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Abstract

In contrast to the existing approaches that use discrete

Conditional Random Field (CRF) models, we propose to

use a Gaussian CRF model for the task of semantic segmen-

tation. We propose a novel deep network, which we refer to

as Gaussian Mean Field (GMF) network, whose layers per-

form mean field inference over a Gaussian CRF. The pro-

posed GMF network has the desired property that each of

its layers produces an output that is closer to the maximum

a posteriori solution of the Gaussian CRF compared to its

input. By combining the proposed GMF network with deep

Convolutional Neural Networks (CNNs), we propose a new

end-to-end trainable Gaussian conditional random field

network. The proposed Gaussian CRF network is composed

of three sub-networks: (i) a CNN-based unary network for

generating unary potentials, (ii) a CNN-based pairwise net-

work for generating pairwise potentials, and (iii) a GMF

network for performing Gaussian CRF inference. When

trained end-to-end in a discriminative fashion, and eval-

uated on the challenging PASCALVOC 2012 segmentation

dataset, the proposed Gaussian CRF network outperforms

various recent semantic segmentation approaches that com-

bine CNNs with discrete CRF models.

1. Introduction

Semantic segmentation, which aims to predict a category

label for every pixel in the image, is an important task

for scene understanding. Though it has received signifi-

cant attention from the vision community over the past

few years, it still remains a challenging problem due to

large variations in the visual appearance of the semantic

classes and complex interactions between various classes in

the visual world. Recently, convolutional neural networks

have been shown to work very well for this challenging

task [35, 13, 18, 30, 31, 35]. Their success can be attributed

to several factors such as their ability to represent complex

input-output relationships, feed-forward nature of their in-

ference, availability of large training datasets and fast com-

puting hardware like GPUs, etc.

However, Convolutional Neural Networks (CNNs) may

not be optimal for structured prediction tasks such as se-

mantic segmentation as they do not model the interactions

between output variables directly. Acknowledging this, var-

ious semantic segmentation approaches have been proposed

in the recent past that use Conditional Random Field (CRF)

models [26] on top of CNNs [3, 7, 13, 33, 37, 45, 55], and

all these approaches have shown significant improvement

in the segmentation results by using CRFs. By combining

CNNs and CRFs, these approaches get the best of both

worlds: the ability of CNNs to model complex input-output

relationships and the ability of CRFs to directly model the

interactions between output variables. While some of these

approaches use CRF as a separate post-processing step

[3, 7, 13, 33, 37], some other approaches train the CNNs

along with the CRFs in an end-to-end fashion [45, 55].

All of the above approaches use discrete graphical mod-

els, and hence end up using graph-cuts or mean field-based

approximate inference procedures. Though these inference

procedures do not have global optimum guarantees, they

have been successfully used for the semantic segmenta-

tion task in conjunction with CNNs. In contrast to dis-

crete graphical models, Gaussian graphical models [41, 50]

are simpler models, and have inference procedures that

are guaranteed to converge to the global optimal solution.

Gaussian graphical models have been used in the past for

various applications such as image denoising [22, 50], depth

estimation [29, 42], deblurring [43, 56], edge detection [54],

texture classification [5], etc.

While a discrete CRF is a natural fit for labeling tasks

such as semantic segmentation, one needs to use inference

techniques that do not have optimality guarantees. While

exact inference is tractable in the case of a Gaussian CRF,

it is not clear if this model is a good fit for discrete label-

ing tasks. This leads us to the following question: Should

we use a better model with approximate inference or an ap-

proximate model with better inference?

To answer this question, in this work, we use a Gaussian

CRF (GCRF) model for the task of semantic segmentation.

To use a GCRF model for this discrete labeling task, we first

replace each discrete variable with a vector of K mutually
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Figure 1: Proposed GCRF network: The GMF network performs GCRF inference using the outputs of unary and pairwise networks. The

output of GMF network is upsampled to full image resolution using bilinear interpolation. Note that the parameters of this GCRF network

are the unary network parameters θCNN
u and the pairwise network parameters {θCNN

p , {fm},C � 0}.

exclusive binary variables, where K is the number of pos-

sible values the discrete variable can take, and then model

all the variables jointly as a multivariate Gaussian by re-

laxing the mutual exclusivity and binary constraints. After

the GCRF inference, the discrete label assignment is done

based on which of the K corresponding variables has the

maximum value.

Though the Maximum a Posteriori (MAP) solution can

be obtained in closed form in the case of GCRFs, it involves

solving a linear system with number of variables equal to

the number of nodes in the graph times the dimensionality

of node variables (which is equal to the number of spatial

locations times the number of classes in the case of seman-

tic segmentation). Solving such a large linear system could

be computationally prohibitive, especially for dense graphs

where each node is connected to several other nodes. Hence,

in this work, instead of exactly solving a large linear system,

we unroll a fixed number of Gaussian Mean Field (GMF)

inference steps as layers of a deep network, which we refer

to as GMF network. Note that the GMF inference is differ-

ent from the mean field inference used in [24] for discrete

CRFs with Gaussian edge potentials.

While GMF updates are guaranteed to give the MAP so-

lution upon convergence, parallel updates are guaranteed

to converge only under certain constraints such as diago-

nal dominance of the precision matrix of the joint Gaus-

sian [53]. If the nodes are updated serially, then the GMF

inference is equivalent to an alternating minimization ap-

proach in which each subproblem is solved optimally, and

hence it will converge (as finding the MAP solution for a

GCRF is a convex problem with a smooth cost function).

But, using serial updates would be very slow when the num-

ber of variables is large. To avoid both these issues, in this

work, we use a bipartite graph structure that allows us to

update half of the nodes in parallel in each step without

loosing the convergence guarantee even when the diagonal

dominance constraint is not satisfied. Using this bipartite

structure, we ensure that each layer of our GMF network

produces an output that is closer to the MAP solution com-

pared to its input.

By combining the proposed GMF network with CNNs,

we propose a new end-to-end trainable deep network, which

we refer to as Gaussian CRF network, for the task of se-

mantic segmentation. The proposed GCRF network consists

of a CNN-based unary network for generating the unary

potentials, a CNN-based pairwise network for generating

the pairwise potentials and a GMF network for perform-

ing the GCRF inference. Figure 1 gives an overview of

the entire network. When trained discriminatively using

the ImageNet and PASCALVOC data (ImageNet used for

pretraining the CNNs), the proposed GCRF network gave

a mean intersection-over-union (IOU) score of 73.2 on the

challenging PASCALVOC 2012 test set [12], outperform-

ing various recent approaches that combined CNNs with

discrete CRFs. Also, when compared to just using the unary

network, we improve the mean IOU by 6.2 points.

Contributions:

• Gaussian CRF for semantic segmentation: In contrast

to the existing approaches that use discrete CRF models,

we propose to use a GCRF model for the task of semantic

segmentation. Compared to discrete CRFs, GCRFs are

simpler models that can be solved optimally.

• GMF network: We propose a novel deep network by

unfolding a fixed number of Gaussian mean field itera-

tions. Using a bipartite graph structure, we ensure that

each layer in our GMF network produces an output that

is closer to the optimal solution compared to its input.

• Gaussian CRF network: We propose a new end-to-end

trainable deep network that combines the GCRF model

with CNNs for the task of semantic segmentation.

• Results: We show that the proposed GCRF network

outperforms various existing discrete CRF-based ap-

proaches on the challenging PASCALVOC 2012 test set

(when trained with ImageNet and PASCALVOC data).
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2. Related Work

Semantic segmentation using CNNs: In the recent past,

numerous semantic segmentation approaches have been

proposed based on CNNs. In [14, 17], each region proposal

was classified into one of the semantic classes by using

CNN features. Instead of applying CNN to each region in-

dependently as in [14, 17], [9] applied the convolutional

layers only once to the entire image, and generated region

features by using pooling after the final convolutional layer.

Different from the above approaches, [13] trained a CNN

to directly extract features at each pixel. To capture the in-

formation present at multiple scales, CNN was applied to

the input image multiple times at different resolutions, and

the features from all the resolutions were concatenated to

get the final pixel features. This multiscale feature was then

classified using a two-layer neural network. Finally, post-

processing steps like CRF and segmentation tree were used

to further improve the results. Building on top of these CNN

features, [46, 47] introduced a recursive context propagation

network that enriched the CNN features by adding image

level contextual information. Instead of using a CNN multi-

ple times, [7, 18, 31] proposed to use the features extracted

by the intermediate layers of a deep CNN to capture the

multi-scale information. Recently, [32] trained a deconvo-

lution network for the task of semantic segmentation. This

network was applied separately to each region proposal, and

all the results were aggregated to get the final predictions.

Most of the CNN-based methods mentioned above use

superpixels or region proposals, and hence the errors in the

initial proposals will remain no matter how good the CNN

features are. Different from these methods, [30] directly

produced dense segmentation maps by upsampling the pre-

dictions produced by a CNN using a trainable deconvolu-

tion layer. To obtain finer details in the upsampled output,

they combined the final layer predictions with predictions

from lower layers.

Combining CNNs and CRFs for semantic segmentation:

Though CNNs have been shown to work very well for the

task of semantic segmentation, they may not be optimal

as they do not model the interactions between the output

variables directly, which is important for semantic segmen-

tation. To overcome this issue, various recent approaches

[3, 7, 13, 33, 37] have used discrete CRF [26] models on

top of CNNs. While [13] defined a CRF on superpixels and

used graph-cuts based inference, [3, 7, 33, 37] defined a

CRF directly on image pixels and used the efficient mean

field inference proposed in [24]. Instead of using CRF as a

post-processing step, [55] trained a CNN along with a CRF

in an end-to-end fashion by converting the mean field in-

ference procedure of [24] into a recurrent neural network.

Similar joint training strategy was also used in [45].

In all these approaches, the CRF edge potentials were

designed using hand-chosen features like image gradients,

pixel color values, spatial locations, etc. and the potential

function parameters were manually tuned. Contrary to this,

recently, [28] has learned both unary and pairwise potentials

using CNNs. While all these approaches learn CNN-based

potentials and use message passing algorithms to perform

CRF inference, [27] has recently proposed to use CNNs to

directly learn the messages in message passing inference.

The idea of jointly training a CNN and graphical model

has also been used for other applications such as sequence

labeling [10, 34], text recognition [21], human pose esti-

mation [52], predicting words from images [6], handwritten

word recognition [4]. Recently, various CNN-based seman-

tic segmentation approaches have also been proposed for

the semi and weakly supervised settings [8, 20, 33, 36].

Unrolling inference as a deep network: The proposed

approach is also related to a class of algorithms that learn

model parameters discriminatively by back-propagating the

gradient through a fixed number of inference steps. In [2],

the fields of experts [40] model was discriminatively trained

for image denoising by unrolling a fixed number of gra-

dient descent inference steps. In [6, 11, 25, 49] discrete

graphical models were trained by back-propagating through

either the mean field or the belief propagation inference

iterations. In [39], message passing inference machines

were trained by considering the belief propagation-based

inference of a discrete graphical model as a sequence of

predictors. In [15], a feed-forward sparse code predictor

was trained by unrolling a coordinate descent-based sparse

coding inference algorithm. In [19], a new kind of non-

negative deep network was introduced by deep unfolding of

non-negative factorization model. Different from these ap-

proaches, in this work, we unroll the mean filed inference of

a GCRF model as a deep network, and train our CNN-based

potential functions along with the GCRF inference network

in an end-to-end fashion.

Gaussian conditional random fields: GCRFs [50] are

popular models for structured inference tasks like denois-

ing [22, 43, 44, 50, 56], deblurring [43, 44, 56], depth es-

timation [29, 42], etc., as they model continuous quantities

and can be efficiently solved using linear algebra routines.

Gaussian CRF was also used for discrete labeling tasks

earlier in [51], where a Logistic Random Field (LRF) was

proposed by combining a quadratic model with logistic

function. While the LRF used a logistic function on top of

a GCRF to model the output, we directly model the output

using a GCRF. Unlike [51], which used hand-chosen fea-

tures like image gradients, color values, etc. to model the

potentials, we use CNN-based potential functions.

Recently, [29] trained a CNN along with a GCRF model

for image-based depth prediction. The GCRF model of [29]

was defined on superpixels and had edges only between ad-
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jacent superpixels. As the resulting graph was sparse with

few nodes, [29] performed exact GCRF inference by solv-

ing a linear system. In contrast, we define our GCRF model

directly on top of the dense CNN output and connect each

node to several neighbors. Since the number of variables in

our GCRF model is very large, exactly solving a linear sys-

tem would be computationally expensive. Hence, we unfold

a fixed number of GMF inference steps into a deep network.

Also, while [29] used hand-designed features like color his-

togram, local binary patterns, etc. for designing their pair-

wise potentials, we use CNN-based pairwise potentials.

The idea of combining the GCRF model with neural net-

works (one or two layers) has also been explored previously

for applications such as document retrieval [38] and facial

landmark detection [1]. However, the way we model our

potential functions and perform inference is different from

these works.

Notations: We use bold face small letters to denote vectors

and bold face capital letters to denote matrices. We use A⊤

and A−1 to denote the transpose and inverse of a matrix A.

We use ‖b‖22 to denote the squared ℓ2 norm of a vector b.

A � 0 means A is symmetric and positive semidefinite.

3. Gaussian Conditional Random Field Model

In semantic segmentation, we are interested in assigning

each pixel in an image X to one of the K possible classes.

As mentioned earlier, we use K variables (one for each

class) to model the output at each pixel, and the final label

assignment is done based on which of these K variables has

the maximum value. Let yi = [yi1, . . . , yiK ] be the vector

of K output variables associated with the ith pixel, and y

be the vector of all output variables. In this work, we model

the conditional probability density P (y|X) as a Gaussian

distribution given by

P (y|X) ∝ exp

{

−
1

2
E(y|X)

}

, where

E (y|X) =
∑

i

‖yi − ri(X; θu)‖
2
2

+
∑

ij

(yi − yj)
⊤
Wij (X; θp) (yi − yj) .

(1)

The first term in the above energy function E is the unary

term and the second term is the pairwise term 1. Here, both

ri and Wij � 0 are functions of the input image X with θu
and θp being the respective function parameters. Note that

when Wij � 0 for all pairs of pixels, the unary and pair-

wise terms can be combined together into a single positive

semidefinite quadratic form.

1Note that we have only one term for each pair of pixels, i.e., we do

not have separate Wij and Wji for the pair (i, j). We just have one W

for (i, j) which can be interpreted as both Wij and Wji based on the

context.

The optimal y that minimizes the energy function E can

be obtained in closed form since the minimization of E is

an unconstrained quadratic program. However, this closed

form solution involves solving a linear system with number

of variables equal to the number of pixels times the number

of classes. Since solving such a large linear system could

be computationally prohibitive, in this work, we use the it-

erative mean field inference approach.

3.1. Gaussian mean field inference

The standard mean field approach approximates the joint

distribution P (y|X) using a simpler distribution Q(y|X)
which can be written as a product of independent marginals,

i.e, Q(y|X) =
∏

i Qi(yi|X). 2 This approximate distribu-

tion is obtained by minimizing the KL-divergence between

the distributions P and Q. In the case of Gaussian, the mean

field approximation Q and the original distribution P have

the same mean [53]. Hence, finding the MAP solution y is

equivalent to finding the mean µ of the distribution Q.

For the Gaussian distribution in (1), the mean field up-

dates for computing the mean µ are given by

µi ←
(

I +
∑

j

Wij

)−1(

ri +
∑

j

Wijµj

)

. (2)

Here, µi is the mean of marginal Qi. Please refer to the

supplementary material for detailed derivations. It is easy

to see that if we use the standard alternating minimization

approach (in which we update one pixel at a time) to find

the optimal y that minimizes the energy function in (1), we

would end up with the same update equation. Since the

energy function is a convex quadratic in the case of GCRF

and update (2) solves each subproblem optimally, i.e., finds

the optimal yi (or µi) when all the other yj (or µj) are

fixed, performing serial updates is guaranteed to give us the

MAP solution. However, it would be very slow since we are

dealing with a large number of variables.

While using parallel updates seems to be a reasonable

alternative, convergence of parallel updates is guaranteed

only under certain constraints like diagonal dominance of

the precision matrix of the distribution P [53]. Imposing

such constraints could restrict the model capacity in prac-

tice. For example, in our GCRF model (1), we can satisfy

the diagonal dominance constraint by making all Wij diag-

onal. However, this can be very restrictive, as making the

non-diagonal entries of Wij zero will remove the direct

inter-class interactions between pixels i and j, i.e., there

will not be any interaction term in the energy function be-

tween the variables yip and yjq for p 6= q.

2Note that instead of using marginals of scalar variables yik , we are

using marginals of vector variables yi.
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Figure 2: Each pixel in our CRF is connected to every other pixel

along both rows and columns within a spatial neighborhood. Here,

all the pixels that are connected to the center black pixel are shown

in red. If the black pixel is on odd column, all the pixels connected

to it will be on even columns and vice versa.

3.2. Bipartite graph structure for parallel updates

While we want to avoid the diagonal dominance con-

straint, we also want to update as many variables as possible

in parallel. To address this problem, we use a bipartite graph

structure, which allows us to update half of the variables in

parallel in each step, and still guarantees convergence with-

out the diagonal dominance constraint.

Note that our graphical model has a node for each pixel,

and each node represents a vector of K variables. In order

to update the ith node using (2), we need to keep all the

other nodes connected to the ith node (i.e., all the nodes

with non-zero Wij) fixed. If we partition the image into

odd and even columns (or odd and even rows) and avoid

edges within the partitions, then we can optimally update all

the odd columns (or rows) in parallel using (2) while keep-

ing the even columns (or rows) fixed and vice versa. This is

again nothing but an alternating minimization approach in

which each subproblem (corresponding to half of the nodes

in the graph) is optimally solved, and hence is guaranteed to

converge to the global optimum (since we are dealing with

a convex problem).

Generally when using graphical models, each pixel is

connected to all the pixels within a spatial neighborhood.

In this work, instead of using all the neighbors, we con-

nect each pixel to every other neighbor along both rows and

columns. Figure 2 illustrates this for a 7 × 7 spatial neigh-

borhood. It is easy to see that with this connectivity, we can

partition the image into even and odd columns (or even and

odd rows) without any edges within the partitions.

4. Gaussian CRF network

The proposed GCRF network consists of three compo-

nents: Unary network, Pairwise network and GMF network.

While the unary and pairwise networks generate the ri and

Wij that are respectively used in the unary and pairwise

terms of the energy function (1), the GMF network per-

forms Gaussian mean field inference using the outputs of

unary and pairwise networks. Figure 1 gives an overview of

the proposed GCRF network.

Unary network: To generate the ri used in the unary

term of the energy function (1), we use the DeepLab-MSc-

LargeFov network of [7] (along with the softmax layer),

which is a modified version of the popular VGG-16 net-

work [48]. Modifications compared to VGG-16 include

converting the fully-connected layers into convolutional

layers, skipping downsampling after the last two pooling

layers, modifying the convolutional layers after the fourth

pooling layer, and using multi-scale features similar to [18].

Please refer to [7] for further details. For brevity, we will

refer to this DeepLab-MSc-LargeFov network as DeepLab

CNN in the rest of the paper. We will denote the parameters

of this unary DeepLab network using θCNN
u .

Pairwise network: Our pairwise network generates the

matrices Wij that are used in the pairwise term of the en-

ergy function (1). In this work, we compute each Wij as

Wij = sijC, C � 0, (3)

where sij ∈ [0, 1] is a measure of similarity between pixels

i and j, and the learned matrix C encodes the class compat-

ibility information. We compute the similarity measure sij
using

sij = e−(zi−zj)
⊤
F(zi−zj), (4)

where zi is the feature vector extracted at ith pixel using a

DeepLab CNN (with parameters θCNN
p ), and the learned

matrix F � 0 defines a Mahalanobis distance function.

Note that the exponent of sij can be written as

(zi − zj)
⊤F(zi − zj) =

M
∑

m=1

(f⊤mzi − f⊤mzj)
2, (5)

where F =
∑M

m=1 fmf⊤m. Hence, we implement the Ma-

halanobis distance computation as convolutions (of zi with

filters fm) followed by an Euclidean distance computation.

The overall pairwise network consists of a DeepLab

CNN that generates the pixel features zi, a similarity layer

that computes sij for every pair of connected pixels us-

ing (4) and (5), and a matrix generation layer that computes

the matrices Wij using (3). Note that here {fm} are the

parameters of the similarity layer and C � 0 are the param-

eters of the matrix generation layer.

GMF network: The proposed GMF network performs a

fixed number of Gaussian mean field updates using the out-

puts of unary and pairwise networks. The input to the net-

work is initialized using the unary output, µ1 = r = {ri}.
The network consists of several sequential GMF layers,

where each GMF layer has two sub-layers (an even update

layer followed by an odd update layer, See Figure 3):

• Even update layer: This sublayer takes the output of

previous layer as input, and updates the even column

nodes using (2) while keeping odd column nodes fixed.

• Odd update layer: This sublayer takes the output of

even update layer as input, and updates the odd column

nodes using (2) while keeping even column nodes fixed.
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Figure 3: GMF Network. µt
e and µt

o are even and odd column nodes respectively where t indexes the layers, µt
= {µt

e, µ
t
o}. Network is

initialized with unary network output µ1
= r.

As explained in the previous section, because of the bi-

partite graph structure, the update performed by each of the

above sublayers is an optimal update. Hence, each layer of

our GMF network is guaranteed to generate an output that

is closer to the MAP solution compared to its input (unless

the input itself is the MAP solution, in which case the output

will be equal to the input).

Combining the unary, pairwise and GMF networks, we

get the proposed GCRF network, which can be trained in an

end-to-end fashion. The parameters of the network are the

unary network parameters θu = θCNN
u , and the pairwise

network parameters θp = {θCNN
p , {fm},C � 0}. Note

that since we use a fixed number of layers in our GMF net-

work, the final output is not guaranteed to be the MAP so-

lution of our GCRF model. However, since we train the en-

tire network discriminatively in an end-to-end fashion, the

unary and pairwise networks would learn to generate appro-

priate ri and Wij such that the output after a fixed number

of mean field updates would be close to the desired output.

Note that the DeepLab network has three downsampling

layers, and hence the size of its output is 1/8 times the input

image size. We apply our GCRF model to this low resolu-

tion output and upsample the GMF network output to the

input image resolution by using bilinear interpolation.

Discrete label assignment: Note that the final output at

each pixel is a K-dimensional vector where K is the num-

ber of classes. Let y∗
i = [y∗i1, . . . , y

∗
iK ] be the final output at

ith pixel. Then the predicted class label of ith pixel is given

by argmaxk y∗ik.

Training loss function: For training the network, we use

the following loss function at each pixel

L (y∗
i , li) = −min

(

0, y∗ili −maxk 6=li y
∗
ik − T

)

, (6)

where li is the true class label. This loss function basically

encourages the output associated with the true class to be

greater than the output associated with all the other classes

by a margin T .

Training: We train the proposed GCRF network discrim-

inatively by minimizing the above loss function. We use

standard backpropagation to compute the gradient of the

network parameters. Due to space constraints, we present

the derivative formulas in the supplementary material. Note

that we have a constrained optimization problem here due to

the symmetry and positive semidefiniteness constraints on

the parameter C. We convert this constrained problem into

an unconstrained one by parametrizing C as C = RR⊤,

where R is a lower triangular matrix, and use stochastic

gradient descent for optimization.

5. Experiments:

We evaluate the proposed GCRF network using the

challenging PASCALVOC 2012 segmentation dataset [12],

which consists of 20 object classes and one background

class. The original dataset consists of 1464, 1449 and 1456

training, validation and test images, respectively. Similar

to [7, 55], we augment the training set with the additional

annotations provided by [16], resulting in a total of 10,582

training images. For quantitative evaluation, we use the

standard mean intersection-over-union measure (averaged

across the 21 classes).

Parameters: In our GCRF model, each node was con-

nected to every other node along both rows and columns

(Figure 2) within a 23 × 23 spatial neighborhood. Note

that since our GCRF model is applied to the CNN output

whose resolution is 1/8 times the input resolution, the effec-

tive neighborhood size in the input image is 184× 184. For

our experiments, we used a five layer GMF network, which

performs five full-image updates in the forward pass. Dur-

ing training, we used a value of 0.5 for the margin T used

in our loss function. The number of filters M used in the

similarity layer was set to be equal to the number of classes.

5.1. Training

We used the open source Caffe framework [23] for train-

ing and testing our network. We initialized both of our

DeepLab CNNs with the trained model provided by the

authors of [7]. Note that this model was finetuned us-

ing only the PASCALVOC segmentation data starting from

ImageNet-trained VGG-16 model. For training, we used

stochastic gradient descent with a weight decay of 5×10−3

and momentum of 0.9.

Pretraining: Before training the full GCRF network, we

pre-trained the similarity layer and CNN of the pairwise
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Method bkg areo bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

MSRA-CFM [9] 87.7 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

FCN-8s [30] 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Hypercolumns [18] 89.3 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4 62.6

DeepLab CNN [7] 91.6 78.7 51.5 75.8 59.5 61.9 82.5 76.6 79.4 26.9 67.7 54.7 74.3 70.0 79.8 77.3 52.6 75.2 46.6 66.9 57.3 67.0

ZoomOut [31] 91.1 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

Deep message passing [27] 93.9 90.1 38.6 77.8 61.3 74.3 89.0 83.4 83.3 36.2 80.2 56.4 81.2 81.4 83.1 82.9 59.2 83.4 54.3 80.6 70.8 73.4

Approaches that use CNNs and discrete CRFs

Deep structure models [28] 93.6 86.7 36.9 82.3 63.0 74.2 89.8 84.1 84.1 32.8 65.4 52.1 79.7 72.1 77.6 81.7 55.6 77.4 37.4 81.4 68.4 70.3

DeconvNet + CRF [32] 92.9 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3 25.9 73.7 61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5

object clique potentials [37] 92.8 80.0 53.8 80.8 62.5 64.7 87.0 78.5 83.0 29.0 82.0 60.3 76.3 78.4 83.0 79.8 57.0 80.0 53.1 70.1 63.1 71.2

DeepLab CNN-CRF [7] 93.3 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [55] 94.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet + FCN + CRF [32] 93.1 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

Proposed GCRF network 93.4 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2

Table 1: Comparison with state-of-the-art on PASCALVOC 2012 test set (when trained using ImageNet and PASCALVOC data).

network such that the output sij of the similarity layer is

high for a pair of pixels that have same class label and low

for a pair of pixels that have different class labels. For pre-

training, we used the following loss function for each pair

of connected pixels:

Lij = −✶[li = lj ]sij + ✶[li 6= lj ] min(0, sij − h), (7)

where li and lj are respectively the class labels of pixel i and

j, and h is a threshold parameter. This loss function encour-

ages sij to be high for similar pairs and below a threshold

h for dissimilar pairs. The value of h was chosen as e−10.

For training, we used a mini-batch of 15 images and a start-

ing learning rate of 10−3 for the similarity layer parameters

{fm} and 10−4 for the CNN parameters θCNN
p . After train-

ing for 8000 iterations, we multiplied the learning rate of

the similarity layer parameters by 0.1 and trained for addi-

tional 5000 iterations.

Finetuning: After the pre-training stage, we finetuned the

entire GCRF network using a mini-batch of 5 images and

a starting learning rate of 10−2 for all parameters except

θCNN
u , for which we used a small learning rate of 10−6. 3

After training for 6000 iterations, we multiplied the learning

rate by 0.01 and trained for additional 25000 iterations.

5.2. Results

Table 1 compares the proposed GCRF network with

state-of-the-art semantic segmentation approaches on the

challenging PASCALVOC 2012 test set. We can infer the

following from these results:

• The proposed GCRF network performs significantly

(6.2 points) better than the DeepLab CNN, which was

used for initializing our unary network. This shows that

3Since the Unary DeepLab CNN was trained by [7] using PAS-

CALVOC segmentation data, it was already close to a good local minima.

Hence, we finetuned it with a small learning rate.

GCRFs can be successfully used to model output inter-

actions in discrete labeling problems even though they

are continuous models.

• The proposed approach outperforms several recent ap-

proaches that use discrete CRF models with CNNs. This

shows that, despite being a continuous model, GCRF

can be a strong competitor to discrete CRFs in discrete

labeling tasks.

• Our result is on par with the state-of-the-art (lower by

just 0.2 points) when trained using only ImageNet and

PASCALVOC data.

Figure 4 provides a visual comparison of the proposed

approach with DeepLab CNN (which is same as our unary

network) and DeepLab CNN + discrete CRF. As we can

see, the proposed GCRF model is able to correct the er-

rors made by the unary network, and also produces more

accurate segmentation maps compared to the discrete CRF-

based DeepLab approach.

Computation time: The proposed GCRF network takes

around 0.6 seconds to segment a 505 × 505 image on an

NVIDIA TITAN GPU.

6. Conclusions

In this work, we proposed to use a GCRF model for the

discrete labeling task of semantic segmentation. We pro-

posed a novel deep network, which we refer to as GMF

network, by unfolding a fixed number of Gaussian mean

field inference steps. By combining this GMF network with

CNNs, we proposed an end-to-end trainable GCRF net-

work. When trained discriminatively, the proposed GCRF

network outperformed various recent discrete CRF-based

semantic segmentation approaches on the challenging PAS-

CALVOC 2012 segmentation dataset. Our results suggest

that, despite being a continuous model, GCRF can be suc-

cessfully used for discrete labeling tasks.
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Input Ground truth DeepLab CNN DeepLab CNN-CRF Proposed

Figure 4: Comparison of the proposed approach with DeepLab CNN [7] and DeepLab CNN + discrete CRF [7].
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