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Abstract

We consider the problem of removing and replacing

clouds in satellite image sequences, which has a wide range

of applications in remote sensing. Our approach first de-

tects and removes the cloud-contaminated part of the im-

age sequences. It then recovers the missing scenes from

the clean parts using the proposed “TECROMAC” (TEm-

porally Contiguous RObust MAtrix Completion) objective.

The objective function balances temporal smoothness with a

low rank solution while staying close to the original obser-

vations. The matrix whose the rows are pixels and columns

are days corresponding to the image, has low-rank because

the pixels reflect land-types such as vegetation, roads and

lakes and there are relatively few variations as a result. We

provide efficient optimization algorithms for TECROMAC,

so we can exploit images containing millions of pixels. Em-

pirical results on real satellite image sequences, as well as

simulated data, demonstrate that our approach is able to re-

cover underlying images from heavily cloud-contaminated

observations.

1. Introduction

Optical satellite images are important tools for remote

sensing, and suitable analytics applied to satellite images

can often benefit applications such as land monitoring, min-

eral exploration, crop identification, etc. However, the use-

fulness of satellite images is largely limited by cloud con-

tamination [18], thus a cloud removal and reconstruction

system is highly desirable.

In this paper, we propose a novel approach for cloud re-

moval in temporal satellite image sequences. Our method

improves upon exisiting cloud removal approaches [17, 20,

21, 23, 24, 28, 32] in the following ways: 1) the approach

does not require additional information such as a cloud

mask, or measurements from non-optical sensors; 2) our

model is robust even under heavy cloud contaminated situa-

tions, where several of the images could be entirely covered

by clouds; 3) efficient optimization algorithms makes our

approaches scalable to large high-resolution images.

We procede in two stages: a cloud detection stage and

a scene reconstruction stage. In the first, we detect clouds

based on pixel characteristics.1 After removing the cloud-

contaminated pixels, we recover the background using a

novel “TECROMAC” (TEmporally Contiguous RObust

MAtrix Completion) model, which encourages low rank in

time-space, temporal smoothness and robustness with re-

spect to errors in the cloud detector. Our model overcomes

the usual limitations of traditional low-rank matrix recovery

tools such as matrix completion and robust principal com-

ponent analysis, which cannot handle images covered en-

tirely by clouds. We provide efficient algorithms, which are

based upon an augmented Lagrangian method (ALM) with

inexact proximal gradients (IPG), or alternating minimiza-

tion (ALT), to handle the challenging non-smooth optimiza-

tion problems related to TECROMAC. Empirical results on

both simulated and real data sets demonstrate the efficiency

and efficacy of the proposed algorithms.

2. Related work

Cloud detection, removal and replacement is an essential

prerequisite for downstream applications of remote sens-

ing. This paper belongs to the important line of research

of sparse representation, which has received considerable

attention in a variety of areas, including noise removal, in-

verse problems, and pattern recognition [13, 33, 38]. The

key idea of sparse representation is to approximate sig-

nals as a sparse decomposition in a dictionary that is learnt

from the data (see [25] for an extensive survey). For the

task of cloud removal and image reconstruction, [23] de-

veloped compressive sensing approaches to find sparse sig-

nal representations using images from two different time

points. Subsequently [20] extended dictionary learning to

perform multitemporal recovery from longer time series.

A group-sparse representation approach was recently pro-

posed by [19] to leverage both temporal sparsity and non-

1For example in 8-bit representations (0,0,0) is typically black while

(255,255,255) is white, so clouds can be assumed to have high pixel inten-

sity.
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Figure 1. Illustration of the proposed procedure: first stage: cloud detection and removal, second stage: background recovery.

local similarity in the multi-temporal images. A method

was proposed in [20] to co-train two dictionary pairs, one

pair generated from the high resolution image (HRI) and

low resolution image (LRI) gradient patches, and the other

generated from the HRI and synthetic-aperture radar (SAR)

gradient patches. It is demonstrated that such a combina-

tion of multiple data types improves reconstruction results

as it is able to provide both low- and high-frequency infor-

mation.

Our method has its origin in robust principal component

analysis, [5, 12] and matrix completion [6, 7]. However,

these models require uniform or weighted sampled observa-

tions to ensure the recovery of low-rank matrix [14, 29, 34],

and thus cannot handle images with extensive cloud cover.

3. Problem description and approach

Let Y ∈ R
m×n×c×t be a 4-th order tensor whose en-

try values include the intensity and represent the observed

cloudy satellite image sequences. The dimensions corre-

sponds to lattitude, longitude, spectral wavelength (color)

and time. The images have size m × n with c colors2 and

there are t time points corresponding to each image. Our

goal is to remove the clouds, and recover the background

scene, to facilitate applications such as land monitoring,

mineral exploration and agricultural analytics.

As already mentioned, our cloud removal procedure is

divided into two stages: namely cloud detection followed

by the underlying scene recovery. The cloud detection

stage aims to provide an indication as to what pixels are

contaminated by clouds at a particular time. Given the

cloud mask, the recovery stage attempts to recover the ob-

fuscated scene by leveraging the partially observed, non-

cloudy image sequences. Figure 1 provide an illustration of

the proposed two-stage framework. We describe the details

of these two stages in the following sections.

2A standard digital image will have a red, green and blue channel. A

grayscale image has just one channel

Figure 2. Illustration of the proposed cloud detection procedure for

two instances. Left: original image, middle: dark channel image,

right: thresholded binary image.

3.1. Detecting clouds

Given the observed image sequences Y , the goal of a

cloud detector is to produce a set of indices Ω, called a

cloud mask, such that a lattitude-longitude-color-time po-

sition (i, j, k, l) ∈ Zm × Zn × Zc × Zt is covered by a

cloud if (i, j, k, l) 6∈ Ω and is not cloud contaminated if

(i, j, k, l) ∈ Ω. Note that typically the entire color channel

will be contaminated by clouds.

We design a simple, yet effective cloud detector by

thresholding on the dark channel (the minimum pixel in-

tensity values across the RGB channels), [16] followed by

a post-processing stage to distinguish between a stationary

white background and white clouds. This works because

clouds are predominantly white so that the minimum inten-

sity value is large and there are typically no other white ob-

jects on the ground (except for snow in winter, please refer

to section 3.1.1 below for a related discussion). Our estima-

2755



tor for Ω is therefore

Ω̂ = {(i, j, k, l)| min
c={r,g,b}

Y(i, j, c, l) < γ}, (1)

where γ is the thresholding value that controls the trade-

offs between false positives/negatives. Figure 2 illustrates

the above described method.

There are several other approaches for cloud detection,

for example, one could use support vector machines [11]

to build linear classifiers based on the RGB values. How-

ever, this approach requires additional labeled training data,

which is usually not easy to obtain. Moreover, in our expe-

rience we observed that the classification approach is typi-

cally no better than the simple thresholding method.

3.1.1 Post processing after thresholding

The thresholding approach described above cannot distin-

guish between a stationary “white background” and “white

clouds”. White objects in the landscape, such as houses,

should remain in the reconstructed images. Fortunately,

we can exploit the transient nature of clouds to label pix-

els always absent from Ω̂ as having a white background.

Since the stationary pixels are also contaminated by clouds

we maintain the background by treating the median pixel

value as the background color and locate some cloud free in-

stances by a k-nearest neighbors search [1]. This approach

is primitive, but since the stationary white objects do not

dominate the scene, the method is sufficient (though it will

not be able to handle extreme cases such as heavy snow as

background).

The overall procedure for cloud detection is summarized

in Algorithm 1 below.

Algorithm 1: Cloud detection procedure.

Input: temporal sequence of cloudy images Y;

parameter K in k-nearest-neighbors search.

Output: Ω: indication set of non-cloudy pixels.

1, Obtain the initial guess via thresholding as in (1),

Ω = Ω̂;

2, Identify the “always white” pixel sequences:

W = {(i, j)|∀k, l (i, j, k, l) 6∈ Ω̂};
3, for (i, j) ∈ W do

Compute the median pixel vector:

m = Median({Y(i, j, :, l), l ∈ [t]});
Find the indices of the k-nearest-neighbors:

Ω̃ = Knn-Search({Y(i, j, :, l), l ∈ [t]},m,K);

Ω← Ω
⋃

Ω̃.

end

3.2. Image sequences recovery

Given the cloud detection result Ω, the image sequences

recovery model reconstructs the background from the par-

tially observed noisy images. For pixels in Ω the recov-

ered values should stay close to the observations. Also,

the reconstruction should take the following key assump-

tions/intuitions into consideration:

• Low-rank: The ground observed will consist of a few

slowly changing land-types such as forrest, agricul-

tural land, lakes and a few stationary objects (roads,

buildings, etc.). We can interpret the land-types as

basis elements of the presumed low-rank reconstruc-

tion. More complex scenes would thus require a higher

rank, but we expect in general the number of truly in-

dependent frames (pixels evolving over time) to be rel-

atively small.

• Robustness: Since the cloud detection results are not

perfect, and there is typically a large deviation between

the cloudy pixels and the background scene pixels, the

recovery model should be robust with respect to the

(relatively) sparsely corrupted observations.

• Temporal continuity: The ground contains time-

varying objects with occasional dramatic changes (e.g.

harvest). Most of the time the deviation between two

consecutive frames should not be large given appropri-

ate time-steps (days or weeks).

Notation: Let the observation tensor be reshaped into a ma-

trix Y ∈ R
mn×ct defined by Yuv = Yijkl when u = i+ jm

and v = k + lc. Similarily, let X be the reconstruction

we are seeking and X ∈ R
mn×ct be the corresponding re-

shaped matrix. Further we let I denote the indicator func-

tion. Based on above discussed principles we propose the

following reconstruction formulation:

min
X

rank(X)

s.t.
∑

(i,j,k,l)∈Ω

I

(

X (i, j, k, l) 6= Y(i, j, k, l)

)

≤ κ1,

m
∑

i=1

n
∑

j=1

c
∑

k=1

t
∑

l=2

(

X (i, j, k, l)−X (i, j, k, l − 1)

)2

≤ κ2.

The above formulation finds a low-rank reconstruction X

such that:

• X disagrees with Y at most κ1 times in the predicted

non-cloudy set Ω, but can disagree an arbitrary amount

on the κ1 pixels (robustness);

• The sum of squared ℓ2 distances between two consec-

utive frames is bounded by κ2 (continuity).

2756



Unfortunately, both the rank and the summation of the

indicator function values are non-convex, making the above

optimization computationally intractable in practice, thus

we introduce our temporally contiguous robust matrix com-

pletion (TECROMAC) objective which is computationally

efficient, first introducing the forward temporal shift matrix,

S+ ∈ R
t×t defined as

[S+]i,j =











1 if i = j + 1, i < t

1 if i = j = t

0 otherwise

.

and the discrete derivative matrix R ∈ R
ct×t as

R =









It − S+

It − S+

. . .

It − S+









Let ‖ · ‖F denote the Frobenius norm, the TECROMAC

objective can be written as:

min
X
‖PΩ(Y −X)‖1 + λ1‖X‖∗ +

λ2

2
‖XR‖2F , (2)

where λ1 controls the rank of the solution and λ2 penalizes

large temporal changes.

In the objective (2), the first term ‖PΩ(Y −X)‖1 controls

the reconstruction error on the predicted non-cloudy set Ω.

The second term encourages low rank solutions, as the nu-

clear norm is a convex surrogate for direct rank penalization

[36]. Noting that

‖XR‖2F =

m
∑

i=1

n
∑

j=1

c
∑

k=1

t
∑

l=2

(X (i, j, l, k)−X (i, j, l, k − 1))2,

is the finite difference approximation of the temporal

derivatives one can see that the last term encourages

smoothness between consecutive frames.

3.3. Existing reconstruction model paradigms

Following the cloud detection stage, there are several ex-

isting models reconstruction paradigms that could be ap-

plied. For example, one could use

• Interpolation [27]; although this violates the low-rank

and robust assumptions

• Matrix completion (MC) [7]; which violates robust-

ness and continuity.

• Robust matrix completion (RMC) [8]; which uses ‖·‖1
loss instead of ‖ · ‖2F to ensure robustness. However, it

still violates the continuity assumption. RMC is an ex-

tension to MC and is inspired by robust principal com-

ponent analysis (RPCA) [5], and has been analyzed

theoretically [8, 9].

Figure 3. Examples of totally cloud-contaminated frames.

MC and RMC both require each image to have some pixels

not corrupted by clouds to ensure successful low-rank ma-

trix recovery [14, 29, 34]. Unfortunately, this is often not

the case, as seen in Figure 3. Tropical regions for example

can be completely covered by clouds as often as 90% of the

time. Consequently, as we also show in the experiments be-

low, directly applying MC or RMC will lead to significant

information loss for the heavily contaminated frames. Ta-

ble 1 summarizes the properties of the different approaches.

Approach Interpolation MC RMC TECROMAC

Low-rank × X X X

Robustness × × X X

Continuity X × × X

Table 1. Comparison of properties of various approaches.

One could also use RPCA [5] or stable principle com-

ponent pursuit (SPCP) [39] directly on cloudy image se-

quences [2], without the cloud detection stage. However,

these approaches only work for images with sparse cloud,

and usually fail under more challenging dense cloudy case,

as we have observed in practice.

4. Optimization algorithms

In this section, we present computationally efficient al-

gorithms to solve the optimization problem (2). The op-

timization is challenging since the objective (2) contains

two non-smooth terms (the ℓ1 term and the nuclear norm

term). Our overall algorithms are based on an augmented

Lagrangian methods (ALM) [4, 22, 30], with special de-

signs for the subproblem solvers.

First, we re-write (2) in the equality constrained form:

min
E,X
‖PΩ(E)‖1 + λ1‖X‖∗ +

λ2

2
‖XR‖2F . (3)

s.t. Y = X + E. (4)

The augmented Lagrangian method (ALM) tackles the

inequality constraints indirectly by introducing Lagrange

multipliers and a quadratic penalty to control deviations
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from the equality constraint. The unconstrained objective

in our case is

L(X,E,Z, µ) =‖PΩ(E)‖1 + λ1‖X‖∗ +
λ2

2
‖XR‖2F

+ 〈Z, Y −X − E〉+
µ

2
‖Y −X − E‖2F ,

where Z are the Lagrange multipliers corresponding to the

equalities and µ is the quadratic penalty weight. A quadratic

penalty function alone, requires that the penalty parameter

µ tends to infinity whereas the Lagrangian term allows one

to update the Lagrangian multipliers, thereby enabling the

penalty parameter to remain finite. The general framework

of ALM works as follows: at each iteration r we solve the

following problem:

{Xr+1, Er+1} = argmin
X,E

L(X,E,Zr, µr). (5)

Then we update the dual variables Z as

Zr+1 = Zr + µr(Y −Xr+1 − Er+1), (6)

and also3 increase the penalty parameter µ via

µr+1 = ρµr. (7)

The update for the multipliers, (6), can be determined by

differentiating the augmented Lagrangian with respect to Z

and comparing coefficients with a Lagrangian form.

The augmented Lagrangian method is often efficient and

robust, however, each iteration involves solving the sub-

problem (5). We describe two inexact algorithms to acceler-

ate the optimization process: the inexact proximal gradient

(IPG), and the alternating minimization (ALT) algorithms,

both of which use shrinkage operators [3, 31].

4.1. Shrinkage Operators

We write Sλ(X) for the elementwise soft-thresholding

operators, [Sλ(X)]ij = sign(xij)(|xij | − λ)+ and the sin-

gular value thresholding SVTη(X) = USη(Σ)V
⊤, where

X = UΣV ⊤ is the singular value decomposition of X .

4.2. Inexact Proximal Gradient

In the inexact proximal gradient algorithm (which is
summarized in Algorithm 2), we only update X and E once
to avoid many expensive SVD computations. Given the
current Er, Zr, µr, we minimizing the following objective
with respect to Xr:

L(X) = λ1 ‖X‖∗ + f(X),where

f(X) =
λ2

2
‖XR‖2F + 〈Zr

, Y −X − E
r〉

+
µr

2
‖Y −X − E

r‖2F

3Mathematical optimizers would only update one or the other, depend-

ing on conditions of feasibility versus stationarity, see for example [10]

Algorithm 2: ALM-IPG: Inexact Proximal gradient

method for optimizing (4).

Input: Observation set Ω and data Y ;

regularization parameters λ1, λ2.

Output: Recovered matrix X .

while not converged do

Updating X using (8) ;

Updating E using (9) ;

Updating Z using (6) ;

Updating µ using (7).

end

Since f(X) is quadratic we can also write it in the follow-

ing forms

f(X) =
1

2
trace(XHX⊤) + trace(G⊤X) + f(0)

=
1

2
‖XA−B‖2F + f(0)− ‖B‖2F ,

where the Hessian at 0 is represented by H = λ2RR⊤+µI

and the gradient at 0 is G = −Z − µ(Y − E), AA⊤ = H

and B = −GA−⊤.

Introducing the auxilliary function

Q(X, X̂) = F (X) +
c

2
‖X − X̂‖2F −

1

2
‖(X − X̂)A‖2F

we see that Q(X,X) = F (X) and Q(X, X̂) ≥ F (X) if

cI ≻ AA⊤ = H . We can rewrite Q(X, X̂) to clarify how

we can efficiently optimize the function with respect to X .

We have

Q(X, X̂) =λ1‖X‖∗ +
c

2
‖X‖2F

− trace
(

X(AB⊤ −AA⊤X̂ + cX̂)
)

+ const

Completing the square gives

Q(X, X̂) = λ1‖X‖∗ +
c

2
‖X − V ‖2F + const

where

V = X̂ +
1

c
(AB⊤ −AA⊤X̂) = X̂ −

1

c
∇f(X̂).

It follows that the optimum is achieved for

X = SVTλ1/c

(

X̂ −
1

c
∇f(X̂)

)

. (8)

Since the optimum with respect to X̂ is given by X̂ = X

this gives the iteration scheme

Xr+1 = SVTλ1/c

(

Xr −
1

c
∇f(Xr)

)

.
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Algorithm 3: ALM-ALT: Alternating minimization

method for optimizing (4).

Input: Observation set Ω and data Y ;

regularization parameter λ1, λ2, stepsize η.

Output: Recovered matrix X .

while not converged do

while not converged do

Updating U using (11) ;

Updating V using (12) ;

Updating E using (9) ;

end

Updating Z as (6) ;

Updating µ as (7).

end

∇f(Xr) = λ2X
rRR⊤ − Zr − µr(Y −Xr − Er).

The objective with respect to E is:

min
E
‖PΩ(E)‖1 + 〈Z

r, Y −Xr+1 − E〉

+
µr

2
‖Y −Xr+1 − E‖2F ,

with the closed form solution

Eij =

{

S1/µ(Yij −Xr+1
ij + 1

µr
Zr
ij) if (i, j) ∈ Ω

Yij −Xr+1
ij + 1

µr
Zr
ij if (i, j) 6∈ Ω.

(9)

4.3. Alternating Minimization

In this section we describe the alternating least squares

approach (summarized in Algorithm 3) that is SVD free.

This idea is based on the following key observation about

the nuclear norm [15, 35] (see also a simple proof at [37]):

‖X‖∗ = min
X=UV ⊤

1

2
(‖U‖2F + ‖V ‖2F ). (10)

The paper [15] suggested combining the matrix factoriza-

tion equality (10) with the SOFT-IMPUTE approach in [26]

for matrix completion.

For our TECROMAC objective, instead of directly op-

timizing the nuclear norm, we can use the matrix factoriza-

tion identity to solve the following ALM subproblem:

{Ur+1, V r+1, Er+1} = arg min
U,V,E

L(U, V,E, Zr, µr),

where

L(U, V,E, Z, µ) =‖PΩ(E)‖1 +
λ1

2
‖U‖2F +

λ1

2
‖V ‖2F

+
λ2

2
‖UV ⊤R‖2F + 〈Z, Y − UV ⊤ − E〉

+
µ

2
‖Y − UV ⊤ − E‖2F .

Dataset Escalator Lobby Watersurface

MC 0.2760 0.2677 0.9880

RMC 0.2155 0.2465 0.9127

Interpolation 0.0489 0.1151 0.0307

TECMAC 0.0481 0.0646 0.0461

TECROMAC 0.0153 0.0246 0.0045

Table 2. Relative reconstruction error and times of various ap-

proaches

Dataset Escalator Lobby Watersurface

Size 62400 × 200 61440 × 200 61440 × 200

RRE(IPG) 0.0153 0.0246 0.0045

RRE(ALT) 0.0470 0.0219 0.0305

Time(IPG) 147s 441s 156s

Time(ALT) 72s 145s 52s

Table 3. Comparison of accuracy and efficiency of two optimiza-

tion algorithms to solve TECROMAC

We alternate minimizing over U, V and E to optimize the

objective L(U, V,E, Z, µ). To update U and V , we perform

a gradient step:

Ur+1 = Ur − η∇UrL(Ur, V r, Er, Zr, µr) (11)

V r+1 = V r − η∇V rL(Ur+1, V r, Er, Zr, µr), (12)

where

∇UL(U, V,E, Z, µ) =λ1U + λ2UV ⊤RR⊤V

− ZV − µ(Y − UV ⊤ − E)V

∇V L(U, V,E, Z, µ) =λ1V + λ2RR⊤V U⊤U

− Z⊤U − µ(Y − UV ⊤ − E)⊤U.

After obtaining Ur+1, V r+1, we update E by substituting

Xr+1 = Ur+1(V r+1)⊤ into (9).

5. Simulation and quantitive assesment

In this section we present extensive simulation results for

our proposed algorithm. We manually added clouds to some

widely used background modeling videos4. Since for the

simulation we have access to the ground truth Y ∗ (i.e. the

cloud-free video) we can report the relative reconstruction

error (RRE) for our estimation Ŷ (shown in Table 2):

RRE(Ŷ , Y ∗) =
‖Ŷ − Y ∗‖2F
‖Y ∗‖2F

.

The thresholding parameter γ was set to 0.6, the regu-

larization parameters λ1 and λ2 were set to be 20 and 0.5,

4http://perception.i2r.a-star.edu.sg/bk_model/

bk_index.html
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Figure 4. Comparisons of various approaches for cloud removal. 1, Original video. 2, Cloudy video. 3, Cloud detector. 4, Matrix

Completion. 5, Robust Matrix Completion. 6, Interpolation. 7, TECMAC. 8, TECROMAC.
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Figure 5. Cloud removal results on MODIS data. 1, Cloudy video. 2, Cloud detector. 3, MC. 4, Interpolation. 5, TECMAC. 6, TECRO-

MAC.

respectively. These parameter values were used for the ex-

periments in the next section also. The cloud removal and

reconstruction results were shown in Figure 4 (best viewed

in Adobe Reader). We make the following observations:

• The cloud detection algorithm performs well and can

handle the “white background” cases (e.g. some places

in the escalator video) reasonably well;

• On some heavily cloud-contaminated frames, MC and

RMC just output black frames. The temporally con-

tiguous matrix completion approaches handles this is-

sue very well;

• TECROMAC slightly outperforms TECMAC (matrix

completion with temporal continuity constraint added)

in all cases, which verifies that using the robust ℓ1 loss

is a preferred choice.

We also compare the performance and time efficiency of

the propoposed computational algorithms, as summarized

in Table 3, where for ALM-ALT algorithm we use rank 20.

As we can see, ALM-ALT generally is more efficient than

ALM-IPG, while slightly sacrificing the recovery accuracy

by adopting a non-convex formulation.

6. Experiments on satellite image sequences

We also tested our algorithm on the real world MODIS

satellite data56, where we chose a subset consists of 181 se-

quential images of size 400 × 400. The results are shown

in Figure 5 (best viewed in Adobe Reader). We observe

that our algorithm recovers the background scenes from the

cloudy satellite images very well, and visually produces

much better recovery than existing models.

7. Conclusion

We have presented effective algorithms for cloud re-

moval from satellite image sequences. In particular, we pro-

posed the “TECROMAC” (TEmporally Contiguous RO-

bust MAtrix Completion) approach to recover scenes of in-

terest from partially observed, and possibly corrupted ob-

servations. We also suggested efficient optimization algo-

rithms for our model. The experiments demonstrated su-

perior performance of the proposed methods on both sim-

ulated and real world data, thus indicating our framework

potentially very useful for downstream applications of re-

mote sensing with clean satellite imagery.

5Publicly available http://modis.gsfc.nasa.gov/data/
6For more experimental results, please refer to the supplemental file.
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