0.4650

with fea. 0.9329 0.9374 0.9377 0.9400

results not as good as expected).

Feature transformation. Our approach learns the feature

transformation matrix P, and quantizes the database vectors

in the learned discriminative subspace. To verify the effec-

tiveness of feature transformation in our formulation (4),

we empirically compare the performances between the pro-

posed formulation and the formulation that does not learn

feature transformation. We take CIFAR-10 and MNIST as

examples and the results are shown in Table 2. As shown,

SQ significantly outperforms the formulation that does not

learn feature transformation, which indicates the impor-

tance of feature transformation in our proposed formulation.

The Effect of γ and µ. We empirically show how the pa-

rameters γ (for controlling the quantization loss term) and

µ (for penalizing the equality constraint term) affect the

search performance on the validation set, where the param-

eters are tuned to select the best combination. We report the

performances with 16 bits in Figure 5, by varying γ from

1e-7 to 1e+2 and µ from 1e-1 to 1e+2.

It can be seen from Figure 5 that the overall perfor-

mances do not depend much on µ and the performances

change a lot when varying the γ. This is reasonable be-

cause γ controls the quantization loss, and µ is introduced

for accelerating the search. The best search performances

on CIFAR-10, MNIST, NUS-WIDE, and ImageNet are ob-

tained with (γ, µ) = (0.01, 0.1), (γ, µ) = (1e-7, 10), (γ, µ)
= (1e-5, 0.1), and (γ, µ) = (1, 100) respectively. We can see

that the best MAP values 0.6132, 0.9449, and 0.5466 on the

validation sets are close to the values 0.6045, 0.9329, and

0.5452 on the query sets of CIFAR-10, MNIST, and NUS-

WIDE, and that the MAP value 0.5372 on the validation set

is different from the value 0.5039 on the query set of Ima-

geNet. The reason might be that the validation set (sampled

from the training set) and the query set (the validation set

provided in ImageNet) are not of the same distribution.

7. Conclusion

In this paper, we present a supervised compact coding

approach, supervised quantization, to semantic similarity

search. To the best of our knowledge, our approach is the

first attempt to study the quantization for semantic simi-

larity search. The superior performance comes from two

points: (i) The distance differentiation ability of quantiza-

tion is stronger than that of hashing. (ii) The learned dis-

criminative subspace is helpful to find a semantic quantizer.
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