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Abstract

Person re-identification has been usually solved as ei-

ther the matching of single-image representation (SIR) or

the classification of cross-image representation (CIR). In

this work, we exploit the connection between these two cat-

egories of methods, and propose a joint learning frame-

work to unify SIR and CIR using convolutional neural net-

work (CNN). Specifically, our deep architecture contain-

s one shared sub-network together with two sub-networks

that extract the SIRs of given images and the CIRs of given

image pairs, respectively. The SIR sub-network is required

to be computed once for each image (in both the probe

and gallery sets), and the depth of the CIR sub-network

is required to be minimal to reduce computational burden.

Therefore, the two types of representation can be jointly op-

timized for pursuing better matching accuracy with moder-

ate computational cost. Furthermore, the representations

learned with pairwise comparison and triplet comparison

objectives can be combined to improve matching perfor-

mance. Experiments on the CUHK03, CUHK01 and VIPeR

datasets show that the proposed method can achieve favor-

able accuracy while compared with state-of-the-arts.

1. Introduction

Person re-identification is the task of matching two

pedestrian images from different viewpoints [11]. It has

attracted increasing interests and encouraged considerable

efforts in recent years due to its broad applications in video

surveillance [34, 33]. This problem, however, is still very

challenging and deserves further studies, because of the

large variations in illumination, poses, viewpoints and back-

ground of pedestrian images.

The task of person re-identification can be accomplished

by two categories of methods: (i) distance or similarity

measures on single-image representation, which is the rep-
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Figure 1. The sketch of the network for learning the single-image

and cross-image representations.

resentation of a given image [13, 14, 16, 28, 20, 17, 26, 7]

and (ii) classification on cross-image representation, which

is the representation of an image pair [19, 1, 24]. For

the first category of methods, single-image representation

(SIR) is first obtained using either hand-crafted feature

[13, 14, 16, 28, 20, 17, 40, 36, 21, 22] or deep convolu-

tional neural network (CNN) approaches [7, 37, 38], and

then a distance measure together with a threshold is utilized

to predict whether two pedestrian images are matched or

not. For the second category of methods, after obtaining the

cross-image representation (CIR), person re-identification

can be regarded as an ordinary binary classification task

[1, 19, 4, 24].

These two categories of methods have their own advan-

tages. The SIR has some outstanding advantages in terms

of efficiency. Given a gallery set of N images, one can pre-

compute their SIRs in advance. In the matching stage, we

only need to extract the SIR of the probe image and compute

1288



its distances to the SIRs of the gallery images, while for CIR

classification method we need to extract the CIR between

the probe image and each gallery image (i.e., N times). On

the other hand, compared with SIR, CIR is effective in cap-

turing the relationships between the two images, and sev-

eral approaches have been suggested to address horizonal

displacement by local patch matching. Therefore, the SIR

and CIR have their respective advantages and this finding

inspires us to investigate a comprehensive way of combin-

ing these two representations in terms of both effectiveness

and efficiency.

In this work, we study the connection between SIR and

CIR, and propose a joint learning framework with deep C-

NN to exploit the advantages of these two categories of rep-

resentation methods. Denote by xi and xj two pedestri-

an images. We adopt the following classifier based on the

cross-image representation g(xi,xj):

SCIR (xi,xj) = w
T g (xi,xj)− b (1)

and use the Euclidean distance to measure the dissimilarity

between the SIRs of xi and xj :

SSIR (xi,xj) = ‖f (xi)− f (xj)‖
2

2
(2)

where (w, b) is the parameter of the classifier, f (xi) and

f (xj) are the SIRs of xi and xj , respectively, and ‖�‖
2

de-

notes the L2 norm. With SSIR (xi,xj), a threshold tS is

introduced to predict whether the two pedestrian images are

from the same person.

We show that classification on CIR is the generaliza-

tion of conventional similarity measures based on SIR.

Denote by [�]vec the vector form of a matrix. Us-

ing the Euclidean distance in (2) as an example, it is

obvious to see that SSIR (xi,xj) is a special case of

SCIR (xi,xj) with w = [I]vec, b = tS , and g (xi,xj) =

[(f(xi)− f(xj)) (f(xi)− f(xj))
T ]

vec
, where I is the i-

dentity matrix. As illustrated in Sect. 3.1, other distance

or similarity measures [20, 3] are also special cases of CIR.

By using the deep CNN architecture, we propose a

framework to jointly learn SIR and CIR for improving

matching performance with the least increase of the com-

putational cost. As illustrated in Fig. 1, our network con-

sists of three sub-networks, i.e. first one shared sub-network

and followed by two sub-networks for extracting SIR and

CIR features, respectively. To save the computational cost,

we can store the CNN feature maps from the shared sub-

network of the gallery images in advance, and reduce the

depth of the CIR sub-network to include only one convolu-

tional layer and one fully-connected layer. In the test stage,

the shared feature maps and SIR of each probe image are

required to be computed one time, and only the CIR sub-

network is used to compute the CIR between the probe im-

age and each gallery image. Thus we can exploit the CIR

to improve the matching accuracy, while exploiting the SIR

and shared sub-network to reduce the computational cost.

Furthermore, we extend our model by utilizing two d-

ifferent deep CNNs for joint SIR and CIR learning based

on either pairwise comparison objective or triplet compar-

ison objective, respectively. For the pairwise comparison

based network, we learn the CIR by standard support vec-

tor machine (SVM) [32]. For the triplet comparison based

network, we learn the CIR by ranking SVM (RankSVM)

[30]. Finally we combine the matching scores of these two

networks together as the similarity of the image pair.

Experiments have been conducted on several public

datasets for person re-identification, i.e. CUHK03 [19],

CUHK01 [18] and VIPeR [12]. The results show that, join-

t SIR and CIR learning is effective in improving the per-

son re-identification performance, and the matching accura-

cy can be further boosted by combining the learned models

based on pairwise and triplet comparison objectives. Com-

pared with the state-of-the-art approaches, the proposed

methods perform favorably in person re-identification.

The rest of this paper is organized as follows. Section 2

reviews the related work. Section 3 describes the proposed

model. Section 4 presents the deep network architecture.

Section 5 reports the experimental results, and Section 6

concludes this paper.

2. Related Work

The existing person re-identification methods can be

divided into two categories depending on whether they

use the hand-crafted or deep CNN features. There have

been many kinds of hand-crafted features used for per-

son re-identification, including local binary patterns (LBP)

[36, 16], color histogram [16] and local maximal occur-

rence (LOMO) [21, 22]. For the methods based on hand-

crafted features, they usually focus on learning an effective

distance/similarity metric to compare the features. For the

methods based on deep CNN features, feature representa-

tion and classifier can be jointly optimized for learning ei-

ther SIR or CIR features. This section will provide a brief

review on these methods.

2.1. Metric Learning for Person Re­identification

Many distance metric learning methods have been devel-

oped for person re-identification. They aim to learn a dis-

tance metric to reduce the distance of the matched images,

and enlarge the distance of the mismatched images. Among

the existing distance metric learning methods, some of them

are based on pairwise comparison constraint. Guillaumin et

al. proposed a logistic discriminant metric learning (LDM-

L) model by modeling the probability of a given sample

pair (xi,xj) and used the maximum log-likelihood as the

objective function [13]. Following the keep-it-simple-and-

straight forward (KISS) principle, Köstinger et al. proposed
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a KISS metric learning (KISSME) method to address the

scalability issue of metric learning from equivalence con-

straints [16]. Li et al. developed a generalized similarity

metric for person re-identification by introducing an adap-

tive threshold into Mahalanobis distance [20]. Li and Wang

introduced the locally aligned feature transform to match

the person images across camera views [17]. Liao et al.

improved the KISSME method by learning a discriminant

low dimensional subspace [21] based on the LOMO fea-

tures. They also improved the LDML model by enforc-

ing the positive semidefinite constraint and the asymmet-

ric sample weighting strategy [22]. Some other works, in-

cluding pairwise constrained component analysis (PCCA)

[28], local Fisher discriminant analysis (LFDA) [29] and

information-theoretic metric learning (ITML) [5], are also

based on the pairwise comparison constraints.

Apart from the methods based on pairwise comparison

constraints, some other methods are based on the triplet

comparison constraints. Weinberger et al. proposed a large

margin nearest neighbor (LMNN) model [35], where the

distance metric is learned to separate the matched neigh-

bors from the mismatched ones by a large margin. Dikmen

et al. improved LMNN by adding the option of rejection [6].

Zheng et al. developed a person re-identification model by

maximizing the likelihood that each sample is more closed

to its matched sample than its mismatched sample [43].

2.2. Deep Learning for Person Re­identification

Due to the power of deep CNNs in learning discrimi-

native features from large-scale image data, many methods

have adopted the deep architecture to jointly learn the rep-

resentation and the classifier [1, 4, 19, 37, 31]. Some of

them focus on learning the SIR together with the similarity

function. Schroff et al. proposed a FaceNet model for face

verification [31], which adopts a deep CNN to learn the Eu-

clidean embedding per image by using the triplet compari-

son loss. Online triplet generation is also developed to grad-

ually increase the difficulty of the triplets in training. Ding

et al. proposed a deep SIR learning model based on relative

distance comparison for person re-identification [7]. It first

presents an effective triplet generation strategy to construc-

t triplets, which contains one image with a matched image

and a mismatched image. For each triplet, this model learn-

s the SIR by maximizing the relative distance between the

matched pair and the mismatched pair.

Despite learning SIR, some other methods are suggest-

ed to perform person re-identification based on CIR. Li et

al. proposed a filter pairing neural network (FPNN) [19],

which learns the CIRs by a patch matching layer followed

by a maxout-grouping layer. In FPNN, the patch matching

layer is used to model the displacement of each horizontal

stripe in the images across views, the maxout-grouping lay-

er improves the robustness of patch matching, and finally a

softmax classifier is imposed on the learned CIR for person

re-identification. The work in [1] shares the similar idea, but

introduces a new layer to learn the cross-image represen-

tation by computing the neighborhood difference between

two input images. The work in [4] learns the CIR by for-

mulating the person re-identification task as a learning-to-

rank problem. For each image pair, this model first stitchs

its two images horizontally to form a holistic image, then

feeds these images to a CNN to learn their representations.

Finally the ranking loss is used to ensure that each sam-

ple is more similar to its positive matched image than its

negative matched image. Liu et al. proposed a Matching C-

NN (M-CNN) architecture for human parsing [24], which

learns the CIR of the image and a semantic region by a

multi-layer cross image convolutional path to predict their

matching confidence and displacements.

There are considerable differences between the proposed

deep architecture and the previous networks. First, both SIR

and CIR can be jointly learned with the proposed deep ar-

chitecture, while only SIR is learned in [31, 7] and only

CIR is learned in [24, 19, 4, 1]. Second, to improve the

computational efficiency, we restrict the depth of the CIR

sub-network with only a convolutional layer and a fully-

connected layer. In contrast, multiple convolutional and

fully-connected layers are adopted in [24, 19, 4, 1] for CIR

learning. Besides, we present two deep CNN architectures

for joint SIR and CIR learning based on pairwise and triplet

comparison objectives, respectively, and the matching s-

cores of these two networks can be combined to improve

the matching accuracy.

3. Joint SIR and CIR Learning

In this section, we first discuss the connections between

SIR and CIR, then propose two formulations (i.e. pairwise

comparison formulation and triplet comparison formula-

tion) for joint SIR and CIR learning, and finally introduce

the matching scores for person re-identification.

3.1. Connection between SIR and CIR

With the SIR features, there are four commonly used dis-

tance/similarity measures for person re-identification, i.e.

Euclidean distance, Mahalanobis distance, joint Bayesian

[3], and LADF [20]. As explained in Sect. 1, Euclidean

distance on SIRs can be regarded as a special case of CIR-

based classification. In the following, we will show that the

other measures are also special cases of CIR-based classifi-

cation.

The Mahalanobis distance based on the SIR zi = f (xi)

can be formulated as s (xi,xj) = (zi − zj)
T
M (zi − zj),

where M is positive semi-definite. This formulation is

equivalent to (1) when w = [M]vec and g (xi,xj) =
[

(zi − zj) (zi − zj)
T
]

vec
.
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The joint Bayesian formulation [3] is defined as follows,

s (xi,xj) = z
T
i Azi + z

T
j Azj − 2zTi Gzj (3)

which is the generalization of Mahalanobis distance.

By setting w =
(

[A]
T

vec [G]
T

vec

)T

and g (xi,xj) =
(

[

ziz
T
i + zjz

T
j

]T

vec

[

−2zjzTi
]T

vec

)T

in (1), joint Bayesian

can be regarded as a classifier w on the CIR g(xi,xj).
The LADF [20] is defined as follows,

s (xi,xj) =
1

2
z
T
i Azi +

1

2
z
T
j Azj + z

T
i Bzj

+ c
T (zi + zj) + b

(4)

which is the generalization of Mahalanobis distance and

joint Bayesian. It can also be viewed as a special case of

(1) when w = ([A]Tvec [B]Tvec c
T b)

T
and g(xi,xj) =

(

1

2

[

ziz
T
i + zjz

T
j

]T

vec

[

zjz
T
i

]T

vec
(zi + zj)

T
1
)T

.

Despite the connections between SIR and CIR, they do

have their own advantages and can be combined to improve

the matching performance. For the SIR-based method, the

SIR features of the gallery set can be precomputed in ad-

vance. For each probe image, we only require extract its

SIR and compute its distance/similarity measure to the pre-

computed SIRs from the gallery images, making SIR com-

putationally efficient for person re-identification. The CIR-

based method can effectively model the complex relation-

ships between the gallery and probe images, and is robust to

spatial displacement and changed views. In the following,

we will investigate the loss for joint SIR and CIR learning

and design proper network architecture by considering both

accuracy and efficiency factors.

3.2. Pairwise Comparison Formulation

Denote by {((xi,xj) , hij)} the doublet training set,

where xi and xj are the ith and jth training samples, re-

spectively. hij is the label assigned to the doublet (xi,xj).
If xi and xj are from the same class, then hij = 1, other-

wise hij = −1. Let f (xi) be the SIR of xi and bSIR be a

distance threshold. In the pairwise comparison formulation,

the similarity of the positive pair is expected to be higher

than a given threshold, while the similarity of the negative

pairs is expected to be lower than the threshold. The Eu-

clidean distance of the SIRs for any doublet (xi,xj) should

satisfy the constraints as follows:

‖f (xi)− f (xj)‖
2

2
≤ bSIR − 1 + ξPij if hij = 1

‖f (xi)− f (xj)‖
2

2
≥ bSIR + 1− ξPij if hij = −1

(5)

where ξPij is a nonnegative slack variable. Then the loss

function of SIR learning is

LP
SIR =

∑

i,j

[

1 + hij

(

‖f (xi)− f (xj)‖
2

2
− bSIR

)]

+
(6)

where [z]
+
= max (z, 0).

The CIR learning can be formulated as a binary classi-

fication problem, where the CIR for any doublet (xi,xj)
should satisfy the constraints:

w
T g (xi,xj) ≤ bCIR − 1 + ζPij if hij = 1

w
T g (xi,xj) ≥ bCIR + 1− ζPij if hij = −1

(7)

where bCIR is the threshold and ζPij is a nonnegative slack

variable. We use the loss function of the standard SVM

[32] to learn CIR:

LP
CIR =

αP

2
‖w‖

2

2
+
∑

i,j

[

1 + hij

(

w
T g (xi,xj)− bCIR

)]

+
.

(8)

where αP is a trade-off parameter, and we set αP = 0.0005
in the experiments.

The overall loss function of pairwise comparison based

representation learning method is the combination of (6)

and (8):

LP = LP
SIR + ηPL

P
CIR (9)

where ηP is a trade-off parameter and we set ηP = 1 in our

experiments.

3.3. Triplet Comparison Formulation

The triplet comparison formulation is trained on a series

of triplets (xi,xj ,xk), where xi and xj are from the same

class, while xi and xk are from different classes. To make

the distance between xi and xj smaller than the one be-

tween xi and xk, for any triplet (xi,xj ,xk) the SIR should

satisfy the following constraint:

‖f (xi)− f (xk)‖
2

2
−‖f (xi)− f (xj)‖

2

2
≥ 1−ξTijk (10)

where ξTijk is a nonnegative slack variable. Then the loss

function of SIR learning is

LT
SIR =

∑

i,j,k

[

1− ‖f (xi)− f (xk)‖
2

2
+ ‖f (xi)− f (xj)‖

2

2

]

+

(11)

The CIR learning can be formulated as a learning-to-rank

problem, where the CIRs should satisfy the following con-

straint:

w
T g (xi,xk)−w

T g (xi,xj) ≥ 1− ζTijk (12)

where ζTijk is a nonnegative slack variable. We use the loss

function of the RankSVM [30] to learn CIR:

LT
CIR =

αT

2
‖w‖2

2
+
∑

i,j,k

[

1 +w
T g (xi,xk)−w

T g (xi,xj)
]

+

(13)

where αT is a trade-off parameter, and we set αT = 0.0005
in the experiments.
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The overall loss function of triplet comparison based

learning method is the combination of (11) and (13):

LT = LT
SIR + ηTL

T
CIR (14)

where ηT is a trade-off parameter and we set ηT = 1 in our

experiments.

3.4. Prediction

We use both of SIR and CIR for matching. For the

given image pair (xi,xj), we take the Euclidean distance

‖f (xi)− f (xj)‖
2

2
as the indicator of the SIRs, and take

w
T g (xi,xj) as the indicator of the CIR. In this view, we

use the combination of these indicators, which is as follows,

S (xi,xj) = ‖f (xi)− f (xj)‖
2

2
+ λwT g (xi,xj) (15)

where λ is the trade-off parameter. This parameter can be

selected by cross validation. In the experiments, we set it as

λ = 0.7 in the pairwise comparison model, and λ = 1 in

the triplet comparison model. We compare S (xi,xj) with

a threshold t to decide whether these two images xi and xj

are matched or not. If S (xi,xj) < t, then xi and xj are

matched, otherwise they are not matched.

We also combine the matching scores of the learn-

ing models based on pairwise and triplet comparison

formulations, which are denoted by SP (xi,xj) and

ST (xi,xj), respectively. The combined matching score is

SP&T (xi,xj) = SP (xi,xj) + µST (xi,xj), where µ is a

trade-off parameter and we set it as µ = 0.5 in the experi-

ments.

4. Deep Convolutional Neural Network

4.1. Network Architecture

Instead of using the hand-crafted image features, we

jointly learn the SIRs and CIRs using a deep CNN. For the

pairwise comparison formulation, we learn the SIRs (f (xi)
and f (xj)) and CIR g (xi,xj) for the image pair (xi,xj).
For the triplet comparison formulation, we learn the SIRs

(f (xi), f (xj) and f (xk)) and the CIRs (g (xi,xj) and

g (xi,xk)) for the image triplet (xi,xj ,xk). The deep ar-

chitectures of the pairwise and triplet comparison models

are illustrated in Fig. 2 and Fig. 3, respectively. Each of

these two networks consists of a SIR learning sub-network

(green part), a CIR learning sub-network (red part), and a

sub-network shared by SIR and CIR learning (blue part).

For each of the probe and gallery images, its CNN fea-

ture maps (yellow part) from the shared sub-network and

the SIR feature are computed once. Only the CIR learn-

ing sub-network is used to extract the CIR features for each

image pair of probe image and gallery image.

Shared sub-network. The sub-network in the blue part

of Figs. 2 and 3 is shared by SIR learning and CIR learn-

ing. It consists of two convolutional layers with rectified

linear unit (ReLU) activation. Each of them is followed by

a pooling layer. The kernel sizes of the first and second con-

volutional layers are 5×5 and 3×3, respectively. The stride

of the convolutional layers is 1 pixel. The kernel sizes of the

first and second pooling layers are set to 3 × 3 and 2 × 2,

respectively.

SIR sub-network. We use the sub-network in the green

part of Figs. 2 and 3 to learn the SIR f (xi) for the in-

put image xi. This sub-network contains one convolutional

layers with ReLU activation, a pooling layer and two fully-

connected layers. The kernel sizes of the convolutional lay-

er and the pooling layer are 3× 3 and 2× 2. The output di-

mensions of these two fully-connected layers are 1000 and

500, respectively. For the pairwise and triplet comparison

model, there are two and three sub-networks, which share

the same parameter, to learn the SIR, respectively.

CIR sub-network. We use the sub-network in the red

part of Figs. 2 and 3 to learn the CIR g (xi,xj) for the input

image pair (xi,xj). This sub-network contains one convo-

lutional layer with ReLU activation followed by one pool-

ing layer and one fully-connected layer. The kernel sizes

of the convolutional layer and the pooling layer are 3 × 3
and 2×2. The output dimension of the fully-connected lay-

er is 1000. Denote by φp (xi) the pth channel of the CNN

feature map of xi from the shared sub-network. When we

extract the CIR of (xi,xj), the CIR sub-network is feeded

by the CNN feature maps of xi and xj from the shared sub-

network. The first convolutional layer of CIR sub-network

is used to compute the cross-image feature map as follows

ϕr (xi,xj) =max
(

0, br +
∑

q

kq,r ∗ φq (xi)

+ lq,r ∗ φq (xj)
)

,

(16)

where ϕr (xi,xj) is the rth channel of cross-image feature

map, kq,r and lq,r are different convolutional kernels of the

qth channel of the shared sub-network feature map and the

rth channel of cross-image feature map. The similar opera-

tion has also been used in [24].

4.2. Network Training

There are three main steps in the training process, in-

cluding data preprocessing, doublet/triplet generation and

network training. Like most of the deep models, back prop-

agation (BP) is utilized to train the proposed network. The

details of the first two steps are described as follows.

Data preprocessing. To make the model robust to the

image translation variance, we randomly crop the input im-

ages before the training process. The original image size

in our experiment is 180 × 80 pixels. We randomly select

the cropped image center from [80, 100]× [30, 50] and crop

the original image to 160 × 60 pixels. We also enlarge the
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Figure 2. The proposed deep architecture of the pairwise comparison model (best viewed in color)
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Figure 3. The proposed deep architecture of the triplet comparison model (best viewed in color)

training set by creating the horizontal mirror of each train-

ing images.

Doublet/triplet generation based on mini-batch strat-

egy. Since the training set may be too large to be loaded into

the memory, we divide the training set into multiple mini-

batches. Following the strategy in [7], for each iteration,

we randomly select 80 classes from the training set, and

construct 60 doublets or triplets for each class. Using this

strategy, we can generate 4,800 doublets or triplets in each

round of training. For the SIR learning, we use all of the

4,800 doublets or triplets in training. For the CIR learning,

we randomly select 100 doublets or triplets for training.

5. Experiments

In this section, we evaluate the proposed method using

three person re-identification datasets, i.e. CUHK03 [19]1,

1http://www.ee.cuhk.edu.hk/˜rzhao/

CUHK01 [18]1 and VIPeR [12]2. The proposed method is

implemented based on the Caffe framework [15]. We set

the momentum as γ = 0.5 and set the weight decay as µ =
0.0005. We train the network for 150,000 iterations. It takes

about 28-34 hours in training with a NVIDIA Tesla K40

GPU. The learning rates of pairwise and triplet comparison

models are 1 × 10−3 and 3 × 10−4 before the 100,000th

iteration, respectively. After that their learning rates reduce

to 1× 10−4 and 3× 10−5.

5.1. CUHK03 Dataset

The CUHK03 dataset contains 14,096 pedestrian im-

ages, which were taken from 1,467 persons by two surveil-

lance cameras [19]. Each person has 4.8 images on average.

All of the images are collected from five video clips. The

dataset provides both the manually cropped bounding box

2http://vision.soe.ucsc.edu/projects
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Model SIR CIR Combined

Pairwise 37.15 35.70 43.36

Triplet 43.23 43.46 51.33

Combined 44.35 45.40 52.17

Table 1. The rank-1 accuracies (%) of the proposed pairwise and

triplet comparison models

Model SIR SIR&CIR

Pairwise 24h18m 28h25m

Triplet 29h33m 33h27m

Table 2. The training times of the proposed pairwise and triplet

comparison models

and the automatically cropped bounding box with a pedes-

trian detector [9]. Here we use the images cropped by the

pedestrian detector in our experiments. Following the test-

ing protocol in [19], the identities in this dataset are ran-

domly divided into non-overlapping training and test set.

The training set consists of 1,367 persons and the test set

consists of 100 persons. By this strategy, 20 partitions of

training and test set are constructed. The reported cumula-

tive matching characteristic (CMC) curve and accuracy are

averaged by these 20 groups. For each person in the test set,

we randomly select one camera view to construct the probe

set, and use one image from another camera view as the

gallery set. By this way we construct 10 pairs of probe and

gallery sets for testing. The result is averaged by these 10

groups. The reported results of CUHK03 dataset are based

on single-shot setting.

First, we report the accuracies of different settings of the

proposed pairwise and triplet comparison models in Table

1. For each of the pairwise and triplet comparison models,

we report the matching accuracies by SIR and CIR, respec-

tively. The CMC curves of these settings are in the supple-

mentary material. From the results, we can see that the SIR

and CIR based matching have comparable results. Howev-

er, their combination achieves a higher accuracy than either

of them. The accuracy of triplet comparison model is high-

er than pairwise comparison model, and their combination

also outperforms either of them. We also report the training

time of the proposed model in Table 2. Compared with SIR

learning, the proposed joint SIR and CIR learning model

can achieve substantial improvement of matching accuracy

with slight increase of training time.

Second, we investigate the sensitivity of rank-1 accura-

cy to the trade-off parameter λ in (15). Fig. 4 shows the

curves of rank-1 accuracy on the test set versus λ. It can be

observed that the pairwise and triplet comparison models

reach the highest accuracies when λ = 0.7 and 1, respec-

tively.

We also compare the performances of the proposed

method and some other state-of-the-art methods, including

Euclidean distance, ITML [5], LMNN [35], metric learn-

ing to rank (RANK) [27], LDML [13], symmetry-driven
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Figure 4. Rank-1 accuracy versus λ in the CUHK03 dataset (best

viewed in color)
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5.14% ITML

6.25% LMNN

8.52% RANK

10.92% LDML

4.87% SDALF

7.68% eSDC

11.70% KISSME

44.96% Ahmed et al.

46.25% LOMO+XQDA

43.36% Ours(Pairwise)

51.33% Ours(Triplet)

52.17% Ours(Combined)

Figure 5. The rank-1 accuracies and CMC curves of differen-

t methods on the CUHK03 dataset [1] (best viewed in color)

accumulation of local features (SDALF) [8], eSDC [41],

KISSME [16], FPNN [19], the work by Ahmed et al. [1],

and LOMO+XQDA [21]. Fig. 5 illustrates the CMC curves

and the rank-1 accuracies of these methods. We can see

that the rank-1 accuracy of the proposed method can reach

52.17%, which is 5.92% higher than the second best perfor-

mance method (LOMO+XQDA).

5.2. CUHK01 Dataset

The CUHK01 dataset consists of 3,884 pedestrian im-

ages taken by two surveillance cameras from 971 persons.

Each person has 4 images. This dataset has been randomly

divided into 10 partitions of training and test sets, and the

reported CMC curves and rank-1 accuracies are averaged

on these 10 groups.

Following the protocol in [1], we use 871 persons for

training and 100 persons for testing. We pretrain the

deep network using CUHK03 dataset for 100,000 itera-

tions, and fine-tune the CNN using the training set of

CUHK01 for 50,000 iterations. On the basis of the single-

shot setting, we report the CMC curves and rank-1 ac-
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Figure 6. The rank-1 accuracies and CMC curves of differen-

t methods on the CUHK01 dataset [1] (best viewed in color)

curacies of the proposed model (marked as “Ours (Pair-

wise/Triplet/Combined, Pretrain)”) and the other state-of-

the-art person re-identification methods, including FPNN

[19], Euclidean distance, ITML [5], LMNN [35], RANK

[27], LDML [13], SDALF [8], eSDC [41], KISSME [16],

and the work by Ahmed et al. [1] in Fig. 6. The rank-1 ac-

curacy of the proposed method is much higher than the oth-

er competing methods. We also report the result using the

same setting in [1] without pre-training (marked as “Ours

(Pairwise/Triplet/Combined)”). In this setting, the rank-1

accuracy of the proposed method is much higher than most

of the competing methods and is comparable to [1].

5.3. VIPeR Dataset

The VIPeR dataset consists of 1,264 images from 632

persons [12]. These images are taken by two camera views.

We randomly select 316 persons for training, and use the

rest 316 persons for testing. For each person in the test

set, we randomly select one camera view as the probe set,

and use the other camera view as the gallery set. Follow-

ing the testing protocol in [1], we pretrain the CNN using

CUHK03 and CUHK01 datasets, and fine-tune the network

on the training set of VIPeR. We report the CMC curves

and rank-1 accuracies of local Fisher discriminant analysis

(LF) [29], pairwise constrained component analysis (PC-

CA) [28], aPRDC [23], PRDC [43], enriched BiCov (eBi-

Cov) [25], PRSVM [2], and ELF [10], saliency matching

(SalMatch) [40], patch matching (PatMatch) [40], locally-

adaptive decision function (LADF) [20], mid-level filters

(mFilter) [42], visWord [39], the work by Ahmed et al. [1],

the proposed model, etc. The proposed method perform-

s better than most of the other competing methods except

mFilter [42]+LADF [20], which is the combination of two

methods.
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Figure 7. The rank-1 accuracies and CMC curves of differen-

t methods on the VIPeR dataset [1] (best viewed in color)

6. Conclusion

In this work, we propose an approach for person re-

identification by joint SIR and CIR learning. Since SIR is

efficient in matching, while CIR is effective in modeling

the relationship between probe and gallery images, we fuse

their losses together to utilize the advantages of both these

representations. We present a pairwise comparison formu-

lation and a triplet comparison formulation for joint SIR and

CIR learning. For each of these two models, we formu-

late a deep neural network to jointly learn the SIR and CIR.

Experimental results validate the efficacy of joint SIR and

CIR learning, and the proposed method outperforms most

of the state-of-the-art models in the CUHK03, CUHK01

and VIPeR datasets. In the future, we will investigate other

ways to integrate SIR and CIR learning (e.g., explicit mod-

eling on patch correspondence), and study model-level fu-

sion from pairwise and triplet comparisons.
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