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Abstract

Recent shadow detection algorithms have shown ini-

tial success on small datasets of images from specific do-

mains. However, shadow detection on broader image do-

mains is still challenging due to the lack of annotated train-

ing data. This is due to the intense manual labor in an-

notating shadow data. In this paper we propose “lazy an-

notation”, an efficient annotation method where an anno-

tator only needs to mark the important shadow areas and

some non-shadow areas. This yields data with noisy la-

bels that are not yet useful for training a shadow detector.

We address the problem of label noise by jointly learning

a shadow region classifier and recovering the labels in the

training set. We consider the training labels as unknowns

and formulate the label recovery problem as the minimiza-

tion of the sum of squared leave-one-out errors of a Least

Squares SVM, which can be efficiently optimized. Exper-

imental results show that a classifier trained with recov-

ered labels achieves comparable performance to a classi-

fier trained on the properly annotated data. These results

suggest a feasible approach to address the task of detecting

shadows in an unfamiliar domain: collecting and lazily an-

notating some images from the new domain for training. As

will be demonstrated, this approach outperforms methods

that rely on precisely annotated but less relevant datasets.

Initial results suggest more general applicability.

1. Introduction

The problem of single image shadow detection has been

widely studied. Early work such as the illumination invari-

ant approaches [5, 6] are based on physical modeling of the

illumination and shadowing phenomena [20, 21]. These

physics-based methods only work well with high quality

images. In contrast, statistical learning approaches (e.g.,

[9, 15, 23, 29, 31]) have shown significant success in detect-

ing shadows in consumer-grade photos and web quality im-

ages. The performance of these methods, however, depend

on the quality and quantity of training images. Guo et al.

[9], Zhu et al. [31] were the firsts to collect sizable datasets

of images with annotated shadows, which are referred to as

the UCF and UIUC datasets respectively. These two pub-

licly available datasets have been used to develop several

shadow detection methods [13, 14, 17, 28, 29], and stag-

gering progress has been made in the past few years. How-

ever, these two datasets are small, and the methods trained

on them do not generalize well to new domains (e.g., see

[10] for poor cross-dataset performance analysis). Unfor-

tunately, there is no larger and publicly available shadow

datasets; this is perhaps due to the huge effort required to

properly annotate shadows in images.

In this paper we propose “lazy annotation”, a method

that allows a human annotator to quickly label images to

create shadow datasets. The annotator needs to focus only

on the most relevant shadows in an image and draw several

strokes on the perceived important shadow and non-shadow

areas of the image. We process the input strokes to segment

shadow areas based on image features using the geodesic

convexity image segmentation [8]. Figure 1 shows an ex-

ample of this process, from the annotator’s strokes to the

generated binary shadow mask.

With lazy annotation, it is possible to quickly collect

shadow annotation. The annotation, however, is imper-

fect. Due to the nature of the task, some shadow areas

may be ignored, or imperfectly segmented, as shown in Fig-

ure 1.The resulting annotated data presents noticeable class

label noise; we refer to shadow and non-shadow regions as

positive and negative classes respectively. Label noise is

asymmetric. The negative class contains “dirty negatives”,

corresponding to missed shadows, or poorly segmented re-

gions that contain both shadow and non-shadow pixels. The

positive class is significantly cleaner and more reliable, be-

cause the annotator is asked to label some shadows, so the

shadow regions obtained are generally well segmented.

The presence of label noise in training data has huge im-

pact on the performance of classifiers trained on the data

(e.g., see [7, 32]). To address the problem of noisy labels,

we propose to jointly learn a shadow region classifier and

recover the labels in the training set. Our objective is to re-

duce the level of label noise in the training set so as to min-

imize the generalization error of the learned classifier. Our

framework is based on Least-Squares Support Vector Ma-
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(a) Annotator’s strokes (b) Segmented shadows (c) Binary shadow mask

Figure 1. Lazy annotation pipeline for efficient labeling of shadow images. a) An annotator is asked to draw some strokes on some (not

all) shadow areas (white strokes) and non-shadow ares (red strokes). b) Automatically segmented shadow regions. c) Obtained shadow

mask, mostly good with a few exceptions where some shadow regions are mis-labeled as non-shadow. Subsequently, the noisy labels are

corrected using the label recovery method proposed in this paper.

chines (LSSVM). LSSVM has a closed-form solution, and

the leave-one-out error of LSSVM is a linear function of the

training labels. To jointly learn the classifier and recover the

labels, we consider the training labels as unknowns and for-

mulate the problem as the minimization of the leave-one-

out error. This leads to a binary quadratic programming

problem where we can constrain the fraction of originally

labeled positive and negative instances that are flipped.

To validate our approach, we “lazily annotated” the

UIUC and UCF training sets. Experimental results show

that a classifier trained with recovered labels achieved com-

parable performance to a classifier trained on the original,

properly annotated datasets. Our label recovery method im-

proves the accuracy of classifiers trained on “lazy” labels by

10% and 3%, in the UIUC and UCF datasets respectively.

We show experimentally that label recovery is robust up to

significant levels of label noise in the training set.

We also present here a new test set with carefully anno-

tated shadow labels. We collected images from a wide va-

riety of scene types, some of which, such as snow or beach,

significantly differ from UCF and UIUC contents. As ex-

pected, cross dataset performance of models trained in UCF

or UIUC is reduced in comparison to their respective test

sets. We also collected a new training set that had some

(but not all) similar scenes to the test set and obtained lazy

labels for it. Experimental results show that the classifier

trained on the lazily annotated set performs better than the

models trained on UCF and UIUC datasets with more accu-

rate labels. Using the recovered lazy labels further boosts

the classifier performance by an extra 3.3%. We show some

initial promising results that suggest that our method gener-

alizes to other domains that suffer from label noise.

In summary, we make the following contributions:

1) Propose a new method for fast collection of reasonably

good shadow annotations.

2) Propose a new framework that jointly recovers the true

labels of imperfect annotations and learns a classifier.

3) Demonstrate that efficiently labeling a new training

dataset is better than using models trained on accurately la-

beled datasets with different scene characteristics.

2. Previous Work

2.1. Annotated shadow datasets

Annotated shadow datasets fostered work on shadow de-

tection. However, there are only a few shadow datasets

due to the cumbersome nature of the annotation process.

Shadow annotation is painstaking: the human annotator has

to first identify all the shadows in the image, and then prop-

erly delineate each shadow contour. It takes much time and

attention for the many mouse clicks to create a polyline for

each shadow. Free drawing to trace a shadow contour also

takes considerable effort.

Guo et al. [9] generated a shadow annotation mask by

taking two photographs of the same scene: a photo is taken

with an occluder blocking the light source and casting a

shadow in the scene, then a photo is taken when the oc-

cluder is removed. The shadow mask is generated by com-

paring the two images. Alternatively, they take a second

photo blocking the direct light source. The first approach

is only applicable when the occluder is out of view and re-

movable, whereas the second approach is limited to indoor

environments with sufficient ambient light. Physically set-

ting up the scene and taking the two shots is cumbersome,

and this approach is not applicable to many scenes.

Existing publicly available shadow datasets are small,

and the methods trained on them do not perform well on

other datasets. Guo et al. [9, 10] report the cross-dataset

performance of their model for UIUC and UCF datasets.

The results are alarming but not surprising: a model trained

on UCF training set performs well on the UCF test set, but

not on the UIUC test set (90.2% versus 81.5% accuracy),

and a model for UIUC dataset has much less accuracy when

tested on the UCF test set (10.7% reduction in accuracy).
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2.2. Noisy label recovery

The presence of label noise lowers the performance of

classification tasks [7, 32]. Recent methods that address the

problem of label noise in the data [2, 19, 24, 25] aim to

be robust to noisy labels, and focus on asymptotic behav-

ior with unlimited training data. In contrast, as the training

data is very limited for the shadow detection problem, we

aim to make effective use of noisy labels. Furthermore, our

method obviates the need of assumptions on the nature of

the noise such as constant[24], class-dependent with fixed

probablity [2], limited noise ratios[19].

2.3. Review of Least Squares SVM

Our framework for recovering noisy annotation and

training a classifier is based on Least-Squares Support Vec-

tor Machines (LSSVM) [26], which is also known as ridge

regression [22]. LSSVM has a closed-form solution, which

is a computational advantage over SVM. Furthermore, once

the LSSVM solution has been computed, the solution for

a reduced training set, obtained by removing any training

data point, can be found efficiently. This enables reusing

training data for further calibration, e.g., [11, 12, 29, 30].

This also enables using the training data for correcting the

noisy labels, as proposed in Section 4. This section reviews

LSSVM and the leave-one-out formula.

Given a training set of n data points {xi}
n
i=1

∗ and as-

sociated labels {yi|yi ∈ {0, 1}}ni=1, LSSVM optimizes the

following:

minimize
w,b

λ||w||2 +
n∑

i=1

si(w
Txi + b− yi)

2. (1)

Here si is the instance weight, allowing the assignment

of different weights to different training instances. Let

X = [X;1T
n ],w = [w, b], Ī = [In×n,0n;0

T
n , 0]. Eq. (1)

is equivalent to:

minimize
w

λwT Īw +
n∑

i=1

si(w
Txi − yi)

2. (2)

This is an unconstrained convex quadratic problem, and the

optimal solution is attained where the gradient is zero. The

gradient of Eq. (2) with respect to w is:

2λIw +

n∑

i=1

2si(w
Txi − yi)xi (3)

=2(Xdiag(s)X
T
+ λI)w − 2Xdiag(s)y (4)

∗Bold uppercase letters denote matrices (e.g. K), bold lowercase letters

denote column vectors (e.g. k). ki represents the ith column of the matrix

K. kij denotes the scalar in the row jth and column ith of the matrix K

and the jth element of the column vector ki. Non-bold letters represent

scalar variables. 1n ∈ ℜn×1 is a column vector of ones, and 0n ∈ ℜn×1

is a column vector of zeros.

Let C = (Xdiag(s)X
T
+λĪ) and d = Xdiag(s)y, the op-

timal solution can be found by setting the gradient to zero,

leading to the close-form solution: w = C−1d.

Now, suppose we remove the training instance xi, let

C(i),d(i),w(i) be the corresponding values for removing

xi. We have: w(i) = C−1
(i)d(i), where C(i) = C− si.xix

T
i

and d(i) = d − yisixi. Using the Sherman–Morrison for-

mula, we have:

C−1
(i) = (C− si.xix

T
i )

−1 = C−1 +
C−1sixix

T
i C

−1

1− six
T
i C

−1xi

.

Substituting the above equation to w(i) = C−1
(i)d(i) and de-

veloping the derivation, we get:

w(i) = w + si(C
−1xi)

−yi + xT
i w

1− six
T
i C

−1xi

. (5)

Therefore, the LOO error is:

wT
(i)xi − yi = wTxi − yi + six

T
i C

−1xi

−yi + xT
i w

1− six
T
i C

−1xi

=
wTxi − yi

1− six
T
i C

−1xi

(6)

In summary, let M = C−1X and H = MTX, then:

The weight vector : w = Mdiag(s)y (7)

LOO weight vector: w(i) = w +
(wTxi − yi)si

1− sihii

mi (8)

LOO error = wT
(i)xi − yi =

wTxi − yi

1− sihii

(9)

3. Lazy Annotation

Our objective is to obtain ground truth shadow annota-

tion with minimal effort and time. Generating good annota-

tion typically requires manually segmenting all the shadows

in an image. This task is a painstaking process with a heavy

burden on the annotator. We simplify the annotation task

by redefining its goal. Rather than aiming to segment all

shadows, we instruct the annotator to focus on at least one

shadow area of the image. This typically corresponds to

the most prominent shadow area. We use a semi-automatic

shadow segmentation scheme requiring minimal annotator

input. The annotator only has to draw a few strokes on

shadow areas and a few additional strokes on non shadow

areas. The annotator strokes are processed with the seg-

mentation method of Gulshan et al. [8] to generate a binary

mask.

3.1. Lazy annotation pipeline

We illustrate our lazy annotation pipeline with an exam-

ple image in Figure 2. First, the annotator is instructed to
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(a) Input image (b) Adding shadow strokes

(c) Adding non shadow strokes (d) Initial shadow segmentation

(e) Refined shadow segmentation (f) Output binary mask

Figure 2. Lazy annotation pipeline. a) Input image. b) Annota-

tor’s shadow strokes in white. c) Annotator’s non shadow strokes

in red. d) Initial shadow segmentation in green (outer side) and red

(inner side). e) Refined shadow segmentation with a final shadow

stroke in the lower center of the image. f) Resulting binary mask.

draw a few strokes (2-3) on areas of the image she con-

siders relevant shadows, see Figure 2.b. Then, the anno-

tator draws a few strokes (2-3) on non shadow areas sur-

rounding the shadow, see Figure 2.c. After that, a shadow

segmentation based on the strokes is presented to the an-

notator, see Figure 2.d. Then, the annotator is able to add

a few additional strokes to refine the shadow segmentation

interactively. In Figure 2.e, the additional shadow stroke on

the concrete ground grows the shadow region and even seg-

ments an extra shadow on the brick wall. The shadow mask

resulting from the user annotation is depicted in Figure 2.f.

3.2. Annotation tool

We interactively segment the images using the method of

Gulshan et al. [8]. The method combines geodesic star con-

vexity shape constraints with the Boykov-Jolly [3] energy

formulation for image segmentation based on user strokes

denoting foreground and background. In our case, shad-

ows correspond to foreground. We modify the publicly

available tool [8] to render a more streamlined user inter-

face tailored for our task. Mouse interaction is only re-

quired for brush strokes. The remainder of the interface is

commanded by keystrokes: Switching brush type (shadow

or non shadow stroke), advancing to refinement interactive

stage, and signaling completion. Furthermore, a batch of

images is loaded consecutively one after the next. With this

tool, an annotator is typically able to label an average of 3

images a minute.

3.3. Postprocessing

In this work, we frame shadow detection as a region clas-

sification problem. Hence, we need to generate region la-

bels from the binary mask resulting from the lazy anno-

tation. We followed the region segmentation process pre-

sented by Vicente et al. [28] for shadow detection. First, we

oversegment the image into SLIC [1] superpixels (see Fig-

ure 3.a). Then, we apply Mean-shift clustering in Lab space

and merge connected superpixels in the same cluster into a

larger region, see Figure 3.b.

(a) SLIC superpixels (b) Merged regions

(c) Region over mask (d) Final region ground truth

Figure 3. From lazy shadow mask to region labels. a) Initial

SLIC superpixels. b) Regions obtained by merging superpixels. c)

Lazy mask overlaid on regions. d) Final region ground-truth.

We overlay the binary mask on the segmented regions

(Figure 3.c). If a region contains a majority of shadow pix-

els it is labeled positive, otherwise it is labeled negative.

Overall, the proposed annotation approach is able to gen-

erate reasonably good region labels. Regions labeled as

shadows are generally reliable whereas negatively labeled

regions may contain missed shadows. For example in Fig-

ure 3, a few small shadow regions on the brick wall in the

top left corner of the image are labeled non shadow.

4. Noisy Label Recovery

We pose noisy label recovery as an optimization problem

where the labels of some training examples can be flipped

to minimize the sum of squared leave-one-out errors. Our

formulation exploits the fact that the leave-out-out error of

LSSVM (Sec. 2.3) is a linear function of the labels.

4.1. Formulation

Reconsider the formula for the leave-one-out error given

in Eq. (9), substituting the formula for w given in Eq. (7),
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the leave-one-out error is:

wT
(i)xi − yi =

xT
i Mdiag(s)y − yi

1− sihii

(10)

Let P = diag(s)H and recall H = MTX (Section 2.3).

The leave-one-out error can be shown to be:

wT
(i)xi − yi =

pT
i y − yi

1− pii
(11)

Let ei be the ith column of the identity matrix of size n, and

let ai =
pi−ei

1−pii

, the leave-one-out error becomes: .

wT
(i)xi − yi =

pT
i y − yi

1− pii
= aTi y. (12)

Because the vector ai only depends on the data, the leave-

one-out error is a linear function of the label vector y.

Let P,N be the indexes of (noisy) positive and negative

training instances respectively, i.e., P = {i|yi = 1} and

N = {i|yi = 0}. Our noisy label recovery minimizes the

sum of squared leave-one-out errors:

minimize
y

n∑

i=1

(aTi y)
2 (13)

s.t.
∑

i∈P

yi ≥ α|P|, (14)

∑

i∈N

yi ≤ (1− β)|N |, (15)

yi ∈ {0, 1}. (16)

In the above |P|, |N | are the original number of positive and

negative training instances respectively, and α, β are param-

eters of the formulation (0 ≤ α, β ≤ 1). Constraint (14) re-

quires the proportion of original positive training instances

that remain positive must be greater than or equal α. If

α = 1 none of the positive instances can become negative.

Similarly, Constraint (14) limits the proportion of flipped

negative data points to be at most 1− β.

4.2. Optimization

The optimization problem in Eq. (13) is a quadratic pro-

gram with linear constraints and binary variables, that can

be optimized in two steps. First, we relax the binary con-

straints to find a relaxed solution for y where the entries

are between 0 and 1 instead of being either 0 or 1. Second,

starting from the relaxed solution, we perform block coor-

dinate descent to find an optimal binary solution. In fact,

even though the first step is a quadratic program with linear

constraints, we also optimize it by block coordinate descent,

as this is more efficient than solving the entire problem at

once.

For the optimization problem in either Step 1 or Step 2

(with and without binary constraints), block coordinate de-

scent works as follows. We run the optimization with multi-

ple epochs, each epoch is a complete pass through all train-

ing data. For each epoch, we randomly divide the training

data into multiple batches of a desired batch size. Consider-

ing each batch in turn, we optimize a sub problem that is ob-

tained by fixing all the variables not in the batch. Once we

have visited all batches, we recalculate the objective value

and compare it with the objective obtained from the last

epoch. If the objective value is not significantly reduced,

we terminate the optimization procedure.

Block coordinate descent is guaranteed to converge, be-

cause each step of the optimization does not increase the

objective value. The optimization problem in Step 1 is con-

vex, and so block coordinate descent will converge to the

global solution. The optimization problem in Step 2 is not

convex, but the initial starting position is relatively good so

it will likely converge to a reasonable solution.

5. Experiments and Results

We conducted experiments on the UCF [31] and the

UIUC [9] datasets. We also compiled a new dataset from

publicly available images, which will we refer to as the

SBU dataset. About half of the images come from the

Microsoft COCO [18] dataset, and the other half from the

Web. The SBU dataset consists of 210 images depicting a

wide variety of scenes such as: urban, roads, beach, snowy,

horses, planes, people playing tennis, parks. We created

a dataset for testing cross-dataset performance for multiple

scene types. We split the dataset evenly into training and

testing sets. The training set is labeled using the proposed

lazy annotation approach, whereas the test set is carefully

annotated. The dataset is available at http://www3.cs.

stonybrook.edu/˜cvl/dataset.html.

On all of our experiments, the region classifier is a Least

Squares SVM with a linear kernel. We use texture, color

and intensity features. For each region, we compute a tex-

ton histogram (using full MR8 filters [27]), and a histogram

on each component of the CIELAB color space. We mea-

sure the performance of the classification task in terms of

Average Precision (AP). Since each data point corresponds

to a region, we weight each region by its area in pixels to

approximate pixel AP.

5.1. Shadow detection on a new domain

To study shadow detection on a new domain, we train

a shadow region classifier on the UCF and UIUC training

sets. Notice that these sets contain carefully annotated la-

bels. We then test the classifier on the newly collected SBU

test set. In Table 1, we present the testing performance mea-

sured by AP. The model trained on UIUC achieves a modest

55.1% AP. The model trained on UCF improves to 68.8%.
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This is expected as the training set of UCF is larger (120

images versus 32) and more diverse than UIUC’s.

Train data Test data AP

UIUC SBU 55.1

UCF SBU 68.8

SBU-Lazy SBU 77.5

SBU-Recovered SBU 80.1

Table 1. Average precision on the SBU test set. Different training

data and annotations are experimented with.

Shadow detection on this new domain of images is chal-

lenging for models trained on existing datasets. However,

a model trained on lazy labels from images of a similar

domain, achieves AP of 77.5%, which is higher than the

APs obtained by models trained on the UCF and UIUC

datasets. Furthermore, if we apply the proposed label recov-

ery method, and train with recovered labels, performance

increases to 80.1%. Qualitative results shown in Figure 5.

Figure 4 shows some examples of recovered labels. Ini-

tial shadow masks from lazy annotation are overlaid in blue.

They correspond to the main image shadows. Recovered

shadow regions are shown with yellow contours. These

shadows were missed by the annotator. Missed shadows are

often less prominent, e.g., the shadow of the smaller brown

column in the top right corner of the top-row image.

(a) Input image (b) Lazy anno. (c) Recovered anno.

Figure 4. Example of label recovery. a) Input image b) Lazy

annotation shadow mask overlaid in blue, outer contour in green,

inner contour in red. c) Recovered regions with flipped shadow

label are shown with yellow contours.

5.2. Noisy labels and benefits of label recovery

For the set of controlled experiments that follow, we re-

labeled the UCF and UIUC training sets using lazy anno-

tation. We train a classifier using the lazy labels and mea-

sure classification performance in the respective test sets.

Table 2 shows the classification performance in terms of

AP. For UIUC, the performance of the model trained on

lazy labels deteriorates by 10% compared to training with

the original labels (79.5% vs 88.5%). However, the model

trained on recovered lazy labels achieves comparable AP of

87.2%. Qualitive results shown in Figure 6. For UCF, train-

ing with lazy labels is slightly worse than training with orig-

inal labels, 73.5% versus 74.5%. Interestingly, label recov-

ery improves the classification performance to 75.6%, out-

performing the model trained on the original labels. These

experiments suggest that we can achieve similar results with

recovered lazy labels as with carefully annotated labels, at

a small fraction of the annotation effort.

Train data Test data AP

UIUC-Original UIUC 88.5

UIUC-Lazy UIUC 79.5

UIUC-Recovered UIUC 87.2

UCF-Original UCF 74.5

UCF-Lazy UCF 73.5

UCF-Recovered UCF 75.6

Table 2. Classification performance on UIUC and UCF test

sets. Comparison of AP achieved by the region classifier trained

with original carefully annotated labels (Original), lazily anno-

tated labels (Lazy), and recovered lazy labels (Recovered).

5.3. Analysis of label noise

It is well established that label noise degrades classifi-

cation performance. To gain more insight on the effects of

label noise in the shadow detection task we perform a se-

ries of controlled experiments and deliberately corrupt the

labels of the training data of UIUC and UCF. We train the

classifier with different levels of label noise and then test

the resulting models. Hereafter, we refer to shadow labels

as positives and non shadow labels as negatives.

We first focus on corrupted positive labels. We randomly

flip negative training samples to positive thus polluting the

positive label class (dirty positives). In these experiments,

we fix the ratio of dirty negatives and then increasingly pol-

lute the positive class. We measure the classification perfor-

mance for: (i) A completely clean negative class, (ii) a class

with 10% dirty negatives and (iii) a class with 20% dirty

negatives. In each of the 3 experiments, we progressively

increase the level of label noise for the positive class (“dirty

positives”). Results are in Figure 7. We then perform the

same analysis for noise in the negative labels, with a set of

3 symmetric experiments where the positive and negative

sets are reversed. Results are in Figure 8.

The classifier performance is more sensitive to the

amount of dirty negatives than dirty positives. This is due

to the smaller size of the positive class, so the effect of er-

roneously flipping positives is more pronounced. We ob-

serve that the effect of dirty negatives is more pronounced in

the UIUC dataset. This explains why performance dropped

so much when using “lazy” annotation and had a large im-

provement after label recovery.

In Figure 9, we show the performance of our label re-

covery approach as the levels of dirty positives and dirty
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(a) Input image (b) Ground truth (c) UCF detection (d) Lazy Recovered detection

Figure 5. Shadow detection on a new domain. Qualitative comparison of detection results for a model trained on UCF with good labels

and a model trained on SBU training set with lazy labels that have been recovered. a) Input image. b) Ground truth mask. c) Detection

results from classifier trained on UCF overlaid in yellow. d) Detection results from classifier trained with lazy recovered labels overlaid in

yellow.

(a) Input image (b) Ground truth (c) Lazy detection (d) Lazy Recovered detection

Figure 6. Shadow detection comparison between models trained with lazy labels and recovered labels on UIUC. a) Input image. b)

Provided manual shadow mask. c) Detection results from model trained on lazy labels overlaid in yellow. d) Detection results from model

trained on recovered lazy labels overlaid in yellow.
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Figure 7. Effects of positive pollution. Classification perfor-

mance at fixed levels of negative noise. Curves show the perfor-

mance as a function of the proportion of dirty positives, at a fixed

level of dirty negatives, either 0%, 10%, or 20%.

negatives vary. The subfigure on the left shows the results

of label recovery for increasingly higher levels of positive

noise (at fixed 10% negative label noise). The label recov-

ery method improves classification performance when there

is up to 30% of positive label noise. Similarly, the right

plot shows the results of our label recovery for increasingly

higher levels of negative noise (at fixed 10% positive label

noise). The label recovery method improves classification

performance when the level of noise in negative labels is

50% or less. In both cases label recovery is robust up to

significant levels of label noise in the training set.

Figure 8. Effects of negative pollution. Classification perfor-

mance at fixed levels of positive noise. Curves show the classifica-

tion performance as a function of the proportion of dirty negatives,

at a fixed level of dirty positives, either 0%, 10%, or 20%.

Figure 9. Label recovery on polluted labels. Left: Classification

performance at fixed 10% of dirty negatives and increasing levels

of positive pollution (x-axis). The dash black line is performance

without label recovery. The solid red line shows the performance

of label recovery. The label recovery improves the performance

when the level of positive noise is 30% or less. Right: Symmetric

analysis as the left subfigure. Classification performance at fixed

10% of dirty positives. The label recovery improves the perfor-

mance when the level of negative noise is 50% or less.

5.4. Comparison to other noise­tolerant methods

We implemented the noise-tolerant C-SVM method

[19]. On the noisy UIUC and UCF datasets, it achieved

an average precision of 81.5 and 74.3, respectively. These

are significantly worse than results of our method (87.2 and

75.6 respectively). We also tested our method for noisy la-

bels on the UCI datasets used in [19], and found that it is

effective in leveraging noisy labels, as reported in Table 3,

suggesting a more general applicability of our method.

Data ρ+ ρ− llog[19] svm[19] [16] [4] [24] Ours

.2 .2 70.1 67.9 69.3 64.9 69.4 74.5

Brea. .3 .1 70.1 67.8 67.8 65.7 66.3 74.0

.4 .4 67.8 67.8 67.1 56.5 54.2 72.3

.2 .2 76.0 66.4 69.5 73.2 75.0 76.8

Diab. .3 .1 75.5 66.4 65.9 74.7 67.7 75.1

.4 .4 65.9 65.9 65.4 71.1 62.8 67.3

.2 .2 87.8 94.3 96.2 78.5 84.0 93.8

Thyr. .3 .1 80.3 92.5 86.9 87.8 83.1 95.6

.4 .4 83.1 66.3 71.0 86.0 58.0 88.9

.2 .2 71.8 68.4 63.8 67.8 62.8 75.8

Germ. .3 .1 71.4 68.4 67.8 67.8 67.4 77.7

.4 .4 67.2 68.4 67.8 54.8 59.8 72.6

.2 .2 83.0 61.5 69.6 83.0 72.9 80.7

Heart .3 .1 84.4 57.0 62.2 81.5 79.3 79.7

.4 .4 57.0 54.8 53.3 52.6 68.2 70.3

.2 .2 82.5 92.0 92.9 77.8 65.3 91.3

Image .3 .1 82.6 89.3 89.6 79.4 70.7 83.9

.4 .4 63.5 63.5 73.2 69.6 64.7 81.9

Table 3. Classification accuracy of our method and several oth-

ers on noisy UCI datasets. ρ+, ρ− are the portions of noisy posi-

tive and negative labels, respectively. Our method achieves highest

or close to the highest accuracy for most datasets and noise levels.

Entries within 1% from the best in each row are printed in bold.

6. Conclusions

We have introduced lazy annotation, a framework for ef-

ficient collection of annotated shadow datasets. We have

shown how to leverage the noisy labels through a label re-

covery process. This process is efficient as it is based on

minimizing the leave-one-out error of Least Squares SVM.

Our experiments show that when training with recovered

labels, the performance penalty is small. We have also

shown the advantage of quickly annotating an appropriate

dataset when faced with the task of detecting shadows in

a new image domain. We will create large scale shadow

datasets with relatively good annotation. We can also adapt

the method to combine datasets collected under different

annotation methodologies. Such datasets would contribute

to the progress of shadow detection and scene understand-

ing. We will explore generalizing label recovery to other

domains.
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