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Abstract

In this paper, we propose a non-local structured prior

for volumetric multi-view 3D reconstruction. Towards this

goal, we present a novel Markov random field model based

on ray potentials in which assumptions about large 3D sur-

face patches such as planarity or Manhattan world con-

straints can be efficiently encoded as probabilistic pri-

ors. We further derive an inference algorithm that reasons

jointly about voxels, pixels and image segments, and es-

timates marginal distributions of appearance, occupancy,

depth, normals and planarity. Key to tractable inference

is a novel hybrid representation that spans both voxel and

pixel space and that integrates non-local information from

2D image segmentations in a principled way. We compare

our non-local prior to commonly employed local smooth-

ness assumptions and a variety of state-of-the-art volumet-

ric reconstruction baselines on challenging outdoor scenes

with textureless and reflective surfaces. Our experiments

indicate that regularizing over larger distances has the po-

tential to resolve ambiguities where local regularizers fail.

1. Introduction

Dense 3D reconstruction from multiple RGB images is

a long-standing problem in computer vision with numerous

practical applications. Unfortunately, it is also a highly ill-

posed problem. Ambiguities arise in textureless areas or

when photo-consistency assumptions are violated, e.g., at

reflecting surfaces. For instance, consider the grass region

in Fig. 1a. The surface contains little texture, thus multiple

reconstructions satisfy the input images equally well.

Most previous work on multi-view stereo does not ad-

dress such ambiguities and outputs a 3D model with no un-

certainty information. In contrast, probabilistic approaches

model and expose the uncertainty in the reconstruction [1,

5, 7, 8, 37, 50, 55]. Fig. 1b shows the result of a recent prob-

abilistic method [50] that is able to expose the ambiguity

(a) Input Image (b) Occupancy Probability [50]

(c) [50]+Pairwise Smoothness (d) Our Result

Figure 1: Motivation: (a) The grass surface contains lit-

tle texture, leading to reconstruction ambiguity. (b) Voxel

occupancy probabilities reveal this ambiguity where lighter

colors encode higher uncertainty [50]. (c) Pairwise smooth-

ness priors cannot resolve the ambiguity and lead to a biased

3D model. (d) Our planarity prior regularizes over large dis-

tances and helps reconstruct the correct surface.

caused by the textureless region. Ulusoy et al. [50] for-

mulate 3D reconstruction as inference in a Markov random

field defined over the 3D voxel grid. Image evidence (in-

put pixels) is modeled using ray potentials that accurately

incorporate visibility and free-space constraints.

While their method exposes reconstruction ambiguity,

it is not able to resolve this ambiguity to recover the cor-

rect surface because their model does not incorporate any

prior information; it models only image evidence. Luckily,

the 3D world we live in is not completely random but ex-

hibits geometric structure. Previous works impose smooth-

ness constraints via pairwise potentials that encourage adja-

cent voxels to take on the same occupancy state [18, 31] or

condition surface orientations on semantic information [40].
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While these priors reduces surface noise to some extent,

they impose regularization only locally and are therefore

not sufficient to resolve large ambiguous regions as shown

in Fig. 1c.

In this paper, we propose a novel prior formulation for

volumetric 3D reconstruction that encourages piece-wise

planarity. We are inspired by the planar nature of many

elements in man-made environments, i.e., 3D range im-

ages of generic scenes can be approximated by piecewise

smooth regions with discontinuities at object boundaries

[23]. Fig. 1d shows that our prior is able to disambiguate

large textureless regions to recover the correct surface.

Implementing a non-local prior in 3D is challenging.

Even in 2D, high-order spatial priors are expensive to rep-

resent and optimize [27, 33, 39]. Representing the planarity

prior directly in voxel space is complicated by the large vari-

ety of planes each single subvolume may contain, resulting

in numerous high-order cliques in the MRF.

Inspired by the success of non-local segmentation [25,

29] and stereo matching [19,32,53] techniques, we encour-

age planarity within coherent image segments in all view-

points. Our MRF reasons jointly about the occupancy and

intensity of each voxel, the depth values observed at each

pixel, and the planarity and plane parameters in each image

segment. This hybrid 2D/3D representation with auxiliary

variables allows the inference algorithm to propagate view-

based planarity assumptions into 3D voxel space in a princi-

pled way and implicitly defines smoothness constraints over

very large neighborhoods in 3D.

The proposed MRF model is flexible in how plane pri-

ors can be integrated. In this work, we investigate a Man-

hattan world prior that encourages planes to align with the

three dominant orthogonal directions. Existing works on

planar multi-view stereo or Manhattan world representa-

tions treat these as hard constraints [13, 14, 32]. In con-

trast, we take a probabilistic approach where deviations

from the model are allowed as necessary (e.g., the sphere-

shaped dome in Fig. 1). Besides specifying the model,

we develop a message-passing algorithm for inferring ap-

proximate marginal distributions at every voxel, pixel and

segment. Our experiments demonstrate that the proposed

method improves upon state-of-the-art volumetric recon-

struction techniques, in particular for challenging outdoor

scenes with large ambiguous (e.g., textureless) areas. Our

code and supplementary material are available at http://ps.

is.tue.mpg.de/research projects/volumetric-reconstruction.

2. Related Work

We first review the most relevant work on probabilistic

volumetric reconstruction and then discuss approaches that

exploit primitives for scene modeling. For a more complete

review, we refer the reader to [15, 44].

Volumetric Reconstruction: Following early work [1, 7,

28, 43], Pollard and Mundy [37] propose a volumetric re-

construction method that updates the occupancy and color

of each voxel sequentially for each image. GPU implemen-

tations of this framework show impressive results [9, 49].

However, their framework lacks a global probabilistic for-

mulation leading to evidence overcounting [38, 50]. To ad-

dress this, a number of recent approaches have phrased 3D

volumetric reconstruction as MRF inference, exploiting the

special characteristics of high-order ray potentials to accu-

rately model the image formation process [18, 31, 40, 50].

Reconstruction with Primitives: Several methods exploit

planar patches to represent piece-wise planar [3, 6, 10, 12,

34,41,45,46,56] or Manhattan world [13,14,42,47] scenes.

While the approaches produce impressive results, they en-

force planarity as a hard constraint and thus only apply to

piece-wise planar scenes. In contrast, our spatial prior can

be viewed as a soft constraint on planarity because it allows

deviations from planarity where it does not hold.

In a similar spirit, Häne et al. [22] propose a model for

piecewise planar depth map fusion. Their method takes as

input depth maps and a dictionary of patches and integrate

these patches as soft constraints in a total variation frame-

work that leads to improved results wrt. classical TV priors.

In contrast to the proposed hybrid pixel/voxel approach,

their method is restricted to a 2.5D image representation

and handles only very small patches (3−5 pixels) while we

regularize over much larger regions (up to 10k pixels).

Gallup et al. [17] sample planes from initial depth maps

and exploit a semantic classifier to classify the image into

planar and non-planar regions. Inference is then performed

via graph cuts, segmenting the image into regions explained

by planes and non-planar regions. Similar to [22], their

method uses a 2.5D image representation and requires depth

maps as input, while our approach integrates all constraints

into a single joint volumetric reconstruction and directly

takes RGB images as input.

Lafarge et al. [30] propose a method that simultane-

ously optimizes 3D primitives and a mesh using an objec-

tive that combines photo-consistency terms, mesh smooth-

ness and priors on pairwise primitive arrangements. While

their method demonstrate impressive results, it is limited by

the topology and shape of the mesh initialization. Addition-

ally, their method outputs a deterministic 3D model while

our approach yields a probabilistic 3D interpretation.

More recently, semantic and shape information has been

leveraged as prior knowledge for stereo matching [19] and

multi-view reconstruction [17, 20, 21, 35, 57], e.g., by con-

straining the set of plausible geometries [2, 11, 19] or by

modeling class specific normal distributions [20,21]. While

our focus in this work is on planarity and Manhattan world

priors, semantic information can be easily integrated into

our framework.
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3. Probabilistic Model

This section introduces our hybrid model for probabilis-

tic volumetric 3D reconstruction with segment-based priors.

As input we assume a set of images and camera poses which

we obtain using structure-from-motion [51, 52]. As our

work extends [50], we use their notation whenever possible.

To make this paper self-contained, we briefly repeat the im-

age formation process described in [50] in Section 3.2. We

then specify our model in Section 3.3. Details about our

inference algorithm will be given in Section 4.

3.1. Notation

The 3D space is decomposed into a grid of voxels. Each

voxel is assigned a unique index from the index set X . We

associate each voxel i ∈ X with two random variables: a

binary occupancy variable oi ∈ {0, 1} which signals if the

voxel is occupied (oi = 1) or free (oi = 0), and an appear-

ance variable ai ∈ R describing the voxel intensity (or more

generally, color).

Let R denote the set of viewing rays of all cameras. Note

that we model one viewing ray per pixel, thus R also cor-

responds to the total set of pixels. For a single ray r ∈ R,

let or = {or1, . . . , o
r
Nr

} and ar = {ar1, . . . , a
r
Nr

} denote the

ordered sets of occupancy and appearance variables associ-

ated with voxels intersecting ray r. The ordering is defined

by the distance to the respective camera. We further asso-

ciate each pixel/ray r ∈ R with an auxiliary depth variable

dr, discretized according to the depth of each voxel along

the ray r.

Each input image is segmented using the superpixeliza-

tion algorithm of [54], yielding a set S that comprises all

segments from all input images. We associate each segment

s ∈ S with two random variables: a binary planarity vari-

able ps ∈ {0, 1} indicating whether the segment is planar

(ps = 1) or not (ps = 0), and a variable ns ∈ R
3 spec-

ifying 3D plane parameters (i.e., xTns = 1 if x ∈ R
3 on

plane ns) for this segment. We abbreviate the total set of

occupancy and appearance variables in the voxel grid with

o = {oi|i ∈ X} and a = {ai|i ∈ X}. We further sum-

marize all depth, planarity and plane normal variables by

d = {dr|r ∈ R}, p = {ps|s ∈ S} and n = {ns|s ∈ S},

respectively.

3.2. Image Formation

An image is formed by assigning each pixel the appear-

ance of the first occupied voxel along ray r [50]:

Ir =

Nr
∑

i=1

ori

∏

j<i

(1− orj) a
r
i + ǫ (1)

where ǫ ∼ N (0, σ) is a noise term, Ir denotes the intensity

(or color) at the pixel corresponding to ray r. Note that the

Ray Potentials & Occupancy Potentials Patch Prior

Figure 2: Factor Graph. Our graphical model in plate no-

tation. R comprises the set of all pixels/rays in all images

and S comprises all segments. Rs is the set of pixels inside

segment s. Ray depth variables dr connect voxels with seg-

ments in our hybrid 3D/2D representation. Note that ψpsr
connects only to those dr’s for wich r ∈ Rs.

term ori
∏

j<i (1 − orj) evaluates to 1 for the first occupied

voxel along the ray and to 0 for all other voxels.

3.3. Markov Random Field

We formulate volumetric 3D reconstruction as inference

in a Markov random field. We specify the joint distribution

over o, a, d, p and n as

p(o,a,d,p,n) =

1

Z

∏

i∈X

ϕoi (oi)
∏

r∈R

ψa

r (or,ar)ψ
d
r (or, dr)

×
∏

s∈S

ϕps(ps)ϕ
n

s (ns)
∏

r∈Rs

ψdsr(dr, ps,ns) (2)

where Z denotes the partition function, Rs contains all

rays/pixels associated with segment s, and ϕ and ψ denote

unary and high-order potentials, respectively. The corre-

sponding factor graph is illustrated in Fig. 2 (top).

Voxel Occupancy Prior: We model our prior belief about

the state of the occupancy variables using a Bernoulli dis-

tribution

ϕoi (oi) = γoi (1− γ)1−oi (3)

where γ is the prior probability that voxel i is occupied.

Appearance Ray Potential: Our ray potentials model the

image generation process as specified by Eq. 1, i.e., they

encourage the appearance of the first occupied voxel along

ray r to agree with the image observation Ir at pixel r:

ψa

r (or,ar) =

Nr
∑

i=1

ori

∏

j<i

(1− orj) νr(a
r
i ) (4)
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Here, νr(a) denotes the probability of observing intensity a

at ray r which we model as νr(a) = N (a|Ir, σ).

Depth Ray Potential: The depth ray potential models the

constraint that the depth dr at pixel r must equal the depth

of the first occupied voxel along the ray,

ψdr (or, dr) =

{

1 if dr =
∑Nr

i=1 o
r
i

∏

j<i (1− orj) dri

0 otherwise

(5)

where dri denotes the depth of voxel i along ray r. Note that

the potential ψdr (or, dr) is 1 if and only if dr is equal to the

depth of the first occupied voxel along the ray. Otherwise,

the potential evaluates to 0, indicating an invalid state.

Planarity Prior: We now describe our planarity prior,

which favors piece-wise planar depth maps in each of the

input views. As illustrated in Fig. 2 (right), the prior com-

prises the three components below.

Planarity Potential: We encourage segment planarity via

ϕps(ps) = exp(λs |Rs| ps) (6)

where ps ∈ {0, 1} is the planarity indicator variable of seg-

ment s. Note that each segment comprises many pixels.

Thus, we weight this planarity potential by the segment area

|Rs|. The weight λs determines the strength of the prior,

i.e., how much planarity should be enforced.

Plane Normal Potential: Our prior belief about the orien-

tation of planar patches is modeled as a mixture distribution

on the plane normal ns

ϕn

s (ns) =
K
∑

k=1

wkM

(

ns

‖ns‖

∣

∣

∣

∣

µk, κk

)

(7)

where M (· | µ, κ) denotes the von Mises-Fisher distribu-

tion with parameters µ (mean direction) and κ (concentra-

tion parameter). While any kind of surface orientation infor-

mation can be incorporated into this potential (e.g., seman-

tic information), in Section 6, we will investigate a rather

generic Manhattan world prior (K = 3, κ > 0).

Plane Depth Potential: To ensure that the plane parame-

ters of a planar patch agree with the depth variables of the

corresponding image pixels, we define

ψpsr(dr, ps,ns) =

{

exp (−λp η(dr −Dr(ns))) if ps = 1

1 otherw.

(8)

where λp is a consistency weight, η(·) denotes a penalty

function andDr(ns) returns the depth of plane ns along ray

r. The intuition behind this potential is simple: if ps = 0,

then all possible depth values dr are equally likely for each

r ∈ Rs. In contrast, when ps = 1, we favor depth values

dr that are close to the plane ns. To account for segmenta-

tion errors, which can lead to outliers within a segment, we

model this factor using a robust Lorentzian penalty η(·).

4. Inference

We are interested in estimating the marginal distributions

of o, a, d, p and n in the proposed MRF. Given these

marginals, we can easily calculate several quantities of in-

terest, e.g., the probability of voxel occupancy and inten-

sity, the probability of a segment s being planar and the ex-

pected plane normal, as well as the probability distribution

of depth along each ray. Importantly, these depth distribu-

tions enable the computation of depth maps that are optimal

in terms of Bayes decision theory [50].

Unfortunately, inference in our graphical model is chal-

lenging due to the large number of variables (o, a, d),

the high-order potentials for modeling visibility constraints

(ψa

r , ψdr ) and the mixed discrete (o,d,p) and continuous

(a,n) state spaces of the variables. Furthermore, our factor

graph in Fig. 2 contains a large number of loops due to inter-

secting viewing rays R. Thus, exact inference is intractable.

In this section, we show how an approximation to the de-

sired marginals can be obtained using message passing. In

particular, we derive an algorithm based on sum-product

particle belief propagation [24] in factor graphs [26].

4.1. Message Passing

Let µf→x denote the message sent from factor f to vari-

able x, and let µx→f denote the corresponding variable-to-

factor message. The messages from the unary factors to

the variables, as well as the variable-to-factor messages are

straightforward and we omit them here to save space. In

the following, we present the message equations for the ap-

pearance ray potential ψa

r , the depth ray potential ψdr and

the plane depth potential ψpsr. The supplementary document

contains detailed derivations of all the equations. Below, we

assume that all incoming messages to a factor are normal-

ized such that they sum/integrate to 1.

Plane Depth Messages: The continuous message from

the plane depth potential ψpsr to the plane parameters ns is

given by

µψp
sr→ns

(ns) =
∑

ps

∑

dr

ψpsr(dr, ps,ns)µ(ps)µ(dr) (9)

= µ(ps = 1)
∑

dr

ψpsr(dr, ps = 1,ns)µ(dr) + µ(ps = 0)

where we have abbreviated the incoming messages using

µ(ps) = µps→ψd
r
(ps) and µ(dr) = µdr→ψd

r
(dr). Note

that the message µψp
sr→ns

(ns) becomes uniform if there is

strong evidence of non-planarity, i.e., µ(ps = 0) = 1, from

the other pixels in the segment, e.g., in case of a highly
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curved surface. Otherwise, i.e. µ(ps = 1) = 1, the mes-

sage evaluates high for planes ns that agree with the depth

distribution µ(dr).
The message to the binary planarity variable ps reads as

µψp
sr→ps(ps = 1) =

∫

ns

∑

dr

ψpsr(dr, ps = 1,ns)µ(ns)µ(dr)

µψp
sr→ps(ps = 0) =1 (10)

with µ(ns) = µps→ψd
r
(ns) and µ(dr) = µdr→ψd

r
(dr).

The planarity message is high if the depths of likely planes

(where µ(ns) is high) coincide with likely depths (high

value of µ(dr)). Otherwise, the depth distribution at the

pixel cannot be explained with the incoming plane distribu-

tion, and therefore, the planarity message is low.

Finally, the message to the depth variable dr is given by

µψp
sr→dr (dr) =

∑

ps

∫

ns

ψpsr(dr, ps,ns)µ(ps)µ(ns) (11)

= µ(ps = 1)

∫

ns

ψpsr(dr, ps = 1,ns)µ(ns) + µ(ps = 0)

If there is strong evidence of non-planarity from the other

pixels in the segment, i.e. µ(ps = 0) = 1, then the mes-

sage to the depth variable becomes uniform, i.e. the depth

variables are not affected. Otherwise, the message is high

for values dr that match the depth of likely planes, i.e.,

dr ≈ Dr(ns) where µ(ns) is high.

Appearance Ray Messages: In a naı̈ve application of

belief propagation, computing the factor-to-variable mes-

sages requires exponential time in the number of variables

involved in the potential. Since each viewing ray intersects

hundreds of voxels, the appearance ray potentials typically

involve hundreds of variables, making this computation in-

tractable. However, the special structure of the ray poten-

tials allows for reducing the computation time from expo-

nential to linear in the number of variables [31,50]. Exploit-

ing this property, Ulusoy et al. [50] derived the sum-product

message equations for this factor, which we include below

for completeness:

µψa

r→or
i
(ori = 1) =

∑

j<i

µ(orj = 1)
∏

k<j

µ(ork = 0) ρrj

+
∏

k<i

µ(ork = 0) ρri (12)

µψa

r→or
i
(ori = 0) =

∑

j<i

µ(orj = 1)
∏

k<j

µ(ork = 0) ρrj

+
∑

j>i

µ(orj = 1)
∏

k<j
k 6=i

µ(ork = 0) ρrj (13)

The incoming occupancy messages are abbreviated by

µ(ori ) = µor
i
→ψa

r
(ori ) and ρrj is a photo-consistency mea-

sure at the jth voxel along ray r, see [50] for details. This

message has an intuitive interpretation: it increases the oc-

cupancy probability of voxels that are photo-consistent and

visible. The probability of voxels between the camera and

the likely surface location are decreased. For occluded vox-

els the message is uniform.

Ulusoy et al. also showed that the messages to the con-

tinuous appearance variables, i.e. µψa

r→ai , can be computed

analytically and that they can be compactly represented

as a constant plus a weighted Gaussian distribution. The

variable-to-factor messages µai→ψa

r
cannot be computed

analytically. We follow [50] and approximate them using

Mixture-of-Gaussians (MoG) distributions. We refer the

reader to [50] (Section 4.1) for all necessary details.

Depth Ray Messages: The message from ψdr to dr is read-

ily given by

µψd
r→dr (dr = dri) ∝ µ(ori )

∏

j<i

µ(orj = 0) (14)

where the incoming occupancy messages are again abbrevi-

ated by µ(ori ) = µor
i
→ψd

r
(ori ).

By following a similar argument to the derivation of the

appearance ray messages (see supplementary document),

the message to the occupancy variable ori is given by

µψd
r→or

i
(ori = 1) =

∑

j<i

µ(orj = 1)
∏

k<j

µ(ork = 0)µ(drj)

+
∏

k<i

µ(ork = 0)µ(dri) (15)

µψd
r→or

i
(ori = 0) =

∑

j>i

µ(orj = 1)
∏

k<j
k 6=i

µ(ork = 0)µ(drj)

+
∑

j<i

µ(orj = 1)
∏

k<j

µ(ork = 0)µ(drj) (16)

where the incoming depth messages are abbreviated as

µ(dri) = µdr→ψd
r
(dr = dri). Note that the messages

Eq. 15+16 are very similar to those of the appearance ray

factor in Eq. 12+13. The difference is that the photo-

consistency measure ρ in Eq. 12+13 is replaced with the

incoming depth message µ(d) which carries information

from our planarity prior. The messages in Eq. 15+16 intu-

itively increase the occupancy probability of voxels at likely

depths, i.e., where µ(drj) is high. The probability of vox-

els between the camera and the likely depth are decreased

whereas the message to the occluded voxels are uniform.

4.2. Particle Belief Propagation

Unfortunately, the continuous plane parameter variables

n complicate the message computations. In particular, Eq. 9

is of continuous form and therefore difficult to represent.

Further, the integrals that arise in Eq. 10+11 cannot be cal-

culated in closed form.
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To tackle these challenges, we exploit particle belief

propagation [24], which has been adopted by many works

with great success [4, 19, 36, 53]. The main idea is to dis-

cretize the continuous space with a finite set of particles and

use this discretization to approximate the integral equations

with a Monte Carlo estimate.

For each segment, we drawK particles, {n
(k)
s }Kk=1, from

a proposal distribution Ws(n). Using these particles, we

approximate the integral in Eq. 10 via importance sampling

µψp
sr→ps(ps = 1) ≈ (17)

1

K

K
∑

k=1

∑

dr

ψpsr(dr, 1,ns)
µ(n

(k)
s )

Ws(n
(k)
s )

µ(dr)

where Ws(·) denotes an appropriate proposal distribution.

The approximation of the depth variable message in Eq. 11

is similar and can be found in the supplementary material.

Note that the quality of these approximations depend on

how well the set of particles explores the continuous space.

For instance, consider a perfectly planar patch. If none of

the particles come close to the correct plane, the planarity

message in Eq. 10 will be underestimated, hence incorrectly

lowering the planarity belief of the segment.

To avoid this situation, in this work, we take advantage

of a data-driven strategy [48] that generates samples from

an initial 3D reconstruction of the scene. More specifically,

we first run inference for our model without the planarity

patch prior and compute the most likely depth at each pixel.

We then repeatedly draw three pixels from the segment, pri-

oritizing pixels with low depth certainty (negative entropy)

and fit a plane to them. Promising planes, i.e., planes that

explain most of the depth values inside the segment, are

added to the particle set. In addition to this particle set, we

also generate particles by conditioning on the plane prior

implied by the normal potentials. We draw plane normals

from the prior in Eq. 7 and then for each sample, optimize

the depth of the plane to best match the depth estimates

within the segment. Compared to a naı̈ve approach such

as uniformly sampling the space of plane parameters, our

data-driven strategy avoids unlikely particles. Further de-

tails of our particle sampling strategy are presented in the

supplementary document.

Given the set of plane particles {n
(k)
s }Kk=1, we build a

kernel density estimate in order to obtain an approximation

to the proposal distribution Ws(n)

Ws(n) =
1

K

K
∑

k=1

N (n;µ = n(k)
s ,Σ = σkde I) (18)

where σkde denotes the kernel bandwidth, which we empir-

ically set to a fixed value for all our experiments.
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Figure 3: Reconstruction accuracy plots for the CAPITOL

and BARUS&HOLLEY datasets.

5. Implementation

This section provides details of our implementation. We

initialize all ray messages uniformly and first pass messages

without the planarity prior, iterating over each image at least

once. This yields an initial 3D model. The beliefs in the oc-

cupancy variables are then propagated to the per-pixel depth

variables via Eq. 11. The median of these depth distribu-

tions yields a depth map which we use to segment the im-

ages using a depth-aware superpixelization algorithm [54].

We further use these depth maps to generate plane par-

ticles {n
(k)
s }Kk=1 for each segment as discussed in Sec-

tion 4.2, using K = 64 throughout all our experiments.

Next, we compute the messages from the plane depth fac-

tor ψpsr to the plane parameters (Eq. 9) and to the planarity

variables (Eq. 10). Finally, the information aggregated from

the plane depth factor and all other pixels in the image seg-

ment is passed back to the depth variables using Eq. 11. The

depth variables in turn influence the occupancies along each

image ray via Eq. 15+16.

We interleave this process with the message updates for

the appearance ray factors and iterate over each image until

convergence. All necessary algorithmic details can be found

in the supplementary document. Our implementation uses

GPU amenable octree data structures and GPU paralleliza-

tion for message computations. Our current implementation

takes roughly 20 seconds to process a 1 Megapixel image

and 30 million voxels.

6. Experimental Evaluation

We evaluate our algorithm on three aerial datasets with

LIDAR ground truth1 provided by Restrepo et al. [38].

The datasets exhibit several challenges, including large fea-

1The original datasets are distributed with sparse LIDAR point clouds.

Ulusoy et al. triangulated these point clouds to obtain a dense ground truth

mesh [50]. We use their meshes for a fair comparison to the baselines.
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Figure 4: Qualitative Results. This figure shows qualitative results on the CAPITOL (top), BARUS&HOLLEY (middle) and

DOWNTOWN (bottom) dataset. (a) Region of interest. (b-g) Visualization of errors. Cooler colors correspond to lower error.

(h) Depth map predicted by our model. We encourage the reader to zoom in for details.

tureless regions, reflective and specular surfaces, severe

occlusions and transient objects. The input images are

roughly one megapixel in size and each dataset contains

∼ 200 images. The datasets are referred to as CAPITOL,

BARUS&HOLLEY and DOWNTOWN, and example image

crops are presented in Fig. 4 (first column).

Baselines: We compare our results to several state-of-the-

art baselines. First, we compare to the sum-product algo-

rithm of Ulusoy et al. [50], whose formulation is equiv-

alent to our model without the patch prior and which we

call “SP” in the following. As their method does not en-

code any spatial regularization, we introduce an additional

baseline “SP+pairwise” with pairwise smoothness poten-

tials that encourage adjacent voxels to take the same oc-

cupancy label [31] . We optimize the parameters of this

potential using the CAPITOL dataset. Further details can

be found in the supplementary document. Next, we com-

pare to the approach of Liu and Cooper (“LC”) whose

max-product formulation utilizes ray potentials [31] as our

method, but suffers from a systematic bias in ambiguous re-

gions as shown in [50]. We also include comparisons to an

improved version of Liu and Cooper’s approach as proposed

by [50] with a more robust voxel color model, which we re-

fer to as “LC+MoG”. Finally, we include a comparison to

Pollard and Mundy’s approach (“PM”) [37], which lacks a

global probabilistic formulation but nevertheless achieves

very good results on several datasets [9, 49], including the

Middlebury benchmark [44].

Evaluation: We evaluate reconstruction accuracy by com-

paring depth maps predicted by each method to ground

truth. More specifically, we compute depth maps for all

input viewpoints and report the sum of per-pixel absolute

errors over all pixels in all views. We create ground truth

depth maps by projecting the LIDAR mesh onto the view.

For algorithms producing deterministic MAP outputs, i.e.,

“LC” and “LC+MoG”, we consider the first occupied voxel

along the ray as a depth prediction. For algorithms which

compute occupancy marginals, we compute Bayes optimal

depth estimates at each pixel under the ℓ1 loss as described

in [50] and the supplementary document.

We set the parameters of the superpixelization algo-

rithm [54] to product roughly 500 segments. We found this

segmentation granularity to yield a reasonable tradoff be-

tween over- and undersegmentation of the images. We em-

pirically chose a single set of parameters that we use for all

three datasets: λs = 5, λd = 1, κ = 20.

All three datasets contain many surfaces that are orthog-

onal to each other as can be seen in Fig. 4 (first column).

This structure motivates a Manhattan world prior on the

plane orientations in Eq. 7, which favors planes oriented

along theX , Y orZ directions. However, this prior requires

orienting the scene such that the dominant directions in the

scene coincide with the X , Y and Z direction. Towards

this goal, we first compute the ground plane normal (i.e.,

the Z direction) as the RANSAC fit to a sparse point cloud

generated by running our model without the planarity prior

and accumulating the 3D point clouds from each depth map.

The only remaining unknown is the rotation around the Z

axis, which we compute as the entropy minimizer of the

point cloud projections onto canonical orthogonal X and Y

planes (see [16] for details).
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Figure 5: (5a) Accuracy plots for DOWNTOWN, (5b) Region

of interest, (5c-5e) Visualization of errors.

Discussion of Results: Fig. 3 and Fig. 5a present cumu-

lative accuracy plots for the three datasets and all methods.

Overall our algorithm outperforms previous methods for the

CAPITOL and DOWNTOWN datasets and achieves similar

performance for BARUS&HOLLEY.

We visualize the error maps for all datasets and methods

in Fig. 4. For the CAPITOL and BARUS&HOLLEY datasets

(first two rows), the majority of errors are localized on the

large featureless regions, e.g., the grass region for CAPI-

TOL and the black rooftop in BARUS&HOLLEY. The re-

sults show that “PM” as well as algorithms that estimate a

MAP solution, i.e., “LC” and “LC+MoG”, yield a system-

atic bias in textureless regions, leading to large errors. The

sum-product (“SP”) result is able to reveal the ambiguity in

the region (see Fig. 1b) and obtains better results. Nonethe-

less, “SP” cannot resolve the ambiguity without additional

prior information. The model with the pairwise smooth-

ness potentials (“SP+pairwise”) yields denser and smoother

results, leading to lower errors on most structures, e.g. the

building facades in CAPITOL and BARUS&HOLLEY. How-

ever, results on the grass region in CAPITOL and the rooftop

in BARUS&HOLLEY indicate that the pairwise model is un-

able to resolve ambiguities on the large textureless regions.

In contrast, our algorithm achieves significantly more accu-

rate results in these regions as seen in Fig. 4g. To investigate

this more closely, we evaluate errors only on the large fea-

tureless surfaces. The results are displayed in Fig. 3b+3d

and show the clear improvement of our algorithm. Fig. 1d

depicts a rendering of our reconstruction where the ambigu-

ity in the model is resolved successfully.

Besides textureless regions, our planarity prior helps im-

prove reconstruction of reflective surfaces as well. The last

row of Fig. 4a displays a building with a reflective surface

from DOWNTOWN. All baselines yield large errors on the

building surface since it violates the Lambertian surface as-

sumption. Our planarity prior helps correct these errors to

achieve a denser and more accurate result. Fig. 5 displays

results for another reflective building. All algorithms pro-

duce large errors for the side surface of the building which

has a mirror like reflectivity. However, the front side of the

building contains a mixture of reflective and non-reflective

materials. While all algorithms produce some correct depth

values in this region, the results are in general very noisy

and contain large holes. The model with pairwise smooth-

ness potentials (“SP+pairwise”) fails to bridge these large

gaps in the reconstruction. In contrast, our algorithm regu-

larizes over the entire facade and is able to reconstruct this

facade surface correctly.

The results confirm that even though our prior favors

piecewise planar reconstructions, non-planar structures are

preserved, e.g. the building dome in Fig. 4 (first row) shows

very little error. Our algorithm is robust to non-planar struc-

tures due to two facts: First, our model allows for turning

off the planarity prior wherever necessary. Second, we also

allow for outliers within a segment, owing to our robust

penalty function η(·) in Eq. 8. The latter property is im-

portant to deal with imprecise segmentation boundaries.

For BARUS&HOLLEY, our planarity priors introduces

errors around some of the shrubs and trees, which lowers the

overall accuracy (Fig. 3c). However, for some of these re-

gions, the LIDAR ground truth is not accurate either due to

the tree tops which have been extruded to the ground level.

In the supplementary document, we present an additional

evaluation excluding such regions, as well as further exam-

ples and failure cases.

7. Conclusion

We have presented a novel non-local prior for probabilis-

tic volumetric 3D reconstruction that encourages planarity

within image segments and regularizes over large voxel

neighborhoods. Our experiments show that the proposed

prior is able to resolve reconstruction ambiguities of tex-

tureless and partially reflective surfaces and achieves state-

of-the-art results in reconstruction accuracy for highly chal-

lenging aerial datasets. In our future work, we plan to incor-

porate semantic information in our model. Furthermore, our

prior formulation also allows for geometries beyond planar

segments. We believe that integrating more complex primi-

tives such as spheres, cylinders, deformable shapes or even

wholistic 3D scene models will be promising extensions of

the presented model.

3287



References

[1] M. Agrawal and L. S. Davis. A probabilistic framework for

surface reconstruction from multiple images. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

2001. 1, 2

[2] S. Bao, M. Chandraker, Y. Lin, and S. Savarese. Dense object

reconstruction with semantic priors. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2013. 2

[3] A. Bartoli. A random sampling strategy for piecewise pla-

nar scene segmentation. Computer Vision and Image Under-

standing (CVIU), 105(1):42–59, 2007. 2

[4] F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz. PMBP:

PatchMatch Belief Propagation for correspondence field es-

timation. International Journal of Computer Vision (IJCV),

110(1):2–13, 2014. 6

[5] R. Bhotika, D. J. Fleet, and K. N. Kutulakos. A probabilistic

theory of occupancy and emptiness. In Proc. of the European

Conf. on Computer Vision (ECCV), 2002. 1

[6] A. Bodis-Szomoru, H. Riemenschneider, and L. Van Gool.

Fast, approximate piecewise-planar modeling based on

sparse structure-from-motion and superpixels. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

2014. 2

[7] J. D. Bonet and P. Viola. Poxels: Probabilistic voxelized

volume reconstruction. In Proc. of the IEEE International

Conf. on Computer Vision (ICCV), 1999. 1, 2

[8] A. Broadhurst, T. W. Drummond, and R. Cipolla. A proba-

bilistic framework for space carving. ICCV, 2001. 1

[9] F. Calakli, A. O. Ulusoy, M. I. Restrepo, G. Taubin, and J. L.

Mundy. High resolution surface reconstruction from multi-

view aerial imagery. In 3DIMPVT, 2012. 2, 7

[10] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-

planar 3d reconstruction and completion from large-scale un-

structured point data. In Proc. IEEE Conf. on Computer Vi-

sion and Pattern Recognition (CVPR), 2010. 2

[11] A. Dame, V. Prisacariu, C. Ren, and I. Reid. Dense recon-

struction using 3D object shape priors. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 2013.

2

[12] F. Fraundorfer, K. Schindler, and H. Bischof. Piecewise pla-

nar scene reconstruction from sparse correspondences. Im-

age and Vision Computing (IVC), 24(4):395–406, 2006. 2

[13] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski.

Manhattan-world stereo. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2009. 2

[14] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Re-

constructing building interiors from images. In Proc. of the

IEEE International Conf. on Computer Vision (ICCV), 2009.

2

[15] Y. Furukawa and C. Hernandez. Multi-view stereo: A tu-

torial. Foundations and Trends in Computer Graphics and

Vision, 9(1-2):1–148, 2013. 2

[16] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Polle-

feys. Real-time plane-sweeping stereo with multiple sweep-

ing directions. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2007. 7

[17] D. Gallup, J.-M. Frahm, and M. Pollefeys. Piecewise pla-

nar and non-planar stereo for urban scene reconstruction. In

Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), 2010. 2

[18] P. Gargallo, P. Sturm, and S. Pujades. An occupancy–depth

generative model of multi-view images. In Proc. of the Asian

Conf. on Computer Vision (ACCV), pages 373–383, 2007. 1,

2
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