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Abstract

Recent studies in computer vision have shown that,

while practically invisible to a human observer, skin color

changes due to blood flow can be captured on face videos

and, surprisingly, be used to estimate the heart rate (HR).

While considerable progress has been made in the last few

years, still many issues remain open. In particular, state-

of-the-art approaches are not robust enough to operate in

natural conditions (e.g. in case of spontaneous movements,

facial expressions, or illumination changes). Opposite to

previous approaches that estimate the HR by processing all

the skin pixels inside a fixed region of interest, we intro-

duce a strategy to dynamically select face regions useful for

robust HR estimation. Our approach, inspired by recent ad-

vances on matrix completion theory, allows us to predict

the HR while simultaneously discover the best regions of

the face to be used for estimation. Thorough experimental

evaluation conducted on public benchmarks suggests that

the proposed approach significantly outperforms state-of-

the-art HR estimation methods in naturalistic conditions.

1. Introduction

After being shown in [23, 18] that changes invisible to

the naked eye can be used to estimate the heart rate from

a video of human skin, this topic has attracted a lot of at-

tention in the computer vision community. These subtle

changes encompass both color [27] and motion [4] and they

are induced by the internal functioning of the heart. Since

faces appear frequently in videos and due to recent and sig-

Time

Figure 1. Motivation: Given a video sequence, automatic HR es-

timation from facial features is challenging due to target motion

and facial expressions. Facial features extracted over time in dif-

ferent parts of the face (purple rectangles) show different temporal

dynamics and are subject to noise, as they are heavily affected by

movements and illumination changes. In this paper, we propose a

novel approach to simultaneously estimate the HR signal and se-

lect the reliable face regions at each time for robust HR prediction.

nificant improvements in face tracking and alignment meth-

ods [3, 21, 13, 14, 29], facial-based remote heart rate esti-

mation has recently become very popular [17, 30, 10, 25].

Classical approaches successfully addressed this prob-

lem under laboratory-controlled conditions, i.e. imposing

constraints on the subject’s movements and requiring the

absence of facial expressions and mimics [18, 27, 4]. There-

fore, such methods may not be suitable for real world appli-

cations, such as monitoring drivers inside a vehicle or peo-

ple exercising. Long-time analysis constitutes a further lim-

itation of existing works [17, 18, 19]. Indeed, instead of es-
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timating the instantaneous heart rate, they provide the aver-

age HR measurement over a long video sequence. The main

disadvantage of using a long analysis window is the inabil-

ity to capture interesting short-time phenomena, such as a

sudden HR increase/decrease due to specific emotions [22].

In practice, another problem faced by researchers de-

veloping automatic HR measurement approaches, is the

lack of publicly available datasets recorded under realis-

tic conditions. A notable exception is the MAHNOB-HCI

dataset [20], a multimodal dataset for research on emotion

recognition and implicit tagging, which also contains HR

annotations. Importantly, an extensive evaluation of ex-

isting HR measurement methods on MAHNOB-HCI have

been performed by Li et al. [17]. However, the MAHNOB-

HCI dataset suffers from some limitations, since the record-

ing conditions are quite controlled: most of the video se-

quences do not contain spontaneous facial expressions, illu-

mination changes or large target movements [17].

In this work, we tackle the aforementioned problems

by introducing a novel approach for HR estimation from

face videos and providing an extensive evaluation on two

datasets: the MAHNOB-HCI, previously used for HR

recognition research [17], and a spontaneous dataset with

heart rate data and RGB videos (named MMSE-HR), which

is a subset of the larger multimodal spontaneous emotion

corpus (MMSE) [31] specifically targeted to challenge HR

estimation methods.

Inspired by previous methods, we track the face in

a given video sequence, so to follow rigid head move-

ments [17], and extract chrominance features [10] to com-

pensate for illumination variations. Importantly, most previ-

ous approaches preselect a face region of interest (ROI) that

is kept constant through the entire HR estimation. How-

ever, the region containing useful features for HR estima-

tion is a priori different for every frame since major appear-

ance changes are spatially and temporally localized (Fig.1).

Therefore, we propose a principled data-driven approach to

automatically detect the face parts useful for HR measure-

ment, that is to estimate the time-varying mask of useful ob-

servations, selecting at each frame the relevant face regions

from the chrominance features themselves.

Recent advances on matrix completion (MC) theory [11]

have shown the ability to recover missing entries of a ma-

trix that is partially observed, i.e. masked. Up to the authors

knowledge, we propose the first matrix completion-based

learning algorithm able to self-adapt, that is to automati-

cally select the useful observations, and call it self-adaptive

matrix completion (SAMC). Intuitively, while learning the

mask allows us to discard those face regions strongly af-

fected by facial expressions or large movements, complet-

ing the matrix smooths out the smaller noise associated to

the chrominance feature extraction procedure. The experi-

ments we conducted on the MANHOB-HCI dataset clearly

show that our method outperforms the state-of-the-art ap-

proaches for HR prediction. To further demonstrate the

ability of our method to operate in challenging scenar-

ios, we report a series of tests on the MMSE-HR dataset,

where subjects show significant movements and facial ex-

pressions.

Thus, the contribution of this paper is three-fold:

• We present a novel approach to address the problem of

HR estimation from face videos in realistic conditions.

To cope with large facial variations due to spontaneous

facial expressions and movements, we propose a prin-

cipled framework to automatically discard the face re-

gions corresponding to noisy features and only use the

reliable ones for HR prediction. The region selection

is addressed within a novel matrix completion-based

optimization framework, called self-adaptive matrix

completion, for which an efficient solver is proposed.

• Our approach is demonstrated to be more accurate than

previous methods for average HR estimation on pub-

licly available benchmarks. In addition, we report

short-term analysis results to show the ability of our

method to detect instantaneous heart rate.

• We perform extensive evaluation on the commonly

used MAHNOB-HCI dataset and a spontaneous

MMSE-HR dataset including 102 sequences of 40 sub-

jects, moving and performing spontaneous facial ex-

pressions. As we show, this dataset is valuable for in-

stantaneous HR estimation.

2. Related Work

In this section, we briefly review previous works on re-

mote heart rate measurement and on matrix completion.

2.1. HR Estimation from Face Videos

Cardiac activity measurement is an essential tool to con-

trol the subjects’ health and is actively used by medical

practitioners. Conventional contact methods offer high ac-

curacy of cardiac cycle. However, they require specific sen-

sors to be attached to the human skin, be it a set of elec-

trocardiogram (ECG) leads, a pulse oximiter, or the more

recent fitness tracker. To avoid the use of invasive sensors,

non-contact remote HR measurement from visual data has

been proposed recently by computer vision researchers.

Verkruysse et al. [23] showed that ambient light and a

consumer camera can be used to reveal the cardio-vascular

pulse wave and to remotely analyze the vital signs of a per-

son. Poh et al. [18] proposed to use blind source separation

on color changes caused by heart activity to extract the HR

signal from a face video. In [27] an Eulerian magnification

method is used to amplify subtle changes in a video stream
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and to visualize temporal dynamics of the blood flow. Bal-

akrishnan et al. [4] showed that subtle head motions are af-

fected by cardiac activity, and these motions can be used to

extract HR measurements from a video stream.

However, all these methods failed to address the prob-

lems of HR estimation in presence of facial expressions

and subject’s movements, despite their frequent presence

in real-world applications. This limits the use of these ap-

proaches to laboratory settings. In [10, 25] a chrominance-

based method to relax motion constraints was introduced.

However, this approach was tested on a few not-publicly-

available sequences, making it hard to compare with.

Li et al. [17] proposed an approach based on adap-

tive filtering to handle illumination and motion issues and

they evaluated it on the publicly available MAHNOB-HCI

dataset [20]. However, although this work represents a

valuable step towards remote HR measurement from visual

data, it also shares several major limitations with the pre-

vious methods. The output of the method is the average

HR, whereas to capture short-term phenomena (e.g. HR

variations due to instantaneous emotions) the processing

of smaller time intervals is required. A further limitation

of [17] is the MAHNOB-HCI dataset itself, since it is col-

lected in a laboratory setting and the subjects are required

to wear an invasive EEG measuring device on their head.

Additionally, subjects perform neither large movements nor

many spontaneous facial expressions.

In this work, we address the aforementioned limitations

by proposing a novel method capable of predicting HR with

higher accuracy than the state-of-the-art approaches and of

robustly operating on short time sequences in order to detect

the instantaneous HR. To our knowledge, while previous

works [17, 25] have acknowledged the importance of select-

ing parts of the signal to cope with noise and provide robust

HR estimates, this paper is the first to tackle this problem

within a principled optimization framework.

2.2. Matrix completion

Matrix completion [11] approaches develop from the

idea that an unknown low-rank matrix can be recovered

from a small set of entries. This is done by solving an op-

timization problem, namely, a rank minimization problem

subject to some data constraints arising from the small set of

entries. Matrix completion has proved successful for many

computer vision tasks, when data and labels are noisy or in

the case of missing data, such as multi-label image classi-

fication [6], image retrieval and tagging [28, 9], manifold

correspondence finding [16], head/body pose estimation [1]

and emotion recognition from abstract paintings [2]. Most

of these works extended the original MC framework by im-

posing task-specific constraints. For instance, in [9] a MC

problem is formulated adding a specific regularizer to ad-

dress the ambiguous labeling problem. Very importantly,

even if most computer-vision papers based on matrix com-

pletion are addressing classification tasks, therefore split-

ting the matrix to be completed between features and labels,

MC techniques can be used in general, without any struc-

tural splitting. Indeed, in [15] matrix completion is adopted

to address the movie recommendation problem, where each

column (row) represents a user (movie), and therefore each

entry of the matrix shows the suitableness of a video for a

user. In [16, 15], the MC problem is extended to take into

account an underlying graph structure inducing a weighted

relationship between the columns/rows of the matrix. In this

paper, we were inspired by [16, 15, 1] in modeling the tem-

poral smoothness of the HR signal. However, our method

is essentially novel, since we are able to simultaneously re-

cover the unknown low-rank matrix and the underlying data

mask, corresponding to the most reliable observations.

3. HR Estimation using SAMC

In this section we describe the proposed approach for

HR estimation from face videos, that has four main phases

as shown in Figure 2. Phase 1 is devoted to process face

images so to extract face regions, that are used in phase 2

to compute chrominance features. Phase 3 consists in the

joint estimation of the underlying low-rank feature matrix

and the mask using SAMC. Finally, phase 4 computes the

heart rate from the signal estimate provided by SAMC.

3.1. Phases 1 & 2: From Face Videos to Chromi-
nance Features

Inspired by previous methods on remote HR estimation,

we use Intraface1 to localize and track 66 facial landmarks.

Many approaches have been employed for face frontalisa-

tion [24, 12]. However, in order to preserve the underlying

blood flow signal, in the current study we define the facial

region of interest (see Fig. 2-Phase 1), from which the HR

will be estimated. The potential ROI is then warped to a

rectangle using a piece-wise linear warping procedure, be-

fore dividing the potential ROI into a grid containing R re-

gions.

The overall performance of the HR estimation method

will strongly depend on the features extracted on each of

the R sub-regions of the facial ROI. Ideally, we would se-

lect features that are robust to facial movements and expres-

sions, while being discriminant enough to account for the

subtle changes in skin color. Currently, the best features

for HR estimation are the chrominance features, defined

in [10]. The chrominance features for HR estimation are

derived from the RGB channels, as follows. For each pixel

the chrominance signal C is computed as the linear com-

bination of two signals Xf and Yf , i.e. C = Xf − αYf ,

where α =
σ(Xf )
σ(Yf )

and σ(Xf ), σ(Yf ) denote the standard

1http://www.humansensing.cs.cmu.edu/intraface
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Figure 2. Overview of the proposed approach for HR estimation. During the first phase, we automatically detect a set of facial keypoints and

use them to define a ROI. This region is then warped to a rectangular area and divided into a grid. For each small sub-region, chrominance

features are computed (Phase 2). We then apply SAMC on the matrix of all feature observations to recover a smooth signal, while selecting

from which sub-regions the signal is recovered (Phase 3). Welch’s method [26] is used to estimate the power spectral density and thus the

HR frequency (Phase 4).

deviations of Xf , Yf . The signals Xf , Yf are band-passed

filtered signals obtained respectively from the signals X and

Y , where X = 3Rn − 2Gn, Y = 1.5Rn + Gn − 1.5Bn

and Rn, Gn and Bn are the normalized values of the indi-

vidual color channels. The color combination coefficients

to derive X and Y are computed using a skin-tone stan-

dardization approach (see [10] for details). For each region

r = 1, . . . , R, the final chrominance features are computed

averaging the values of the chrominance signals over all the

pixels.

3.2. Phase 3: Self-Adaptive Matrix Completion

The estimation of HR from the chrominance features is

challenging for mainly two reasons. Firstly, the chromi-

nance features associated to different facial regions are not

fully synchronized. In other words, even if the output sig-

nals of many regions are synchronized between them (main-

stream underlying heart signal), the signal of many other re-

gions may not be in phase with the mainstream. Secondly,

face movements and facial expressions induce strong per-

turbations in the chrominance features. These perturbations

are typically local in space and time while large in intensity

(Fig.1). Therefore, we need to localize where these pertur-

bations take place so not to use them in the HR estimation.

These two main difficulties are intuitively overcome by

deriving a matrix completion technique embedding a self-

adaptation strategy. On the one hand, since matrix com-

pletion problems are usually approached by reducing the

matrix rank, the low-rank estimated matrix naturally groups

the rows by their linear dependency. In our particular case,

two rows are (near) linearly dependent if and only if the

output signals they represent are synchronized. Therefore,

the underlying HR signal is hypothesized to be in the vector

subspace spanned by the largest group of linearly dependent

rows of the estimated low-rank matrix.

On the other hand, the estimated low-rank matrix is en-

forced to resemble the observations. In previous MC ap-

proaches [6, 9, 1, 16], the non-observed part of the ma-

trix consisted of the labels of the test set. Thus, the set of

unknown matrix entries was fixed and known in advance.

The HR estimation problem is slightly different since there

are no missing observations, i.e. the matrix is fully ob-

served. However, many of these observations are highly

noisy, thus corrupting the estimation of the HR. Importantly,

we do not know in advance which are the corrupted obser-

vations. This is why we believe that this problem naturally

requires some form of adaptation, implying that the method

selects the samples with which the learning is performed.

Consequently, we name the proposed learning method self-

adaptive matrix completion (SAMC).

In order to formalize the self-adaptive matrix comple-

tion problem let us assume the existence of R regions

where chrominance features are computed during T video

frames. This provides a chrominance observations matrix

C 2 R
R⇥T . Ideally, in a scenario where we could trust all

region features continuously, we would simply estimate the

low-rank matrix that better approximates the matrix of ob-

servations C, by solving: minE ν rank(E) + kE − Ck2F ,
where ν is a regularization parameter. Unfortunately, min-

imizing the rank is a NP-hard problem, and traditionally a
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convex surrogate of the rank, the nuclear norm, is used [8]:

min
E

νkEk⇤ + kE−Ck2F . (1)

Another intrinsic property of the chrominance features

is that, since the underlying reason of their oscillation is

the internal functioning of the heart, we should enforce the

estimated chrominance features (those of the low-rank esti-

mated matrix) to be within the heart-rate’s frequency range.

Inspired by [15, 16, 1] we add a temporal smoothing term

by means of a Laplacian matrix L:

min
E

νkEk⇤ + kE−Ck2F + γ Tr(ELE
>), (2)

where γ measures the weight of the temporal smoothing

within the learning process. L should encode the relational

information between the observations acquired at different

instants, thus acting like a relaxed band-pass filter. Indeed,

imposing that er is band-pass filtered is equivalent to reduce

ker − erTk2 = kerT̃k2, where each column of T is a

shifted replica of the band-pass normalized filter tap values

so that the product erT boils down to a convolution and T̃

is a copy of T with zeros in the diagonal, since the band-

pass filter is normalized. Imposing this for all R regions at

once writes: Tr(ET̃T̃
>
E

>), and therefore L = T̃T̃
>.

As previously discussed, the estimated matrix should not

take into account the observed entries associated to large

movements or spontaneous facial expressions. We model

this by including a masking binary matrix M 2 {0, 1}R⇥T

in the previous equation as [6]:

min
E

νkEk⇤ + kM ◦ (E−C)k2F + γ Tr(ELE
>), (3)

where ◦ stands for the element-wise (Hadamard) product

and the entries of the matrix M are 1 if the corresponding

entry in C has to be taken into account for the HR estima-

tion and 0 otherwise.

Importantly, while in the previous studies M was known

in advance, in the present study we have to estimate it. We

naturally interpret this as a form of adaptation since M is a

observation-selection variable indicating from which obser-

vations should the method learn at each iteration. The mask-

ing matrix M should select the largest possible amount of

samples that provide useful information for the estimation

of the HR. Moreover, when available, it would be desirable

to use a prior for the mask M, taking real values between 0

and 1, fM 2 [0, 1]R⇥T . The complete SAMC optimization

problem writes:

min
E,M

νkEk⇤ + kM ◦ (E−C)k2F + γ Tr(ELE
>)

− βkMk1 + µkM− fMk2F , (4)

The parameters β and µ regulate respectively the number

of selected observations and the importance of prior infor-

mation. In this paper the prior mask fM is defined as the

negative exponential of the local standard deviation of the

signal. Our intuition is that, if the signal has small local

standard deviation, the chrominance variation within the re-

gion is due to the heart-rate and not to head movements or

facial expressions, and therefore that matrix entry should be

used to estimate the HR.

3.2.1 Solving SAMC

The SAMC optimization problem in (4) is not jointly con-

vex in E and M. Moreover, even in the case the mask-

ing matrix M was fixed, (4) would contain non-differential

and differential terms and a direct optimization would be

challenging. Instead, alternating methods have proven to

be successful in solving (i) convex problems with non-

differential terms and (ii) marginally convex problems that

are not jointly convex. More precisely, we derive an opti-

misation solver based on the alternating direction method of

multipliers (ADMM) [5]. In order to derive the associated

ADMM method, we first define the augmented Lagrangian

problem associated to (4):

min
E,F,M,Z

νkEk⇤+kM◦(F−C)k2F+γ Tr(FLF>)−βkMk1

+ µkM− fMk2F + hZ,E− Fi+
ρ

2
kE− Fk2F , (5)

where F is defined to split the terms of (4) that depend on

E into those that are differential and those that are not. The

variable Z represents the Lagrange multipliers constrain-

ing E to be equal to F, further regularized by the term

kE−Fk2F . The ADMM solves the optimisation problem by

alternating the direction of the optimisation while keeping

the other directions fixed. Specifically, solving (5) requires

alternating the following three steps until convergence:

E/M-step With fixed F and Z the optimal value of E is

obtained by solving:

min
E

νkEk⇤ +
ρ

2
kE− F+ ρ−1

Zk2F . (6)

The solution of such problem is given by the shrinkage op-

erator applied to F − ρ−1
Z, see [7]. Formally, if we write

the singular value decomposition of F− ρ−1
Z = UDV

>,

the optimal value for E is:

E
⇤ = US ν

ρ
(D)V>, (7)

where Sλ(x) = max(0, x − λ) is the soft-thresholding op-

erator, applied element-wise to D in (7).

The optimal value for M is obtained from the following

optimisation problem:

min
M

kM ◦ (F−C)k2F − βkMk1 + µkM− fMk2F , (8)

2400



which can be rewritten independently for each entry of M:

min
mrt2{0,1}

(frt − ort)
2mrt + µ(mrt − emrt)

2 − βmrt. (9)

The solution is straightforward:

m⇤
rt =

⇢
1 (frt − ort)

2 + µ(1− 2emrt) < β,

0 otherwise.
(10)

Intuitively, this means that a chrominance feature is selected

for learning if (i) the entry of the smoothed low-rank esti-

mation F is close to the corresponding entry in C and (ii)

that chrominance feature should be selected a priori. Re-

markably, this criterion is a mixture of the a posteriori rep-

resentation power and the a priori knowledge.

F-step With fixed E, Z and M, the optimal value of F is

obtained by solving the following optimisation problem:

min
F

kM◦(F−C)k2F+γ Tr(FLF>)+
ρ

2
kF−E−ρ−1

Zk2F .

(11)

Eq. 11 is a particular case of the problem solved in [15, 16].

Importantly, in our case there is no need to solve a linear

system of dimension RT as in [15, 16], but we require to

solve R linear systems of dimension T as in [1]. From a nu-

merical point of view this is quite advantageous, since larger

linear systems tend to be numerically more unstable. More

precisely, (11) can be rewritten independently for each of

the R rows of F:

min
fr

kMr(fr − or)k
2 + γfrLf

>
r +

ρ

2
kfr − er − ρ−1

zrk
2,

(12)

where lower-case bold letters denote rows of the respective

matrices and Mr = diag(mr). The solution of the previous

system is straightforward:

f
⇤
r = (2Mr + 2γL+ ρIT )

−1(2Mror + ρer + zs), (13)

where IT is the T -dimensional identity matrix.

Z-step The optimal value of Z is taken from [5]:

Z
⇤ = Z+ ρ(E− F), (14)

where the right-hand side represent the current values.

3.3. Phase 4: HR Estimation

Once the SAMC solver converges to an optimal solution

for E, we can simply hypothesize that, since the main un-

derlying signal is the one associated to the heart rate, the

largest singular value of E, would encode the information

associated to the sought signal. Therefore, we write the sin-

gular value decomposition of E = UDV
>, it is reasonable

Figure 3. Two examples of video sequences from the MMSE-HR

dataset where the subjects experience fear. For each subject two

rows are shown. Top: the recorded RGB-video frames. Bot-

tom: physiological data. Note how the heart rate (the blue line)

increases when each subject experiences fear.

to take the first column of V, V1 as the estimated underly-

ing HR signal. Finally, the Welch’s power spectral density

estimation method [26] is employed to obtain the frequency

in V1 with the largest energy fHR. For the instantaneous

HR measurement to get fHR we follow [10] and simply de-

tect the highest peak in the Fourier domain of the estimated

signal. The HR measured from the input video is then com-

puted as H = 60fHR.

4. Experimental Evaluation

4.1. Datasets

We conducted experiments on two datasets: the publicly

available MAHNOB-HCI dataset [20] and the MMSE-HR

dataset. As demonstrated by our experimental results, the

latter dataset contains more challenging sequences, due to

subjects’ movements and facial expressions.

The MAHNOB-HCI dataset is a multimodal dataset with

20 high resolution videos per subject. It contains 27 sub-

jects (12 males and 15 females) in total, and each subject

participated in two experiments: (i) emotion elicitation and

(ii) implicit tagging. Following [17], in our experiments

we used a 30 second interval (frames from 306 through

2135) of 527 sequences. To compute the ground truth heart

rate for each video sequence we used the second channel

(EXG2) of the corresponding ECG waveforms (see [20]).

The MMSE-HR dataset2 is a subset of the MMSE

database [31] specifically targeted to challenge heart rate es-

timation algorithms. The MMSE-HR dataset includes 102

2The MMSE-HR is included in the full dataset (MMSE) [31] which

will be made available to the research community through the Binghamton

University
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RGB videos and heart-rate data of 40 participants with di-

verse ethnic/racial ancestries. Two examples are given in

Fig. 3 (Note how the HR changes during the recording when

each person experiences fear. This supports the value of the

dataset for research on instantaneous HR estimation). The

physiological data were collected by Biopac Mp150 data

acquisition system3, including heart-rate, mean blood pres-

sure, and other physiological signals, working at 1 kHz. All

sensors were synchronized. More details regarding data col-

lection and recording setup can be found in [31].

To compute the ground truth HR signal for both datasets

we used a peak detection method from the MNE package4.

4.2. Settings

To evaluate the performance of the proposed approach

and compare it with previous methods, we consider five

commonly used metrics in the literature on remote HR anal-

ysis [17]. Specifically, we define He(i) = Hp(i)−Hgt(i),
i.e. the difference between the predicted heart rate Hp(i)
and the ground truth heart rate Hgt(i) for the i-th video

sequence. We report the mean Me and the standard devi-

ation SDe of He over all sequences. We also adopt the

Root Mean Squared Error (RMSE), the mean of error-rate

percentage MeRate =
PN

i=1
|He(i)|
Hgt(i)

and the Pearson’s cor-

relation ρ between signals Hp = {Hp(1), ..., Hp(N)} and

Hgt = {Hgt(1), ..., Hgt(N)}, being N is the number of

video sequences. In all our experiments the parameters of

the proposed method have been selected by cross-validation

on a subset of MMSE-HR and set to ν = 0.0357, γ = 0.01,

µ = 0.0011 and β = 0.0005. Importantly, these parame-

ters were used throughout all our experiments for the two

datasets, supporting the generalization ability of SAMC.

4.3. Results

Average HR prediction. In the first series of experiments

we compare the proposed approach with several state-of-the

art methods for average HR prediction on the MAHNOB-

HCI dataset. Specifically we consider the approaches de-

scribed in [18, 19, 4, 17, 10]. Performance on MAHNOB-

HCI is given in Table 1. To perform a quantitative compari-

son, we have implemented the methods in [17] and [10]5,

since their code is not available, while the performance

measures for [18, 19, 4] are taken from [17]. It is evident

that, while HR estimation on MAHNOB-HCI represents

a challenging task for early methods, the more recent ap-

proaches, [17] and [10], achieve high accuracy. Moreover,

our approach outperforms competing methods by a small

3http://www.biopac.com/
4http://martinos.org/mne/stable/index.html
5We also reimplemented the more recent method based on chrominance

features in [25]. Unfortunately, perhaps due to the fact that the method is

exhaustively described, we obtained worse results than those we obtained

with [10]. Therefore we choose to report our results using [10].

Table 1. Average HR prediction: comparison among different

methods on MAHNOB-HCI dataset (best performance in bold).

Method Me(SDe) RMSE MeRate ρ

Poh et al. [18] -8.95 (24.3) 25.9 25.0% 0.08

Poh et al. [19] 2.04 (13.5) 13.6 13.2% 0.36

Balakrishnan et al. [4] -14.4(15.2) 21.0 20.7% 0.11

Li et al. [17] -3.30 (6.88) 7.62 6.87% 0.81

De Haan et al. [10] 4.62 (6.50) 6.52 6.39% 0.82

SAMC 3.19 (5.81) 6.23 5.93% 0.83

Table 2. Average HR prediction: comparison among different

methods on MMSE-HR (best performance in bold).

Method Me(SDe) RMSE MeRate ρ

Li et al. [17] 11.56 (20.02) 19.95 14.64% 0.38

De Haan et al. [10] 9.41 (14.08) 13.97 12.22% 0.55

SAMC 7.61 (12.24) 11.37 10.84% 0.71

Table 3. Self-adapting (SA) vs. non-adapting (NA) MC.

p Me(SDe) RMSE MeRate ρ

SA
20 8.13 (12.08) 12.13 10.74 0.68

40-100 8.22 (12.24) 12.23 10.84 0.67

NA

20 55.39 (36.86) 65.99 68.21 0.08

40 35.90 (41.29) 51.47 44.76 0.16

60 22.40 (33.79) 37.06 27.91 0.17

80 9.41 (14.53) 14.63 11.91 0.49

100 10.05 (15.23) 15.13 12.98 0.47

margin. This can be explained by the fact that MAHNOB-

HCI does not contain many sequences with subject’s move-

ments and facial expression changes, while SAMC has been

designed to explicitly cope with the spatially localized and

intense noise they generate.

To demonstrate the advantages of our method, we per-

form similar experiments on the more challenging se-

quences of the MMSE-HR dataset. Here, we only com-

pare our method against the best-performing methods from

Table 1. Table 2 reports the results of our evaluation. On

this difficult dataset, due to its capacity to select the most

reliable chrominance features and ignore the noisy ones,

the proposed SAMC achieves significantly higher accuracy

than the state-of-the-art.

Effect of self-adaptation. In order to show the benefits

of adopting the proposed self-adaptation strategy, we pro-

vide results with a fixed binary mask M (i.e. without self-

adaptation) and compare them to those obtained with self-

adaptation in Table 3. The first column corresponds to the

percentile of the values of the prior fM used to construct the

initial mask. More precisely, for a value p, the initial mask

is 1 only in the entries corresponding to the p% regions with

the lowest standard deviation. Therefore, p = 100% cor-

responds to an (initial) mask matrix of all 1’s. Clearly, the
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Figure 4. Left: performance at varying values of the γ and µ.

Right: RMSE dependency on σs.

choice of p is crucial when the matrix is fixed, but almost ir-

relevant when there is self-adaptation. Also, self-adaptation

systematically outperforms the fixed mask case.

Finally, Fig. 4 (left) shows the performance of the pro-

posed approach at different values of parameters µ and γ for

the experiments on the MMSE-HR dataset. As shown in the

figure, very small and very large values of µ (indicating an

increase and a reduction of the influence of the prior mask),

correspond to a decrease of performance. Similarly, for the

parameter γ, weighting the influence of the Laplacian term,

a local optimum can be obtained for γ = 0.01. Fig. 4 (right)

shows similar behavior for σ, used to compute the prior

mask as the negative entry-wise exponential of the matrix

of standard deviations normalized by σ: fM = e(−S/σ).

Short-time HR estimation. To demonstrate the ability

of our method to recognize instantaneous HR, we selected

20% of the recorded sequences where there is a very strong

heart-rate variation. We split each sequence into non-

overlapping windows of length 4, 6, and 8 seconds and

process each window independently with [10] and SAMC,

since the approach in [17] is not suitable for instantaneous

HR prediction. Table 4 shows the results of our short-time

window analysis. The table supports the intuition that, the

smaller the window, the more difficult is for a method to

reliably estimate the HR. Importantly, SAMC consistently

outperforms [10] for all window lengths and produces reli-

able estimates starting from the 4-second windows.

To show that our method is able to follow the changes

in subject’s HR, we additionally report the predicted heart

rate for three sequences of different length. Figure 5 shows

the results of three selected video sequences processed by

our method. Note that although the method is not able to

predict the exact HR for every window, providing the value

close to the ground truth, a sudden increase/decrease is well

localized in time.

Running time. The proposed approach is fast, enabling

real-time HR analysis. On average, phase 1 runs at 50 fps,

while phase 2 runs at around 30 fps. Phase 3 and 4 have the

smallest execution time, reaching 550 fps. Running times

were measured using a single core implementation on a con-
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Figure 5. Heart rate recognition results for three sequences, using

window size of 4 seconds. Y -axis shows the interval over which

the heart rate was computed.

Table 4. Short-time window analysis. Results for three windows

sizes are reported: 4, 6, and 8 seconds.

Method Me(SDe) RMSE MeRate ρ

4 s
De Haan et al. [10] -1.85 (15.77) 15.83 9.92% 0.67

SAMC 2.12 (11.51) 11.66 9.15% 0.78

6 s
De Haan et al. [10] -2.21 (19.21) 19.27 11.81% 0.33

SAMC 0.32 (8.29) 8.27 7.30% 0.80

8 s
De Haan et al. [10] 0.81 (11.49) 11.46 8.60% 0.63

SAMC 1.62 (9.67) 9.76 7.52% 0.71

ventional laptop with an Intel Core i7-4702HQ processor.

5. Conclusions

We presented a novel framework for remote HR estima-

tion from visual data. At the core of our approach, there is

a novel optimization framework, named self-adaptive ma-

trix completion, which outputs the HR measurement while

simultaneously selecting the most reliable face regions for

robust HR estimation. This strategy permits to discard noisy

features, due to spontaneous target’s movements and facial

expressions. As demonstrated by our experimental evalua-

tion, the proposed approach provides accurate HR estimates

and outperforms state-of-the-art methods not only in the

case of long-time windows, but also for short-time analysis.

Extensive experiments conducted on the MMSE-HR dataset

support the value of the adopted self-adaption strategy for

HR estimation. Future work guidelines include devising

novel feature representations, in alternative to chrominance

signals, to further improve the robustness to varying illu-

mination conditions as well as exploiting the feasibility of

combining the predicted HR measurements with visual fea-

tures for spontaneous emotion classification.
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eri. Revealing real-time emotional responses: a personalized

assessment based on heartbeat dynamics. Scientific reports,

4, 2014. 2

[23] W. Verkruysse, L. O. Svaasand, and J. S. Nelson. Remote

plethysmographic imaging using ambient light. Optics Ex-

press, 16(26):21434, 2008. 1, 2

[24] W. Wang, Z. Cui, Y. Yan, J. Feng, S. Yan, X. Shu, and

N. Sebe. Recurrent face aging. In CVPR, 2016. 3

[25] W. Wang, S. Stuijk, and G. D. Haan. Exploiting Spatial Re-

dundancy of Image Sensor for Motion Robust rPPG. IEEE

Transactions on Biomedical Engineering, 62(2):415–425,

2015. 1, 3, 7

[26] P. D. Welch. The use of fast fourier transform for the esti-

mation of power spectra: A method based on time averaging

over short, modified periodograms. IEEE Transactions on

Audio and Electroacoustics, 15(2):70–73, 1967. 4, 6

[27] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and

W. Freeman. Eulerian video magnification for revealing sub-

tle changes in the world. In ACM Transactions on Graphics,

2012. 1, 2

[28] L. Wu, R. Jin, and A. K. Jain. Tag completion for image

retrieval. IEEE TPAMI, 35(3):716–727, 2013. 3

[29] X. Xiong and F. De La Torre. Supervised descent method

and its applications to face alignment. In CVPR, 2013. 1

[30] S. Xu, L. Sun, and G. K. Rohde. Robust efficient estimation

of heart rate pulse from video. Biomedical optics express,

5:1124–35, 2014. 1

[31] Z. Zhang, J. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci,

S. Canavan, M. Reale, A. Horowitz, H. Yang, J. F. Cohn,

Q. Ji, and L. Yin. Multimodal spontaneous emotion corpus

for human behavior analysis. In CVPR, 2016. 2, 6, 7

2404


